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Abstract

The gravitational asymptotic safety program strives to find a complete and consistent
theory of quantum gravity. In this framework, the ultraviolet completion of the theory
hinges upon the existence of a non-Gaussian fixed point controlling ultraviolet behav-
ior of the renormalization group flow. Developing this intrinsically Euclidean approach
into a realistic description of nature requires the inclusion of two important elements: a
preferred direction which could serve as a time direction and matter degrees of freedom
supplementing the gravitational interactions. The first element can be addressed by fo-
liating spacetime via the Arnowitt-Deser-Misner decomposition of the metric field. This
decomposition generates a preferred direction which could be Wick rotated, allowing
for the switch from the Euclidean to the Lorentzian setting. In this work, we use the
Wetterich equation to calculate the flow of the graviton 2-point function. As a novel
feature, we supplement the gravitational degrees of freedom by a matter sector consist-
ing of Ns scalar and Nv Abelian gauge fields minimally coupled to gravity. Starting
with the pure gravity system, we find that the beta functions admit a non-Gaussian
fixed point that is suitable for providing the ultraviolet completion of the theory and
is connected to a classical regime in the infrared. Investigation of the phase diagram
reveals that the flow is controlled by the interplay of this non-Gaussian fixed point, a
Gaussian fixed point, and an infrared fixed point. The latter ensures that the renormal-
ized squared graviton mass vanishes in the infrared limit. Following this, we study the
effects of the matter fields on the fixed point structure and phase diagram. We find that,
within certain bounds on Ns and Nv, the gravity-matter systems behave qualitatively
identical to the pure gravity system. Notably, the infrared fixed point persists under the
addition of matter fields within the mentioned bounds, signalling that the renormalized
graviton mass remains 0 in the infrared limit for gravity-matter systems. The results of
this thesis can be taken as evidence that foliated gravity-matter systems are compatible
with the asymptotic safety scenario and can exhibit phenomenologically viable infrared
behavior.
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1 Introduction

The last 150 years have been an enormously productive era in the field of physics. The-
oretical physicists have come to a much deeper understanding of spacetime and gravity.
At the end of the 19th century, James Clerk Maxwell completed his theory of Elec-
tromagnetism [1], providing a rigorous theoretical foundation underlying the physical
phenomena of electricity and magnetism. In particular, he demonstrated that electro-
magnetic waves propagate through the vacuum with a constant speed very close to the
measured value of the speed of light. This led him to conclude that light itself is an elec-
tromagnetic wave: a disturbance in the electromagnetic field. Not long after Maxwell’s
publications, Albert Einstein started working on his theory of Special Relativity [2].
This theory is based on two surprisingly simple postulates: the laws of physics should
be the same in all inertial reference frames and the speed of light is a constant c, in-
dependent of one’s reference frame. Einstein’s work sought to remedy the deficits of
Newtonian mechanics, which failed to give accurate predictions for objects moving at
high velocities. In addition, it predicted a non-constant speed of light which was at
odds with Maxwell’s findings. In Newtonian mechanics, space is viewed as a static stage
on which physical processes take place, and time is considered to be an absolute and
universal entity, independent of space. Einstein showed that this understanding of space
and time as separate entities is incomplete; space and time are deeply intertwined, and
together, they form the fundamental fabric of the universe: spacetime.

After the publication of Special Relativity in 1905, Einstein worked on generalizing
this theory by allowing spacetime to become dynamic. This lead to the Theory of Gen-
eral Relativity (GR) [3]. GR explains gravity as the curvature of spacetime due to the
presence of matter and energy. This relation is encoded in the famous Einstein Field
Equations together with the geodesic equation. These equations describe a dynamical
feedback between spacetime, matter and energy. To quote John Archibald Wheeler:
“Spacetime tells matter how to move; energy/matter tells spacetime how to curve” [4] .

While GR taught physicists about the structures of the universe on the largest
scales, discoveries in other fields of physics unveiled the bizarre world of the micro-
scopic universe. Observations concerning, for instance, the double-slit experiment [5],
black body radiation [6], and the photoelectric effect [7] could not be reconciled with
classical physics. This set off the construction of a new theory: Quantum Mechanics
(QM). This theory sought to explain, for instance, the particle-wave duality which par-
ticles like the electron seem to possess. Notably, the double-slit experiment revealed
that photons and electrons can behave like waves while the photoelectric effect seemed
to indicate a particle-like character. One of the key tenets of QM is that physical laws
governing the smallest scales are not deterministic but probabilistic. This theory, albeit
rather counter-intuitive, was one of the greatest achievements of the past century since
it was able to explain the structure of atoms and considerably more.

At the start of the 20th century, QM was still built on the ideas of Newtonian
mechanics. For instance, the central equation in QM, Schrödinger’s equation, was in-
compatible with Special Relativity. This led physicists to improve upon this theory by
incorporating the ideas of Special Relativity. This effort culminated in a relativistic the-
ory of QM: Quantum Field Theory (QFT). The crux of QFT is that particles are not the
fundamental objects of nature. Rather, they are excitations of their underlying quantum
fields that permeate all of spacetime. QFT forms the foundation of the most accurate
theory of nature known to date: the Standard Model (SM) of particle physics. The SM
incorporates all known elementary particles and the interactions between them, except
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gravity, in a single framework. It describes three fundamental forces: electromagnetism,
the strong nuclear force, and the weak nuclear force, via the mediation of gauge bosons.
The SM has been tremendously successful in explaining and predicting the behavior of
subatomic particles and is still in great agreement with all particle physics data [8].

Despite the great successes of GR and QFT, neither theory provides a complete
description of their respective domains as they both possess some major shortcomings.
In 1964, Roger Penrose was able to show that GR necessarily predicts curvature sin-
gularities and thereby its own demise [9]. The SM has some pathologies of its own as
well. For instance, the U(1)-sector, corresponding to the electromagnetic interaction,
exhibits a diverging running coupling at a finite energy scale, the Landau pole [10].
Consequently, the theory loses predictive power beyond this energy scale. Furthermore,
the SM does not contain dark matter, dark energy, neutrino masses, and the matter-
antimatter asymmetry as of yet. This led to a plethora of beyond the Standard Model
(BSM) models that provide extensions to the SM in order to explain these phenomena.

