
Thesis: DRL

Julian Fransen

December 2022

Abstract

In new physics, the models have large parametric spaces. Finding the islands
of correct solution is an important problem. This thesis attempts to solve this
problem using deep reinforcement learning. The parametric space problem is
modelled as the game Battleship, where there are ’islands’ of correct solutions,
where the agent gets a reward, and in the remainder of the field the agents
gets no reward. An algorithm is trained using q-learning, and it creates its own
strategy from scratch. The goal of the algorithm is to maximize the reward by
finding the islands as fast as possible. It was found that it is possible, at least
in a small parameter space, and that a combination of supervised learning and
reinforcement learning yields the best result.

1

Contents

1 Standard Model 2
1.1 Solving Battleship . 4

2 Approaches 5
2.1 Evolutional Strategies . 5
2.2 Machine learning . 6

2.2.1 Neural nets . 6
2.2.2 Reinforcement learning 7
2.2.3 Q-learning . 7
2.2.4 Deep reinforcement learning 8
2.2.5 Supervised learning . 9

3 Methods 9
3.1 Simplified Battleship . 9
3.2 Supervised approach . 10

4 Results 12

5 Summary and overlook 14

A Appendix: Python code 17

1

1 Standard Model

The standard model involves describing all fundamental particles as waves in
fields, where every type of particle has its own associated field. This is all
described by quantum field theory. Particles can have interactions with each
other, where both energy and momentum can be exchanged. The standard
model takes a total of 19 parameters [9], which are for example the masses of
particles and the strength of their interactions. The values for most of these
parameters are known precisely, but not all. Regardless of that, the standard
model is extremely successful in making predictions. It is able to predict particle
physics experiments very precisely and it predicted the existence of undiscov-
ered particles [11].

Figure 1: The standard model of particle physic

Although successful, the standard model is believed to be an incomplete descrip-
tion, due to certain experimental reasons. For example, the imbalance between
matter and antimatter is not explained. Moreover, the existence of dark matter
is not described by the standard model. Hence, physicists search beyond the
standard model. One of the most investigated extensions to the standard model
is Supersymmetry (SUSY). Supersymmetry predicts the existence of a symme-
try operator Q̂, that transforms fermions to bosons and vice versa. The idea is
that this transformation only alters the spin of the paricles. The existence of the
operator Q̂ would imply the existence of new particles and fields, hence it is an
extension to the standard model. There are multiple models in supersymmetry
theories, for example MSSM, pMSSM and mSUGRA [5].

But there is a problem. Many models describing new physics have large pa-
rameteric spaces, including different models of SUSY. They have a dimension-
ality of the parameter space ranging up to 100 [1]. Furthermore, for effective
field theories this number can be even larger [6]. Certain regions in the param-
eter space yield correct results, such as the correct Higgs mass. These islands

2

are places of interest: the real solution for the parameters could be somewhere
in these islands. Thus, the goal is to find the complete islands and to find all
islands in the parameter space. In the figure below there is depicted a simplified
version of the problem. Here there are only 2 theoretical parameters θ and the
z-axis is the likelihood of the parameters θ given the data: L(θ|X). As you
can see, some values of θ have a very low likelihood, because they yield wrong
values, for example for the Higgs mass.

Figure 2: The likelihood of the parameters θ given the data: L(θ|X) for a
simplified physical problem [1]

The first simplification of the problem is treating the continuous parameter
space as a discrete one. This is done due to the fact that algorithms with a
discrete output space are much simpler. By increasing the resolution of the
parameter space, i.e. going for 100x100 instead of 10x10 in the figure above,
a problem resembling original one is obtained. The islands of correct solutions

(a) Continous parameter
space (b) Discrete parameter space

Figure 3: Discretization of a function

would then consist of multiple discrete blocks close to each other, as in figure 4.
In this figure the red blocks are the correct solutions and the white blocks are
the rest of the field. As you can see, the correct solution blocks are clustered
together as islands. At this point, the problem resembles the well-known game
of ’Battleship’.

3

Figure 4: Discrete islands of correct solutions

1.1 Solving Battleship

Battleship is a board game in which the objective is to sink the other player’s
battleships [2]. At the start of the game, each player places their own ships in
the 10 by 10 field. Then the players try to hit the opponents ship by naming
a certain square, for example ’C6’, which would be colums 3 and row 6. If the
opponent has placed a part of a ship on this square, it’s a hit. If not, it’s a miss.
The player who first sinks all ships of the opponent by hitting every square on
which there is a ship, wins the game.