Perhaps the most prominent deficit of the SM is its lack of a description of the fourth
fundamental force: gravity. The hope of theoretical physicists is that a theory that uni-
fies all four known fundamental forces into one comprehensive “theory of everything”
resolves at least some of the previously mentioned issues. This theory should incor-
porate a description of gravity at the smallest scales or, equivalently, up to arbitrarily
high energy scales. There have been many attempts to marry the concepts of QFT and
GR, yet a generally accepted quantum theory of gravity born out of this marriage still
remains elusive. Combining both theories is a difficult prospect due to a multitude of
reasons. For one, the fundamental principles of both theories seem to be incompatible.
Specifically, GR is a classical theory which describes gravity as the curvature of space-
time. On the other hand, QFT is a quantum theory which describes the fundamental
forces via the exchange of gauge bosons. In addition, QFT is invariably formulated on
a fixed background, i.e. a non-dynamical spacetime. It is not straightforward how one
should reconcile these pictures with each other.

At a more technical level, the method successful in quantizing the three SM forces,
perturbative renormalization, leads to an effective field theory when applied to gravity.
If one tries to quantize gravity along the same lines as the other three forces, one finds
a perturbatively non-renormalizable QFT. This entails that finding a QFT of gravity
this way does not produce a theory valid on all energy scales. This means that gravity
cannot be added to the SM in the same manner as the other forces. The failure of per-
turbative renormalization of gravity can be tracked back to the gravitational coupling,
Newton’s constant GN , which has a negative mass dimension [GN ] = −2. This problem
can be illustrated by considering Feynman diagrams featuring graviton1 interactions.
In such diagrams, each vertex factor of GN has to be accompanied by a center-of-mass
energy squared s in order to obtain dimensionless probability amplitudes. Such dia-
grams become badly divergent in the high energy (UV) regime, where new divergences
appear at every order in perturbation theory [11–14]. Each divergence needs to be ab-
sorbed into a bare coupling. This produces an infinite number of free parameters that
would need to be determined by experiment. Hence, the theory has no predictive power.

The failure of the standard QFT toolbox applied to gravity has led to the prolifera-
tion of novel theories that can roughly be placed into two categories. The first category
consists of theories that go beyond QFT by introducing completely new physical struc-
tures. Most notably: string theory [15], loop quantum gravity [16], and causal set theory

1The graviton is the hypothesized gauge boson mediating the gravitational force.
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[17]. The second category consists of QFT-based approaches, the most prominent ex-
amples being causal dynamical triangulations (CDT) [18–20] and asymptotic safety [21,
22]. Within the latter category of approaches, one seeks a non-perturbative formulation
of quantum gravity based on the path integral formulation of QFT. This thesis works
in the framework of the asymptotic safety approach to quantum gravity [23–25].

The concept of asymptotic safety was first introduced by Steven Weinberg in 1979
[26] and its key idea can be formulated as follows: while gravity as a QFT is not per-
turbatively renormalizable, this still leaves open the possibility of gravity being non-
perturbatively renormalizable. Perturbative renormalization would require Newton’s
coupling to become sufficiently small, or even tend to 0 (asymptotic freedom), in the UV
for perturbation theory to be applicable. Asymptotic safety simply requires the theory’s
dimensionless couplings to attain some fixed finite value, a (non-Gaussian) fixed point,
in the UV. This would make the theory renormalizable, just not in a perturbative sense.
This scenario permits a UV completion of the theory and is referred to as asymptotic
safety. The asymptotic safety approach to quantum gravity starts from a Euclidean
path integral. It investigates the fixed point structure of a non-perturbative functional
renormalization group equation (FRGE), describing the flow of the effective average ac-
tion, by implementing Wilson’s generalized view of renormalization [27].

The gravitational asymptotic safety program strives to find a suitable interacting
fixed point of the gravitational renormalization group (RG) flow. Developing this in-
trinsically Euclidean approach into a realistic description of nature requires the inclusion
of two important elements: a preferred direction which could serve as a time direction
and matter degrees of freedom supplementing the gravitational interactions. The first
element can be realized by foliating spacetime. To this end, we employ the Arnowitt-
Deser-Misner (ADM) decomposition of the metric [28]. This decomposition encodes the
gravitational degrees of freedom into a spatial metric, shift vector, and lapse function. In
particular, it generates a preferred direction that could be Wick rotated. In the context
of asymptotic safety, the effect of matter degrees of freedom in quantum gravity has been
studied using a variety of techniques. Earlier works [29–31] have studied gravity-matter
systems in the background approximation. More recent works [32–35] have investigated
gravity-matter systems in the fluctuation field approach [36]. This approach calculates
the flow of higher order interaction vertices associated with the fluctuation fields. Both
approaches find that the asymptotic safety scenario may constrain the matter content of
the theory. This work will employ the fluctuation approach by investigating the flow of
the graviton 2-point function. In particular, this provides access to the mass pole of the
on-shell graviton, which is a physically interesting quantity since it could be linked to
observation. The techniques for this approach have been developed for gravity-matter
systems in a covariant setting. This thesis adapts them to a foliated setting. To summa-
rize, this thesis takes both elements seriously. Firstly, by working in a foliated setting,
allowing for the switch to Lorentzian spacetime. Secondly, by including matter degrees
of freedom and studying their effect on the flow of graviton 2-point function.

This work is outlined as follows. We start by reviewing the Arnowitt-Deser-Misner
(ADM) decomposition of the metric field in section 2.1. Subsequently, we introduce
the necessary computational tools for the study of RG flows on a foliated spacetime in
Section 2.2. Here, we review the path integral formalism, the effective action, and the
construction of the FRGE that plays a central role in asymptotic safety. This equation is
called the Wetterich equation [37] and we provide its explicit derivation in section 2.2.3
for a free scalar theory. Following [38], we discuss the generalization of the FRGE ap-
proach to gravity in Section 2.3. This generalization raises some conceptual issues that
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we circumvent using the background field formalism. This formalism splits all fields into
a background and fluctuation field. Hereafter, we review the fluctuation field approach,
which is used to construct approximate solution to the gravitational FRGE, in Section
2.4. This approach entails that we investigate the flow of the 2-point function associated
with the fluctuation fields. This flow explicitly depends on the 3- and 4-point functions
and they are computed using a vertex expansion in terms of the fluctuation fields.

Following this, we provide a brief review on the topic of asymptotic safety in Section
3. Here, we begin by discussing the problem of perturbative quantization of gravity
and how asymptotic safety was introduced as a possible solution. Then, we discuss the
relevant quantities and mechanism of asymptotic safety. We end this section with the
main conjecture of asymptotic safety in quantum gravity. This concludes the review
part of the thesis.

In Section 4, we discuss the setup for the pure gravity system. We begin by making
an ansatz for the effective average action, the Einstein-Hilbert ansatz. From this point
forward, we work on a flat background. Subsequently, we further decompose the ADM
fields using the York decomposition. In particular, this decomposition expresses the spa-
tial metric fluctuation field into a transverse-traceless tensor, transverse vector, and two
scalar modes. This transverse-traceless tensor encodes the physically interesting grav-
itational degrees of freedom. This field is hereafter referred to as “the graviton field”.
The discussion of the pure gravity sector proceeds by gauge-fixing the diffeomorphism
invariance of the gravitational action. We employ the gauge-fixing method of the work
[39], which ensures relativistic dispersion of all 2-point functions. This section ends with
the introduction of the gravitational (anti-)ghost fields that accompany this gauge-fixing
procedure.

In Section 5, we introduce the matter sector. This matter sector consists of Ns scalar
and Nv Abelian gauge fields minimally coupled to gravity. We start by specifying the
covariant matter action and recast them into a ADM decomposed form.

Section 6, we provide the computational techniques that we used to evaluate the
flow equation. We start by discussing the projection of the flow onto the 2-point vertex
structure of the graviton. Subsequently, we expand the flow equation into powers of
the spatial and temporal external momentum and retain terms up to quadratic order in
them only. Then, we define two different momentum projection schemes on which the
flow can be projected: the p03- and the p⃗3-projection. Next, we discuss the evaluation of
the supertrace on the RHS of the flow equation. This supertrace receives contributions
from 3- and 4-point vertices. These contributions are discussed separately and we pro-
vide two explicit example computations for the 4-point trace contribution. Lastly, we
present the results for the beta functions.

Section 7 analyzes the RG flow of the pure gravity system and gravity-matter system
on the basis of the beta functions of Section 6. All results presented here have been
obtained with the xAct-package [40] for Mathematica. The supplementary Mathematica
notebook is available on request.

This analysis start with the pure gravity system and we begin by examining its fixed
point structure. We identify one NGFP as a suitable UV completion of the pure gravity
system. Subsequently, we study the phase diagram and analyze the behavior of the
RG trajectories in the UV and infrared (IR). We find that the flow is controlled by a
NGFP, a GFP, and an IR fixed point (IRFP). Hereafter, we proceed with the analysis
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of the gravity-matter systems. The results of this section are novel and constitute the
central result of this thesis. We start by investigating the number of UV fixed points in
the Ns-Nv parameter plane. We continue by studying three subsystems: gravity-scalar,
gravity-gauge, and gravity-scalar-gauge. For each subsystem, we study the deformation
of the pure gravity NGFP and phase diagram as a function of Ns and Nv. The key
result is that the addition of matter fields leaves the resulting system asymptotically
safe, provided that Ns and Nv adhere to certain bounds. Outside these bounds, the
phenomenologically viable UV fixed point ceases to exist. In addition, we find that the
IRFP present in the pure gravity case persists as a suitable fixed point controlling the
IR behavior of the flow within the bounds on Ns and Nv.

Conventions. In this work, we work with the convention c = ℏ = 1. Furthermore,
we make use of the Einstein summation convention∑

µ

vµvµ = vµvµ = v · v = v2. (1.1)

Lastly, we use a shorthand notation for partial derivatives:

∂µ :=
∂

∂xµ
. (1.2)
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2 RG Flows on a Foliated Spacetime

This chapter gives a review of the computational tools necessary for the study of RG
flows on foliated spacetimes. We start by introducing a foliation structure on spacetime
via the Arnowitt-Deser-Misner (ADM) decomposition [41] of the metric field in Section
2.1. Subsequently, we review the path integral formalism and define the quantities
relevant for a functional renormalization group equation (FRGE) approach to quantum
gravity in Section 2.2. Hereafter, we derive the FRGE that plays the central role in the
gravitational asymptotic safety program, the Wetterich equation [37, 42, 43], in Section
2.2.3. The derivation is carried out for a free scalar theory with a single field φ. The
derivation for a theory including higher-spin fields follows along the same lines. For
a detailed discussion on the derivation of the Wetterich equation, see [44]. Then, we
generalize the FRGE construction to gravity in Section 2.3. Following this, we discuss
the conceptual issues this generalization to gravity raises and how they are solved by
employing the background field formalism. Lastly, we review our method of constructing
approximate solutions to the gravitational FRGE in Section 2.4.