Figure 5: The Battleship gameboard

This game is related to the physics problem in two important ways. First, there
are discrete ’islands of correct solutions’: the ships. This means that if you
shoot and it’s a hit, its likely that there is another hit close by, just as in the
physics problem, where correct solutions are clustered together. Furthermore,

4

the islands have roughly the same shape and size. Second, there are multiple
islands of correct solutions: multiple ships. This means that after a target has
been found the algorithm should search for new targets.

If we find an algorithm that can solve Battleship, it should be able to solve
the problem in higher dimensions as well, which potentially means it could solve
the original parameter space problem. The aim of this thesis is to solve a sim-
plified version of this general problem. We will attempt to solve a simple version
of Battleship with a small field to keep the computation time low. If N is the
number of blocks in the field, we assume that the problem will scale with N or
faster. We will be using Deep Reinforcement learning to train this algorithm.
Hence the research question:

Can an algorithm trained by deep reinforcement learning find the
global maxima in fewer iterations than a random strategy in a non-
differentiable problem?

2 Approaches

To find these islands of partially correct solutions, there are many possible
methods. In this section a few are mentioned, and some more information
about Machine Learning is given.

2.1 Evolutional Strategies

Evolutional algorithms are population-based optimization algorithms which im-
plement phenomena from biology, such as survival of the fittest, mutation and
selection. The individuals in the populations are the possible solutions to the
optimization problem, and the fitness function or loss function determines the
quality of the solutions.

One example of an evolutional algorithm is the Particle Swarm Optimization
[12]. This computational method lets a population of particles navigate the
search-space. Each particle has a position and a velocity, and its direction is
influenced by its best position and by the best position known by the swarm.
In this context the ’best position’ means the highest likelihood. It is expected
that the swarm moves toward the direction of the correct solution.

Another approach is the use of Artificial Bee Colonies. The basic idea behind
the Bee Colony Optimization is to create a multi-agent system, namely the
colony of artificial bees, capable to solve complex combinatorial optimization
problems. The algorithm is inspired by the behaviour of honey bees as they are
searching for their food: nectar. In the Artificial Bee Colony algorithm there are
N active data points which are tracked [1]. Initially the locations of these points
are uniformly distributed. All function values for the data points are evaluated.
In the bee-analogy the locations of nectar are the data points and their function
value is the food gain from these sources. The goal of the optimization algorithm
is , of course, to find the data point with best function value. Or, in the bee-

5

analogy, to find nectar source with highest food gain. The process of finding
this point is iterative, and every iteration consists of three phases. First, new
locations are explored and their function values are calculated. The locations of
the new data points are determined by starting at an original active data point
and then traveling some distance to one of the other active data points in all
dimensions. If the function value of this new location is better than the original
one, it gets replaced. However, the old location and function value of the data
point are saved in case the test fails. This is part of the second phase, where
locations that fail too many times are reinitialised. In the final step all active
data points are assigned a fitness-score, which is dependent on the functional
value. Based on this fitness-score an update probability is calculated for each
data point. Similarly to the first phase, the data points are only updated if the
new point improve the function value.

One variation of one of these algorithms is the Artificial Bee Colony (ABC)
algorithm developed by Karaboga [10]. After comparing the performance of the
ABC algorithm with different algorithms, the authors concluded that this algo-
rithm has the ability to get out of a local minimum and that it can be efficiently
used for multivariable, multimodal function optimization. This algorithm was
applied to train feed-forward artificial neural networks, where the authors com-
pared performances with the back propagation algorithm. It showed that the
ABC algorithm could be good addition to the existing algorithms.

2.2 Machine learning

The idea behind machine learning is that algorithms learn and improve them-
selves, instead of being explicitly programmed behave in a certain way. This
enables machine learning to be broadly applicable in many different fields of
expertise. There exist three main branches: reinforcement learning, supervised
learning and unsupervised learning. In this thesis only the first two techniques
are used.

2.2.1 Neural nets

Artificial neural networks or neural nets (NNs) are algorithms inspired by the
dynamics of networks of neurons found in animals. The neural nets consist of a
number of layers of neurons, and every neuron usually connects with all neurons
in the next layer. The biases in every neuron and the connection strength
between neurons known as weights are trainable parameters. In training the
neural networks are presented an input-output pair. Using the input, the NN
makes a prediction. The error between this prediction and the true output is
calculated using the error function. Then, using backpropogation, the gradient
of the error E with respect to every trainable parameter p is calculated:

∂E

∂p
, p ∈ P

6

with P defined as the collection of all trainable parameters. Finally, we utilize
the gradient together with an optimization algorithm to change the trainable
parameters, reducing the error and improving the prediction done by the NN.

Figure 6: General neural network architecture.