2.1 The Arnowitt-Deser-Misner Decomposition of Spacetime

We work in a Euclidean setting throughout this thesis. To allow for the switch from
Euclidean to Lorentzian signature via Wick rotation, it is necessary to construct a
preferred direction which could serve as a time direction. This can be achieved by
employing the ADM decomposition [41] of the metric. For a detailed review for this
procedure, see [28]. We start with a spacetime metric g̃µν on a D-dimensional manifold
M, where xµ, µ ∈ {0, ..., D − 1} denote the spacetime coordinates on M. We define
a scalar function τ : M → R that assigns a global “time-coordinate” τ(x) to every
spacetime point x. This allows us to define a hypersurface

Στ := {x ∈ M|τ(x) = τ} (2.1)

that contains the subset of all spacetime points x that share the same time-coordinate τ .
Any globally hyperbolic spacetime (M, g̃µν) can be constructed from “glueing” together
a family of hypersurfaces,

M =
⋃
τ∈R

Στ . (2.2)

This structure is known as a foliation [28]. The individual hypersurfaces are called
“slices” of the foliation and are assumed to be spacelike. In the Lorentzian setting, they
are referred to as “leafs”. The foliation (2.2) decomposes the manifold into a so-called
(D−1)+1-split, see Fig. 1 for an illustration. We then define a vector nµ = Ñ∂µτ that

is normal to the spatial hypersurface Στ . The scalar function Ñ(x) is called the lapse
function and ensures that nµ is normalized: g̃µνn

µnν = 1, Ñ(x) = [gµν∂µτ∂ντ ]
−1/2.

The ADM decomposition implements a change of coordinates

xµ 7→ {τ, yi}. (2.3)

Here, yi, i ∈ {1, ..., D− 1} denote the coordinates on the spatial hypersurfaces Στ . The
basis vectors on M are defined by

tµ =
∂xµ

∂τ

∣∣∣∣
yi
, eµi =

∂xµ

∂yi

∣∣∣∣
τ

. (2.4)

The basis vector tµ is defined at fixed yi and eµi is defined at fixed τ , indicated by
the subscripts. We can decompose the basis vector tµ into a normal and tangential
component to Στ ,
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Figure 1: Illustration of the ADM decomposition of the manifold M showing two slices
of the foliation Σt and Σt+dt. The lapse function N and shift vector Ni in this figure
correspond to Ñ and Ñi in this work respectively. Adapted from [45].

tµ = Ñnµ + Ñ ieµi . (2.5)

The quantity Ñ i(x) = Ñ i(τ, yi) is called the shift vector. The infinitesimal spacetime
coordinate dxµ can now be expressed in terms of the ADM fields Ñ(τ, yi), Ñ i(τ, yi)
using eq. (2.4) and (2.5):

dxµ =
∂xµ

∂τ

∣∣∣∣
yi
dτ2 +

∂xµ

∂yi

∣∣∣∣
τ

dyi = tµdτ + eµi dy
i = Ñnµdτ + eµi (Ñ

idτ + dyi). (2.6)

Eq. (2.6) allows us to write the line element in terms of the ADM fields. This yields

ds2 = g̃µνdx
µdxν = Ñ2dτ + σ̃ij

(
dyi + Ñ idτ

)(
dyj + Ñ jdτ

)
. (2.7)

We introduce σ̃ij as the induced metric that measures distances on the spatial slices
Στ . It is linked to the full metric through the relation

σ̃ij = eµi e
ν
j g̃µν . (2.8)

By virtue of the ADM decomposition, the gravitational degrees of freedom in g̃µν have

been encoded in the set of fields {σ̃ij , Ñi, Ñ}, i.e.

g̃µν 7→ {σ̃ij , Ñi, Ñ}. (2.9)

From eq. (2.7), we can write g̃µν and its inverse in matrix form in terms of the ADM
fields:

g̃µν =

Ñ2 + Ñ iÑi Ñj

Ñi σ̃ij

 , g̃µν =

 1
Ñ2

− Ñj

Ñ2

− Ñi

Ñ2
σ̃ij + ÑiÑj

Ñ2

 . (2.10)

It is also important to consider how the ADM fields transform under diffeomorphisms.
The transformation of the metric g̃µν → g̃µν + δg̃µν upon an infinitesimal coordinate
transformation encoded by the vector vα(τ, yi) can be represented by the Lie derivative
of the metric along the vector vα, i.e.

δg̃µν = Lv g̃µν = vα∂αg̃µν + g̃αν∂µv
α + g̃µα∂νv

α. (2.11)
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In the spirit of the ADM decomposition, we decompose the vector field vα into a temporal
and spatial component,

vα(τ, yi) = (f(τ, yi), ζk(τ, yi)). (2.12)

Here, f = f(τ, yi) and ζk = ζk(τ, yi) represent the temporal and spatial components of
vα respectively. The Lie derivative of the metric in eq. (2.11) can be written in terms
of f and ζk as

Lv g̃µν = f∂τ g̃µν + ζk∂kg̃µν + g̃τν∂µf + g̃µτ∂νf + g̃kν∂µζ
k + g̃µk∂νζ

k. (2.13)

Note that the index τ is not an open Lorentz index but refers to the coordinate τ . These
definitions allows us to express the infinitesimal transformations of the ADM fields under
Diff(M) by evaluating eq. (2.13) for all possible values of µ and ν [39]. This yields

δÑ = ∂τ (fÑ) + ζk∂kÑ − ÑÑ i∂if,

δÑi = ∂τ (fÑi) + ζk∂kÑi + Ñk∂iζ
k + σ̃ki∂τζ

k + ÑkÑ
k∂if + Ñ2∂if,

δσ̃ij = f∂τ σ̃ij + ζk∂kσ̃ij + σ̃jk∂iζ
k + σ̃ik∂jζ

k + Ñj∂if + Ñi∂jf. (2.14)

For completeness, we also give the infinitesimal transformation of the contravariant shift
vector Ñ i. It is given by

δÑ i = ∂τ (fÑ
i) + ζk∂kÑ

i − Ñk∂kζ
i + ∂τζ

i − Ñ iÑk∂kf + Ñ2σ̃ik∂kf. (2.15)

These infinitesimal transformations will be important later in the construction of the
ghost action of the gravitational sector. This ghost action accompanies the gauge-fixing
of the diffeomorphism invariant gravitational action. This will be discussed in Sections
4.3 and 4.4.

2.2 The Functional Renormalization Group Equation

We proceed by discussing the mathematical framework underlying the FRGE approach
to the gravitational asymptotic safety program. We begin by reviewing the path integral
formalism in Section 2.2.1. Hereafter, we introduce the central quantity in our approach,
the effective action, in Section 2.2.2. Subsequently, we give a detailed derivation of the
Wetterich equation in Section 2.2.3.

2.2.1 The Path Integral Formalism

In general, there are two mathematically equivalent ways of formulating a quantum field
theory (QFT). These two formulations are known as the canonical formulation and the
path integral formulation. Despite their equivalence, they have different mathemati-
cal structures and emphasize different aspects of the theory. The canonical formulation
lends itself for perturbative computations based on Feynman diagrams, whereas the path
integral formulation has a broader range of applicability. Specifically, the path integral
can be used to perform non-perturbative computations. We employ this formalism in
the gravitational asymptotic safety program since the ultraviolet (UV) completion of
gravity as a QFT, i.e. a quantum theory of gravity valid on all energy scales, requires a
non-perturbative approach.

Let us begin by considering a QFT consisting of a real scalar field φ on flat space
in D spacetime dimensions. We denote the action of this system by S[φ]. From this
action, one can define the generating functional for the Green’s functions of a quantum
field φ. This is given by the (Euclidean) path integral

Z[J ] = Z−1
0

∫
Dφe−S[φ]+

∫
x
J(x)φ(x). (2.16)
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Here, Z0 := Z[0] is a normalization factor,
∫
x
:=
∫
dDx, and we have coupled a source

term J(x) to the field φ(x). The path integral is a functional that sums over all possible
field configurations and gives each configuration a statistical weight exp(−S[φ]). Note
that the minus sign in the exponent ensures that large field configurations are exponen-
tially suppressed. In general, the path integral diverges so we tacitly assume that it has
been regularized via the inclusion of a UV cutoff scale Λ. Taking functional derivatives
with respect to the source generates the Green’s functions

⟨φ(x1)...φ(xn)⟩J =
1

Z[J ]

δnZ[J ]

δJ(x1)...δJ(xn)
=

∫
Dφφ(x1)...φ(xn)e−S[φ]+

∫
x
J(x)φ(x)∫

Dφe−S[φ]+
∫
x
J(x)φ(x)

.

(2.17)
They are also commonly referred to as n-point functions or correlation functions. The
expectation value of an arbitrary operator O[φ] is obtained as

⟨O[φ]⟩J =

∫
DφO[φ]e−S[φ]+

∫
x
J(x)φ(x)∫

Dφe−S[φ]+
∫
x
J(x)φ(x)

. (2.18)

The generating functional for the connected Green’s functions is denoted by W [J ]
and is related to Z[J ] by

W [J ] = lnZ[J ]. (2.19)

Connected correlation functions are then obtained as functional derivatives of W [J ]:

⟨φ(x1)...φ(xn)⟩J,c =
δnW [J ]

δJ(x1)...δJ(xn)
, (2.20)

where the subscript c indicates that the Green’s function is connected. For example,
the connected 2-point function,

δ2W [J ]

δJ(x1)δJ(x2)
= ⟨φ(x1)φ(x2)⟩ = G(x1, x2), (2.21)

is the full quantum propagator G.

2.2.2 The Effective Action

The ultimate goal of the path integral formalism is to solve the path integral. Since
directly solving this path integral is usually impossible, one can recast this problem into
finding the effective action Γ[ϕ] of the system. The effective action can be viewed as the
quantum analogue of the classical action, containing all the tree-level quantum physics
of the system. Hence, knowing the effective action is often referred to as solving “solving
the theory”. The effective action is related to W [J ] by the Legendre transform

Γ[ϕ] = sup
J

{∫
x

J(x)ϕ(x)−W [J ]
}
, (2.22)

where
ϕ(x) := ⟨φ(x)⟩J (2.23)

is the expectation value (or mean field) of the quantum field φ. From eq. (2.20), we
see that this mean field can be obtained from W [J ] by taking one functional derivative
with respect to the source:

ϕ(x) =
δW [J ]

δJ(x)
. (2.24)
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The effective action is the generator of the 1-particle irreducible (1PI) Green’s func-
tions and encodes the exact vertices of the theory. The supremum indicates that we
should select a configuration of sources J(x) that maximizes the Legendre transform
(2.22). This implies that this configuration J = Jsup depends on the mean field ϕ, i.e.
Jsup = Jsup[ϕ]. We suppress this subscript henceforth to lighten notation. Note that
the effective action depends on the mean field ϕ(x) rather than the source J(x).

We denote the functional derivatives of Γ[ϕ] by

Γ(n)[ϕ] :=
δnΓ[ϕ]

δϕ(x1)...δϕ(xn)
= ⟨φ(x1)...φ(xn)⟩1PI . (2.25)

Taking one functional derivative of the effective action provides an equation of motion
for the mean field ϕ(x), the source-field equation

δΓ[ϕ]

δϕ(x)
= J(x). (2.26)

The full quantum propagator G is the inverse of Γ(2)[ϕ] in the following sense:∫
y

δ2Γ[ϕ]

δϕ(x1)δϕ(y)

δ2W [J ]

δJ(y)δJ(x2)
= δD(x1 − x2). (2.27)

This can be shown as follows:∫
y

δ2Γ[ϕ]

δϕ(x1)δϕ(y)

δ2W [J ]

δJ(y)δJ(x2)
=

∫
y

δ

δϕ(x1)

[
δΓ[ϕ]

δϕ(y)

]
δ

δJ(y)

[
δW [J ]

δJ(x2)

]
=

∫
y

δJ(y)

δϕ(x1)

δϕ(x2)

δJ(y)

= δD(x1 − x2). (2.28)

Here, we have made use of eq. (2.24) and (2.26).