2.2.2 Reinforcement learning

Reinforcement learning tackles problems which can be modeled as a Markov
decision process (MDP) [4]. This is a process involving decision making at
discrete timesteps, where outcomes aren’t fully determined by the decision, but
also partly random. Hence MDPs are discrete-time stochastic processes. It is
very useful to model a problem as a MDP due to the mathematical framework
that has been established [3]. The following list contains the most important
terms for the general model of a problem.

• State(St): the state contains all observable information of the environment
at time t.

• Action space(A): the set of all possible actions. The agent outputs an
action at at time t with a ∈ A.

• Reward: The reward Ra(S, S
′) = rt is a function which gives the reward

of going from state S at time t− 1 to state S′ at time t.

• Agent: the player of the game. The output is the chosen action and it
essentially maps a (St, rt) to a.

2.2.3 Q-learning

Q-learning is an algorithm of reinforcement learning where the agent in the
prototypical problem is a q-table. This table is filled with q-values: the expected

7

Figure 7: An overview of the mechanism of behind deep reinforcement learning.

reward of every action given a state. Every row describes a different state and
every column describes the q-value for an action. Thus, for a problem with
N possible states and M possible actions the Q-table will be of size N · M .
Typically the initial values of the table are equal, to avoid favouring certain
actions over others. Every iteration information about one particular q-value is
acquired: if the Environment is in state st = si and the chosen action is at = aj
then information about q-value qij is received. A complete Q-table contains the
q of every action for every state. The Q-values are updated using the following
formula [7]:

Qnew(st, at)← Q(st, at) + α · (rt + γ ·maxQ(st+1, a)−Q(st, at))

The new q-value is consist of the sum of three terms. The first one, (1 −
α)Q(st, at), is the current q-value weighted by the learning rate α. α ∈ [0, 1],
higher values for α change the q-value more rapidly. The second term, αrt, is
the reward received at time t weighted by the learning rate. Finally, the last
term αγ ·maxQ(st+1, a) : the maximum reward that can be obtained from the
next state, (weighted by learning rate and discount factor γ). The discount
factor is a measure of how important the future rewards are with respect to the
current reward.

2.2.4 Deep reinforcement learning

Deep reinforcement learning is a powerful technique which is however rarely
used in particle physics. This is due to the fact that this framework is essentially
designed to solve games. By rephrasing the particle physics problem as a game,
we obtain a unique approach to the problem. In deep reinforcement learning
the agent is a neural net, where the given input is the state and the output
are the q-values of all possible actions in that state. After the neural net is
trained, the best strategy would be to always pick the action with the greatest
q-value. The training data this NN is trained on is not labeled data. This is also
the strength of DRL: it can tackle problems without knowing what the correct
output is. The training data is generated through the algorithm playing the
game. By tracking all observables, the NN learns to favour actions that lead to

8

a high reward and to avoid actions that lead to a small reward. The input to
the NN is the state of the Environment. Then the output of the NN will be the
predicted q-values. In training, these predicted values will be compared to the
’true’ values, which are calculated using the aforementioned q-value formula.

2.2.5 Supervised learning

In supervised learning the true outputs are known and the NN will behave
exactly like the data after sufficient training. It essentially learns to map an
input to an output. The flaw of SL is that it requires labeled data, and usually
also a large amount of data.

3 Methods

Everything was programmed in the Python language, using the TensorFlow
library with Keras as the interface for Python. The full code will be in the
appendix.

3.1 Simplified Battleship

After some experimentation it was decided that we would use a even more
simplified version of Battleship. It turned out that the original field of 10 by
10 blocks was too big to converge to a solution quickly. Our simplified version
of Battleship works as follows: the field is 5 blocks wide and there is one target
which is 2 blocks wide. This means there are 4 possible setups of the field, as
you can see in figure 8. The player can shoot three times, and its aim is to

Figure 8: The 4 possible target positions.

score as many points as possible. Every turn the player can earn -100, 0 or 100
points. If the target is hit, the player earns 100 points for that turn. If a block
is hit two or more times, the player earns -100 points: it is against the rules to
shoot a block multiple times. If a block is hit for the first time but it is not one
of the target blocks, 0 points are earned.

9

We decided to simplify the problem further for two reasons. The first is the
reduced computation time. The second one is the fact that we can compare
the strategy and results of the DRL algorithm to both our own strategy and
the random stategy. Our strategy is the so-called ’hardwired strategy’ and it is
designed in such a way that is maximizes the reward: there is no solution better
on average than this strategy. The most left box is box number 1 and the most
right one is box number 5. This is how this strategy works: first, shoot box
number 3 (the middle box). Next, shoot box number 4. If the last shot was a
hit, shoot 5. Else, shoot 2. Using this strategy 3 out of 4 times the maximum
score is reached, and the remaining time a score of 100 is reached, which comes
down to an average score of 175. The other strategies will be compared with
this one to see how well they perform.