Lastly, we note that the effective action can also be represented as a path integral.
Using the Legendre transform (2.22), we can write e−Γ[ϕ] as

e−Γ[ϕ] = exp

{
−
∫
x

J(x)ϕ(x) +W [J ]

}
(2.29)

Then, we use that use that eW [J] = Z[J ], substitute Z[J ] using (2.16), and use eq.
(2.26) to substitute J(x). This yields

e−Γ[ϕ] = exp

{
−
∫
x

δΓ[ϕ]

δϕ(x)
ϕ(x)

}∫
Dφ exp

{
−S[φ] +

∫
x

δΓ[ϕ]

δϕ(x)
φ(x)

}
. (2.30)

Next, we bring the exponential factor multiplying the path integral inside and combine
the exponents. This gives

e−Γ[ϕ] =

∫
Dφ exp

{
−S[φ] +

∫
x

δΓ[ϕ]

δϕ(x)
(φ(x)− ϕ(x))

}
. (2.31)

Finally, we implement a change of variables φ → φ̃ := φ − ϕ. This transformation has
a trivial Jacobian of 1 so the integration measure is simply replaced by Dφ̃. Applying
this brings us the final result

e−Γ[ϕ] =

∫
Dφ̃ exp

{
−S[φ̃+ ϕ] +

∫
x

δΓ[ϕ]

δϕ(x)
φ̃(x)

}
. (2.32)
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2.2.3 The Wetterich Equation

Although the integro-functional differential eq. (2.32) is an exact relation, it has only
been solved in a few simple cases [44]. The Wetterich equation [37, 42, 43] recasts
the problem of solving the functional integral for the effective action into solving a
system of coupled functional differential equations based on the effective average action
Γk[ϕ]. In the effective average action, quantum fluctuations with momenta p2 ≈ k2 are
integrated out shell-by-shell in the spirit of Wilson’s generalized view of renormalization
[27]. This is in contrast to perturbative renormalization where all quantum fluctuations
are integrated out simultaneously. The parameter k is called the coarse-grain scale and
serves as a separator between UV and infrared (IR) modes. The resulting effective
average action Γk[ϕ] describes an effective field theory valid for momentum modes with
p2 ≳ k2. In the limit k → 0, all fluctuations are integrated out and

lim
k→0

Γk[ϕ] = Γ[ϕ] (2.33)

recovers the standard effective action. On the other hand, if we take the limit k → ∞,
no quantum fluctuations are integrated out as all modes are suppressed. Therefore, one
should obtain the bare action Sbare:

lim
k→∞

Γk[ϕ] = Sbare[ϕ]. (2.34)

It should be noted that a precise relation between these quantities requires solving the
reconstruction problem [46–48].

The construction of the Wetterich equation starts by modifying the exponent of the
path integral (2.16) by adding an extra term

∆Sk[φ] =
1

2

∫
x

φ(x)Rk(−∂2)φ(x). (2.35)

This term features an IR regulator Rk. The key purpose of this regulator is to add a
k-dependent mass-like term for quantum fluctuations with momenta p2 ≪ k2. Conse-
quently, the IR regulator suppresses these low-energy modes, while leaving the high-
energy modes, with p2 ≫ k2, unaffected. This philosophy is realized by requiring that

Rk(p
2) ≈

{
k2, p2 ≪ k2,

0, p2 ≫ k2.
(2.36)

This modification results in the path integral inheriting a k-dependence:

Z[J ] → Zk[J ] = Z−1
0

∫
Dφe−S[φ]−∆Sk[φ]+

∫
x
J(x)φ(x). (2.37)

The inclusion of the term ∆Sk[φ] ensures that modes with momenta p2 ≪ k2 are
suppressed when integrating out quantum fluctuations at the level of the path integral.
From eq. (2.37), we can define the k-dependent generating functional for the connected
Green’s functions:

Wk[J ] = lnZk[J ]. (2.38)

This allows us to define the effective average action as the modified Legendre transform
of Wk[J ]:

Γk[ϕ] =

∫
x

J(x)ϕ(x)−Wk[J ]−∆Sk[ϕ]. (2.39)
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The derivation of the Wetterich equation proceeds as follows. We introduce the
renormalization group (RG) time parameter

t := ln

(
k

k0

)
, (2.40)

where k0 is some arbitrary reference scale. The partial derivative with respect to RG
time is related to k by ∂t = k∂k. We define the auxiliary functional

Γ̃k[ϕ] :=

∫
x

J(x)ϕ(x)−Wk[J ]. (2.41)

In the following lines, we suppress the arguments of the functionals to lighten notation.
We then take the t-derivative of the auxiliary functional:

∂tΓ̃k = −∂tWk = −∂t lnZk = − 1

Zk
∂tZk. (2.42)

Here, we have used the definition of the auxiliary function (2.41) and the relation between
Wk and Zk given in eq. (2.38). We proceed by substituting Zk using eq. (2.37) and let
the derivative ∂t act on the exponential. This gives

∂tΓ̃k =− 1

Zk
∂t

∫
Dφ exp

{
−S −∆Sk +

∫
x

J(x)φ(x)

}
=

1

Zk

∫
Dφ (∂t∆Sk) exp

{
−S −∆Sk +

∫
x

J(x)φ(x)

}
(2.43)

Subsequently, we rewrite the definition for ∆Sk, given in eq. (2.35), as follows

∆Sk[φ] =
1

2

∫
x

∫
y

φ(x)Rk(x, y)φ(y) (2.44)

The function Rk(x, y) is defined as

Rk(x, y) := Rk(−∂2)δD(x− y). (2.45)

One recovers (2.35) from (2.44) via the action of the delta function under the y-integral.
We proceed by substituting this new definition in eq. (2.43):

∂tΓ̃k =
1

2Zk

∫
Dφ

∫
x

∫
y

φ(x) (∂tRk(x, y))φ(y) exp

{
−S −∆Sk +

∫
x

J(x)φ(x)

}
=
1

2

∫
x

∫
y

[
1

Zk

∫
Dφφ(x)φ(y) exp

{
−S −∆Sk +

∫
x

J(x)φ(x)

}]
∂tRk(x, y). (2.46)

In going from the first to the second line, we have interchanged the functional integral
with the spacetime integrals, and we have taken the derivative of the regulator out of
the functional integral since it is φ-independent. Finally, we notice that the quantity
between square brackets in the second line of eq. (2.46) is precisely the expectation
value of the operator φ(x)φ(y), c.f. eq. (2.17). From this we derive the relation