3.2 Supervised approach

In testing, it turned out that using only q-learning yielded disappointing results:
the algorithm did not even seem to understand that shooting the same box mul-
tiple times yields a penalty. This is a limitation on reinforcement learning: in
some context it performs badly. However, by first using a form of supervised
learning followed by reinforcement learning overcomes this problem. This is for
example what the researchers of DeepMind did when they developed a chess,
shogi and go playing algorithm named AlphaZero [8]. We will focus on their
chess playing algorithm and its training. First, the neural net was trained on
many games by highly rated players using supervised learning. After this, the
neural net was improved further using reinforcement learning. This method led
to this algorithm dominating the other chess playing algorithms. Inspired by
DeepMind, we attempted to do the same: first supervised learning, then rein-
forcement learning. However, for the supervised learning much labeled data is
necessary. This is why we generated this data separately. We also wanted to
test the algorithm in between training. That is why the code is written in the
following way:

1. training data is generated
2. the agent is trained using supervised learning
3. the agent is tested
4. the agent is trained using reinforcement learning
5. the agent is tested again

To generate the training data, the agent plays the game between 100 thou-
sand and 1 million times. The states, actions and rewards are all saved to an
.csv file.

The agent is programmed as a neural net. As input it receives the state of
the game, which contains the 5 boxes (a 1 means the box has been shot, and a 0
means it has not been shot), it contains the current reward (-100, 0 or 100) and
it contains the total reward until that point in the game. Based on the state
the agent can make a calculated decision what box to shoot next. The output

10

of the agent are the q-values for the boxes. It will be a 5x1 array with all values
summing up to 1.

The NN is fully connected with a hidden layer of 50 units. The loss function
is the mean squared error function, used to calculate the error between the
prediction of the NN given an input and the label corresponding with this input.
All network weights are initialized with zeros for q-learning, and for supervised
learning they are initialized using a random normal distribution.

The agent can be trained using supervised learning, q-learning, or both. For
supervised learning the input data is the state, and the labels are the actions.
The action of choosing the middle box would for example look like [0,0,1,0,0].
For reinforcement learning it is a bit more complicated to obtain the labels. Be-
low is the python code that calculates the labels required for deep reinforcement
learning. The input-output pairs are (X,y).

1 for index, state in enumerate(states):

2 action = np.argmax(actions[index])

3 # The reward is the reward the agent got this iteration

4 reward = rewards[index]

5 # future_qs_list contains the q-values of the next state

6 max_future_q = np.max(future_qs_list[index])

7 # Calculate Q-value using the formula

8 new_q = reward + DISCOUNT * max_future_q

9 # Update Q value for given state

10 current_qs = current_qs_list[index]

11 current_qs[action] = new_q

12 # Normalise Q

13 current_qs = np.array(current_qs)/sum(current_qs)

14 # And append to our training data

15 X.append(state)

16 y.append(current_qs)

Figure 9: In this figure the labels required for reinforcement learning are calcu-
lated using the q-learning formula from section 2.2.3. The output of the neural
net after given input are q-values. In training these are compared with the
labels. The labels are the original values with a small difference: the q-value
of the chosen action is updated based on the reward the agent received after
performing this action

11

4 Results

In testing it turned out that only using QL to train worked very poorly: the
average scores were negative, which means that shooting completely random
was still much better. This is why the final results are of models which are
first trained using SL, tested, and then improved further using QL. In total 5
different strategies were tested.

• random: pick one of the 5 boxes at random

• pseudo-random: pick one of the boxes that have not been shot

• SL model 1: model trained on pseudo-random data

• SL model 2: model trained on filtered pseudo-random data

• SL model 3: model trained on hardwired strategy

The first one was completely random: regardless of the past turn, every time the
agent chooses one of the five boxes at random. This strategy earns on average a
score of 42.8, which is quite low, due to the fact that it often earns -100 points.
The second is called ’pseudo-random’: it is still random, but now the agent
knows the rules of the game, which means that it never shoots the same box
twice. This strategy earns on average a score of 124. The model which was
trained using SL on this pseudo-random data is called ’SL model 1’ and earned
a score of 125 after SL. Next, after further improvement using RL the score
reached 150.
The third strategy is the model trained on the pseudo-random data and fur-
ther improved by reinforcement learning. After supervised learning it earned a
similar score to the pseudo-random strategy, which was 125 points. The rein-
forcement learning made the score improve until 150 points.
The fourth strategy worked in the following way: use the pseudo-random data
but filter it; only keep in the trials that reached the maximum score of 200. The
idea is that a model trained using supervised learning on this data would mimic
the good behaviour of the strategy. For example, the middle three blocks have
a higher probability of being a target, therefore it is better to shoot one of these
blocks the first time you shoot. The prediction is then that this model behaves
this way, and this is exactly what we see. This model, named ’SL model 2’,
earned on average a score of 150, and after RL a optimal score of 175.
The final strategy is the so-called ’hardwired strategy’. The model which was
trained on this training data is called SL model 3 and earned on average a score
of 175. In every way it behaved like the hardwired strategy, essentially it was a
copy. Since the optimal score was already reached, this model was not trained
using RL.