∂tΓ̃k[ϕ] =
1

2

∫
x

∫
y

⟨φ(x)φ(y)⟩J ∂tRk(x, y). (2.47)

Next, we replace the correlation function ⟨φ(x)φ(y)⟩J using

⟨φ(x)φ(y)⟩J = ⟨φ(x)φ(y)⟩J,c + ⟨φ(x)⟩J ⟨φ(y)⟩J

=
δ2Wk[J ]

δJ(x)δJ(y)
+ ϕ(x)ϕ(y)

=
[
Γ̃
(2)
k [ϕ](x, y)

]−1

+ ϕ(x)ϕ(y). (2.48)
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Here, ⟨φ(x)φ(y)⟩J,c is the k-dependent generalization of the connected 2-point function

(2.21). In going from the second to the third line, we used that Γ̃
(2)
k [ϕ] is its inverse

since they are related via the Legendre transform (2.41). We substitute eq. (2.48) into
eq. (2.47):

∂tΓ̃k =
1

2

∫
x

∫
y

([
Γ̃
(2)
k [ϕ](x, y)

]−1

+ ϕ(x)ϕ(y)

)
∂tRk(x, y)

=
1

2

∫
x

∫
y

[
Γ̃
(2)
k [ϕ](x, y)

]−1

∂tRk(x, y) +
1

2

∫
x

∫
y

ϕ(x)∂tRk(x, y)ϕ(y). (2.49)

Subsequently, we take the t-derivative out of the right-most integral and recognize that
the remaining integral coincides with ∆Sk[ϕ], using eq. (2.44). This gives

∂tΓ̃k =
1

2

∫
x

∫
y

[
Γ̃
(2)
k [ϕ](x, y)

]−1

∂tRk(x, y) +
1

2
∂t

∫
x

∫
y

ϕ(x)Rk(x, y)ϕ(y)

=
1

2

∫
x

∫
y

[
Γ̃
(2)
k [ϕ](x, y)

]−1

∂tRk(x, y) + ∂t∆Sk[ϕ]. (2.50)

We replace the auxiliary functional Γ̃k by the effective average action via Γk = Γ̃k−∆Sk
on both sides. This cancels the last term in (2.50) and leads to

∂tΓk[ϕ] =
1

2

∫
x

∫
y

[
Γ
(2)
k [ϕ](x, y) +

δ2∆Sk[ϕ]

δϕ(x)δϕ(y)

]−1

∂tRk(x, y). (2.51)

We substitute the definition of ∆Sk and evaluate its second functional derivative. This
yields:

δ2∆Sk[ϕ]

δϕ(x)δϕ(y)
=
1

2

δ

δϕ(x)

δ

δϕ(y)

∫
x′

∫
y′
ϕ(x′)Rk(x

′, y′)ϕ(y′)

=
1

2

δ

δϕ(x)

∫
x′

∫
y′

[
δϕ(x′)

δϕ(y)
Rk(x

′, y′)ϕ(y′) + ϕ(x′)Rk(x
′, y′)

δϕ(y′)

δϕ(y)

]
. (2.52)

We make use of
δϕ(x)

δϕ(y)
= δD(x− y) (2.53)

and evaluate the spacetime integrals. We obtain

δ2∆Sk[ϕ]

δϕ(x)δϕ(y)
=

1

2

δ

δϕ(x)

∫
x′

∫
y′

[
δD(x′ − y)Rk(x

′, y′)ϕ(y′) + ϕ(x′)Rk(x
′, y′)δD(y′ − y)

]
=

1

2

δ

δϕ(x)

[∫
y′
Rk(y, y

′)ϕ(y′) +

∫
x′
ϕ(x′)Rk(x

′, y)

]
=

1

2

[∫
y′
Rk(y, y

′)
δϕ(y′)

δϕ(x)
+

∫
x′

δϕ(x′)

δϕ(x)
Rk(x

′, y)

]
=

1

2

[∫
y′
Rk(y, y

′)δD(y′ − x) +

∫
x′
δD(x′ − x)Rk(x

′, y)

]
=

1

2
[Rk(y, x) +Rk(x, y)] . (2.54)

Using that Rk(x, y) is symmetric in its arguments, this derivation entails

δ2∆Sk[ϕ]

δϕ(x)δϕ(y)
= Rk(x, y). (2.55)
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Plugging (2.55) back into (2.51) results in the Wetterich equation:

∂tΓk[ϕ] =
1

2

∫
x

∫
y

(
Γ
(2)
k [ϕ](x, y) +Rk(x, y)

)−1

∂tRk(x, y). (2.56)

The spacetime integrals can be understood as a trace over the continuous indices x, y,
so it is natural to write:

∂tΓk =
1

2
Tr

[(
Γ
(2)
k +Rk

)−1

∂tRk

]
. (2.57)

The presence of the regulator Rk establishes two important features. It provides IR
finiteness by adding a k-dependent mass-like term to modes with p2 ≪ k2 in the de-

nominator of regularized propagator Gk :=
(
Γ
(2)
k +Rk

)−1

. In addition, it provides UV

finiteness due to the presence of ∂tRk in the numerator since Rk → 0 for p2 ≫ k2.
Consequently, there is no need for a UV cutoff scale Λ to regularize the UV behavior of
the flow equation. The interplay of the regularized propagator and scale derivative of
the regulator ensures that the trace argument is sharply peaked around p2 = k2. Hence,
this equation describes how the effective average action changes upon integrating out a
momentum shell centered about p2 = k2.