12

Figure 10: Summary of results. The score after SL is depicted in orange and
the increase in score due to RL is depicted in red. The score of the random and
pseudo-random strategies are depicted in green.

In these next plots you can see the loss and accuracy of the neural net after
supervised learning. As expected, in all three cases the accuracy increases and
the loss decreases as a function of epochs, since these two are inversely related.
Furthermore, the validation accuracy and losses are distributed around the cal-
culated value. In figure 11 a) you can see that the accuracy converges to a value
of 0.26. This is quite low, due to the fact that it is impossible to predict a
random move. In the first state of the game, no shots have been fired, and the
chance of guessing the right box is 1/5. The next turn, it is 1/4 and the last

turn it is 1/3. Thus, the average accuracy is 1/5+1/4+1/3
3 = 0.26. In figure 11 c)

the accuracy is a bit higher, because there is more actual strategy behind the
filtered data and therefore is less random. Finally, in figure 11 e) the accuracy is
100 percent due to the fact that the hardwired strategy is fully determined. Also
due to this, the loss is at a value of zero. After 2 epochs the NN is optimized
and fully captures the behaviour of the hardwired strategy.

13

(a) pseudo-random data accuracy plot (b) pseudo-random data loss plot

(c) filtered data accuracy plot (d) filtered data loss plot

(e) hardwired data accuracy plot (f) hardwired data loss plot

Figure 11: Supervised Learning loss and accuracy plots

5 Summary and overlook

The models that are dealt with in particle physics have very large parametric
spaces. These spaces are in fact so large that it is infeasible to try out all
points. The objective in particle physics is to find all and the complete islands
in this parameter space that yield correct solutions. In this thesis we attempted
to do exactly that using different techniques of machine learning, including
deep reinforcement learning. Hence the research question:

Can an algorithm trained by deep reinforcement learning find
the global maxima in fewer iterations than a random strategy in a
non-differentiable problem?

14

In our version of the problem, where the field consisted of 5 boxes and the
target consisted of 2 boxes, the algorithm was able to perform better than
random. We introduced 2 random strategies, and after training our algorithm
performed better than both. We obtained the best performing algorithm by
doing the following:

1. generate training data using a random strategy
2. separate training data on score; save the trials where the maximum score
was reached as ’filtered data’
3. create the agent and its neural network, train using supervised learning on
the generated data
4. train this neural network further using reinforcement learning on all training
data

Further research is needed to find out if reinforcement learning can be used in
particle physics. Our problem could be expanded to make it closer to the actual
problem in particle physics. First, the battleship field could be made bigger, e.g.
10 or 100 blocks per dimension. Second, multiple dimension could be used, for
example 12-dimensional. Third, multiple targets or ships could be introduced.
Finally, the ships could be made in slightly different shapes and sizes. If all of
this is done, the Battleship-problem would be very close to the actual problem
and its solution could be used. The challenge with expanding the problem lies
in computation time. As the field becomes bigger and thus the problem more
complex, the training time will increase.

15

References

[1] Csaba Balázs et al. A comparison of optimisation algorithms for high-
dimensional particle and astrophysics applications. JHEP, 05:108, 2021.

[2] Eva-Maria Hainzl, Maarten Löffler, Daniel Perz, Josef Tkadlec, and Markus
Wallinger. Finding a battleship of uncertain shape, 2022.

[3] Ronald A Howard. Dynamic Programming and Markov Processes. ”[Cam-
bridge] : Technology Press of Massachusetts Institute of Technology”, 1960.

[4] Sumeet Khatri. On the design and analysis of near-term quantum network
protocols using Markov decision processes. July 2022.

[5] Stephen P. Martin. A Supersymmetry primer. Adv. Ser. Direct. High
Energy Phys., 18:1–98, 1998.

[6] Shigeki Matsumoto, Satyanarayan Mukhopadhyay, and Yue-Lin Sming
Tsai. Singlet majorana fermion dark matter: a comprehensive analysis
in effective field theory. Journal of High Energy Physics, 2014(10), oct
2014.

[7] Francisco S. Melo. Convergence of Q-learning with linear function approx-
imation. 2007.

[8] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[9] Bonifatius Paulus Josephus Stienen. Working in high-dimensional param-
eter spaces - Applications of machine learning in particle physics phe-
nomenology. PhD thesis, Nijmegen U., 2021.

[10] Dušan Teodorović. Bee colony optimization (BCO), volume 248, pages
39–60. 10 2009.

[11] Mark Thompson. Modern particle physics. University of Cambridge, 2013.

[12] Tingting Zhang, Yongjie Sun, Pengpeng Wang, and Cunguang Zhu. Con-
centration retrieval in a calibration-free wavelength modulation spec-
troscopy system using particle swarm optimization algorithm, 2022.

16

A Appendix: Python code

1 import tensorflow as tf

2 import math

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import keras

6 import os

7 import random

8

9 from tensorflow.keras.datasets import mnist

10 from tensorflow.keras.optimizers import Adam

11 from tensorflow.keras.initializers import RandomNormal

12 from tensorflow.keras.layers import Conv2D, Flatten, Dense,

Dropout, MaxPooling2D, Input↪→

13 from tensorflow.keras.models import Sequential

14 from tensorflow.keras.layers import Reshape

15 from tensorflow.keras.losses import MeanAbsoluteError

16

17 import tensorflow.keras.backend as kb

18

19 #MACROS

20 FIELD_SIZE = 5

21 GAMMA = 0.8

22 NUMBER_OF_EPISODES = 100

23 DIMENSION = 1

24 STATE_VECTOR_SIZE = 1

25 SIGMA = 10

26 DISCOUNT = 0.8

27 EPOCHS = 10

28

29 epsilon = 1

30 EPSILON_DECAY = 0.999975

31 MIN_EPSILON = 0.001

32 RESET_ENV_EVERY = 3

33 UPDATE_TARGET_EVERY = 5

34 TRIALS_PER_BATCH = 1000

35 MIN_AVERAGE_SCORE = 170

36 MIN_TEST_SCORE = 100

37 TAKE_AVERAGE_EVERY = 100

38 AMOUNT_TRIALS_TESTED = 100

39

40 # Definitions

41 class Environment:

42

43 def __init__(self):

44 self.target = np.random.randint(0,FIELD_SIZE**DIMENSION-1)

45 self.current_state = np.array([0,0,0,0,0])

17

46 self.memory = []

47 self.final_reward = []

48 self.episode_number = 0

49 self.reward = 0

50 self.episode_reward = 0

51 self.full_state = np.array([[0,0,0,0,0,0,0]])

52

53 def reset(self):

54 self.target = np.random.randint(0,FIELD_SIZE**DIMENSION-1)

55 self.current_state = np.array([0,0,0,0,0])

56 self.reward = 0

57 self.episode_reward = 0

58 self.episode_number += 1

59 self.full_state = np.array([[0,0,0,0,0,0,0]])

60

61 def moving_battleship_reward_function(self, action):

62 action = np.argmax(action)

63 if self.current_state[action]==1:

64 return -100

65 if action == self.target or action == self.target + 1 :

66 return 100

67 else:

68 return 0

69

70 def update_env(self, action):

71 self.reward =

self.moving_battleship_reward_function(action)↪→

72 self.episode_reward += self.reward

73 if self.reward >= 0:

74 self.current_state = action + self.current_state

75 self.full_state =

np.array([np.append(self.current_state,[self.reward,↪→

76 self.episode_reward])])

77 self.memory.append(self.full_state)

78

79 def extract_memory(self):

80 return np.array(self.memory)

81

82 class Agent:

83 epsilon = 0

84 EPSILON_DECAY = 1

85 MIN_EPSILON = 0.01

86 triple_same_state_counter = 0

87 optimizer = Adam(learning_rate = 0.001, epsilon = 0.1)

88

89 def __init__(self):

90 self.model = self.create_model()

91 self.target_model = self.create_model()

92 self.target_model.set_weights(self.model.get_weights())

18

93 self.target_update_counter = 0

94 self.epsilon = 1

95

96 def create_model(self):

97 model = Sequential()

98 model.add(Input(shape = (7,)))

99 model.add(Dense(10, kernel_initializer = 'RandomNormal'))

100 model.add(Dense(FIELD_SIZE**DIMENSION,kernel_initializer =

'RandomNormal',activation='softmax'))↪→

101 model.compile(optimizer= Adam(learning_rate = 0.0001,

epsilon = 0.1), loss ='categorical_crossentropy' ,

metrics= ['Accuracy'])

↪→

↪→

102 return model

103

104 def predict_action(self, state):

105 output = np.array([0,0,0,0,0])

106 action = self.model.predict(state)

107 action = np.argmax(action)

108 output[action] = 1.0

109 return output

110

111 def choose_action(self,input):

112 qs = self.model.predict(input)

113 action = np.argmax(qs)

114 while 1.0 == input[0][action]:

115 qs[0][action] = -1

116 action = np.argmax(qs)

117 output = np.array([0,0,0,0,0])

118 output[action] = 1.0

119 return output

120

121 def supervised_training(self, X, y):

122 number = int(len(X)*.98)

123 number2 = int(len(X)*.02)

124 X_train = X[:number]

125 X_val = X[-number2:]

126 y_train = y[:number]

127 y_val = y[-number2:]

128 history = self.model.fit(X_train, y_train, verbose =

1,epochs=EPOCHS, batch_size = TRIALS_PER_BATCH,

validation_data = [X_val,y_val],validation_steps=1)

↪→

↪→

129 return history

130

131 class QAgent:

132 epsilon = 0

133 EPSILON_DECAY = 1

134 MIN_EPSILON = 0.01

135 triple_same_state_counter = 0

136

19

137 def __init__(self):

138 self.model = self.create_model()

139 self.target_model = self.create_model()

140 self.target_model.set_weights(self.model.get_weights())

141 self.target_update_counter = 0

142 self.epsilon = 1

143

144 def create_model(self):

145 model = Sequential()

146 model.add(Input(shape = (7,)))

147 model.add(Dense(10, kernel_initializer = 'Zeros'))

148 model.add(Dense(FIELD_SIZE**DIMENSION,kernel_initializer =

'Zeros',activation='softmax'))↪→

149 model.compile(optimizer= Adam(learning_rate = 0.0001,

epsilon = 0.1), loss = 'mse', metrics= ['Accuracy'])↪→

150 return model

151

152 def predict_action(self, state):

153 output = np.array([0,0,0,0,0])

154 action = self.model.predict(state)

155 action = np.argmax(action)

156 output[action] = 1.0

157 return output

158

159 def choose_action(self,input):

160 qs = self.model.predict(input)

161 action = np.argmax(qs)

162 while 1.0 == input[0][action]:

163 qs[0][action] = -1

164 action = np.argmax(qs)

165 output = np.array([0,0,0,0,0])

166 output[action] = 1.0

167 return output

168

169 def q_training(self, data):

170 X = []

171 y = []

172 states, actions, new_states = data

173 rewards = np.delete(new_states,[0,1,2,3,4,6],1)

174 rewards = rewards.flatten()

175 current_qs_list = self.model.predict(np.array(states))

176 future_qs_list =

self.target_model.predict(np.array(new_states))↪→

177 for index, state in enumerate(states):

178 action = np.argmax(actions[index])

179 reward = rewards[index]

180 scaled_reward = reward / 200 +0.5

181 max_future_q = np.max(future_qs_list[index])

182 new_q = scaled_reward + DISCOUNT * max_future_q

20

183 # Update Q value for given state

184 current_qs = current_qs_list[index]

185 current_qs[action] = new_q

186 current_qs = np.array(current_qs)/sum(current_qs)

187 # And append to our training data

188 X.append(state)

189 y.append(current_qs)

190 X = np.array(X)

191 y = np.array(y)

192 history = self.model.fit(X, y, verbose = 1, shuffle =

True,batch_size = TRIALS_PER_BATCH, epochs=EPOCHS)#↪→

193 return history

194

195 class RandomAgent:

196 def hardwired_stategy(self, current_full_state, shots_fired):

197 output = np.array([0,0,0,0,0])

198 if shots_fired == 0:

199 output[2] = 1.0

200 return output

201 if shots_fired == 1:

202 output[3] = 1.0

203 return output

204 if shots_fired == 2:

205 if current_full_state[0][5] == 0:

206 output[1] = 1.0

207 return output

208 else:

209 output[4] = 1.0

210 return output

211

212 def fully_random(self, current_state):

213 output = np.array([0,0,0,0,0])

214 rand_action = np.random.randint(FIELD_SIZE**DIMENSION)

215 output[rand_action] = 1.0

216 return output

217

218 def pseudo_random(self, current_state):

219 output = np.array([0,0,0,0,0])

220 rand_action = np.random.randint(FIELD_SIZE**DIMENSION)

221 while current_state[0][rand_action] == 1:

222 rand_action = np.random.randint(FIELD_SIZE**DIMENSION)

223

224 output[rand_action] = 1.0

225 return output

226

227 def choose_action(self, current_state):

228 if all(current_state == np.array([0,0,0,0,0])):

229 rand_action = np.random.randint(3) + 1

230 output = np.array([0,0,0,0,0])

21

231 output[rand_action] = 1.0

232 return output

233 rand_action = np.random.randint(FIELD_SIZE**DIMENSION)

234 while 1.0 == current_state[rand_action]:

235 rand_action = np.random.randint(FIELD_SIZE**DIMENSION)

236 output = np.array([0,0,0,0,0])

237 output[rand_action] = 1.0

238 return output

239

240 def data_refiner(data, episode):

241 states = data.astype(int)

242 only_states = np.delete(states, 5, 1)

243 only_states = np.delete(only_states, 5, 1)

244 new_states = states

245 X = states

246 y = []

247 for index in range(int(len(only_states)/4)):

248 new_states = np.delete(new_states, 3*index, 0)

249 X = np.delete(X, 3*index + 3, 0)

250 ac1 = only_states[4*index+1]

251 ac2 = only_states[4*index+2] - ac1

252 ac3 = only_states[4*index+3] - ac1 - ac2

253 y.append([ac1,ac2,ac3])

254 y = np.array(y)

255 y = y.reshape(-1,5)

256 os.chdir(r'C:\...') # fill in folder where you want to saved

the supervised learning data.↪→

257 np.savetxt(f'X_{episode}.csv', X, delimiter = ",")

258 np.savetxt(f'y_{episode}.csv', y, delimiter = ",")

259 np.savetxt(f'new_state_{episode}.csv', new_states, delimiter =

",")↪→

260 print('saved to file')

261

262 def average_tester(env,agent):

263 total_reward = 0

264 for i in range(AMOUNT_TRIALS_TESTED):

265 env.reset()

266 for i in range(RESET_ENV_EVERY):

267 output = np.array([0,0,0,0,0])

268 action = agent.model.predict(env.full_state)

269 action = np.argmax(action)

270 output[action] = 1.0

271 new_action = output

272 env.update_env(new_action)

273 total_reward += env.episode_reward

274 print(f'the average score

is:{total_reward/AMOUNT_TRIALS_TESTED} ')↪→

275 return (total_reward/AMOUNT_TRIALS_TESTED)

276

22

277 # Generate training data

278 agent = RandomAgent()

279 env = Environment()

280 TOTAL_TRAINING_POINTS = 1000000

281 SAVE_TRAINING_POINTS_EVERY = 100000

282 for i in range(TOTAL_TRAINING_POINTS/SAVE_TRAINING_POINTS_EVERY):

283 for episode in range(SAVE_TRAINING_POINTS_EVERY):

284 env.reset()

285 shots_fired = 0

286 for i in range(RESET_ENV_EVERY):

287 new_action = agent.pseudo_random(env.full_state)

#choose between pseudo_random, fully_random, or

hardwired_strategy

↪→

↪→

288 shots_fired += 1

289 env.update_env(new_action)

290 data = env.extract_memory()

291 env.erase_memory()

292 data = data.reshape(-1, 7)

293 data_refiner(data,env.episode_number)

294

295 # Supervised Learning

296 agent = Agent()

297 env = Environment()

298 training_files = 1

299 training_count = 100000

300 X= []

301 y= []

302 for i in range(1,training_files+1):

303 os.chdir(r'C:\...') # fill in folder where you saved the

supervised learning data inputs (X).↪→

304 a = np.loadtxt(f'X_{i*training_count}.csv', delimiter=",")

305 X.extend(a)

306 os.chdir(r'C:\...') # fill in folder where you saved the

supervised learning data labels (y).↪→

307 b = np.loadtxt(f'y_{i*training_count}.csv', delimiter=",")

308 y.extend(b)

309 X = np.array(X)

310 y = np.array(y)

311 number = int(len(X)/1000)

312 X = X[:1000*number]

313 y = y[:1000*number]

314 X = X.reshape(-1,7)

315 y = y.reshape(-1,5)

316 history = agent.supervised_training(X,y)

317 average_tester(env,agent)

318

319 # Transer weights to q-learning agent

320 DeepQagent = QAgent()

321 env = Environment()

23

322 weights = agent.model.get_weights()

323 DeepQagent.model.set_weights(weights)

324 DeepQagent.target_model.set_weights(weights)

325

326 # Load data for reinforcement learning

327 training_files = 7

328 training_count = 100000

329 A,B,C = [],[],[]

330 for i in range(1,training_files+1):

331 os.chdir(r'C:\...') # fill in folder where you saved the

training data.↪→

332 a = np.loadtxt(f'X_{i*training_count}.csv', delimiter=",")

333 b = np.loadtxt(f'y_{i*training_count}.csv', delimiter=",")

334 c = np.loadtxt(f'new_state_{i*training_count}.csv',

delimiter=",")↪→

335 A.extend(a)

336 B.extend(b)

337 C.extend(c)

338 number = int(len(A)/1000)

339 A = A[:1000*number]

340 B = B[:1000*number]

341 C = C[:1000*number]

342

343 # Reinforcement learning

344 history = DeepQagent.q_training([A,B,C])

345 average_tester(DeepQagent)

24