2.3 Generalizations to Gravity

In the previous section, we derived the FRGE that describes the RG flow of a free
theory containing a single real scalar field φ. Its extension to gravity introduces some
conceptual issues. General relativity (GR) tells us that gravitational interactions are
mediated via the curvature of spacetime. Spacetime itself is a dynamical object. When
promoted to a QFT, the spacetime metric g̃µν becomes a (fluctuating) quantum metric
γ̂µν . This means that we must promote

g̃µν → γ̂µν . (2.58)

Prima facie, this seems problematic for describing the dynamics of the theory, encoded
in the correlation functions (2.17), as they are evaluated on a fixed, non-dynamical
background. Furthermore, it becomes unclear how to define the coarse-grain scale k
since there is no natural way to order fluctuations based on their momentum relative to
the scale k. This can be seen as follows. The covariant Laplacian operator −γ̂µνDµDν

defines the momentum eigenmodes of the quantum fields. This operator depends on
the quantum metric γ̂µν in two ways: via the inverse quantum metric γ̂µν , providing
the contraction of the two covariant derivatives, and via the connection terms of the
covariant derivatives. Using the operator −γ̂µνDµDν in the regulator would mean that
the one-loop nature of the desired flow equation is spoiled since the Laplacian is no
longer quadratic in the fluctuation field γ̂µν . In addition, this brings us in the situation
where the same field that should be coarse-grained, γ̂µν , also appears in the Laplacian
defining the modes, making distinguishing between low- and high-energy modes very
non-intuitive.

Another problem is related to the underlying symmetry of GR, diffeomorphism in-
variance, which states that physics should be coordinate independent. An infinitesimal
coordinate change transforms the metric according to eq. (2.11), and this Diff(M)-
symmetry must be respected by any bare action S[γ̂µν ] that enters a gravitational path
integral

Zgrav[γ̂µν ] =

∫
Dγ̂µνe−S[γ̂µν ]. (2.59)
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Consequently, gauge-fixing of (2.59) is needed to ensure that the path integral does not
sum over gauge-equivalent configurations of the spacetime metric γ̂µν . Formally, the con-
figuration space of metrics the path integral sums over is then given by Riem(M)/Diff(M),
where Riem(M) represents the space of Riemannian metrics. By construction, this
gauge-fixing explicitly breaks diffeomorphism invariance and the effective average ac-
tion could possibly lose the Diff(M)-symmetry as a result. This would pose a prob-
lem as the breaking of this symmetry in the effective average action would mean that
Diff(M)-violating interaction monomials could be generated along the RG flow, possibly
introducing a considerable number of additional couplings to the theory.

2.3.1 The Background Field Formalism

One can resolve these conceptual issues by adopting the background field formalism
[49]. This procedure reparameterizes the quantum metric γ̂µν by splitting it into a
fixed background metric field ḡµν and fluctuations around this background ĝµν . This
reparameterization can be done in several ways, see e.g. [36]. This work makes use of
the linear split

γ̂µν = ḡµν + ĝµν , and γµν = ḡµν + gµν . (2.60)

Here, γµν := ⟨γ̂µν⟩, gµν := ⟨ĝµν⟩, and the background metric ḡµν is used to raise
and lower indices. In general, this split is implemented on all quantum fields. For
convenience, let χ̃ denote the set of all fields that feature in our theory, consisting of the
gravitational, matter, and (anti-)ghost degrees of freedom:

χ̃ := {χ̃1, χ̃2, χ̃3, ...}. (2.61)

Then, for all fields χ̃a ∈ χ̃, we have that

χ̃a = χ̄a + χ̂a. (2.62)

Here, χ̄a represents the background field, χ̂a the fluctuation field, and a labels the fields.
We adopt the following notation for the mean fluctuation fields:

∀ a χa := ⟨χ̂a⟩. (2.63)

The split of the quantum metric, (2.60), makes it possible to quantize the fluctuations
ĝµν on a curved background given by the fixed background metric ḡµν . Because the
Jacobian of this transformation is unity, the functional integration measures of the
quantum metric and fluctuation field agree,

Dγ̂µν = Dĝµν . (2.64)

The path integral now depends on two fields ḡ, ĝ and reads

Zgrav[ḡ; ĝ] =

∫
Dĝµνe−S[ḡµν+ĝµν ]. (2.65)

While this is the easiest split one can make, it should be noted that the fluctuation
field ĝµν = γ̂µν − ḡµν loses the interpretation of a metric and has no geometrical mean-
ing. Rather, the field ĝµν can be viewed as a matter-like fluctuation field on a fixed
background metric ḡµν . Potential downsides of the loss of a metric interpretation are
discussed in [36].

Let us turn back to the conceptual issues from earlier. The background field for-
malism resolves the first conceptual issue since the background metric ḡµν defines a
background Laplacian

□̄ := −ḡµνD̄µD̄ν , (2.66)
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which provides an intuitive way to coarse-grain momentum modes. The spectrum of the
background Laplacian consists of ordered momentum eigenvalues p2n, n ∈ {0, 1, 2, ...}
with respect to eigenmodes ĝnµν :

□̄ĝnµν = p2nĝ
n
µν , where p2n ≤ p2n′ for n < n′. (2.67)

The eigenvalues p2n can be naturally compared to the reference scale k2 allowing for
a well-defined ordering of fluctuations: modes with p2n ≲ k2 are considered IR modes
and are suppressed, whereas modes with p2n ≳ k2 are considered UV modes and are
integrated out.

At the level of the path integral (2.59), the regularization of the fluctuation field ĝµν
is implemented by introducing an IR regulator term, analogous to (2.35):

∆Sk[ḡ; ĝ] =
1

2

∫
x

√
ḡĝµν(x)Rµναβ

k (□̄)ĝαβ(x). (2.68)

Here, ḡ := det ḡµν . This regulator action features a k-dependent mass term Rµναβ
k (□̄),

which can possess a non-trivial tensorial structure. Note that our construction ensures
that ∆Sk is bilinear in the fluctuation fields ĝµν as the mass-like term depends on the
background metric ḡµν only. If the IR regulator were to depend on the full Laplacian
−γ̂µνDµDν , it would contain O(ĝ3)-terms. This would make it impossible to express
∂tWk in terms of ⟨ĝµν(x)ĝαβ(y)⟩ in the derivation of eq. (2.47) and, consequently, to
arrive at a flow equation with a one-loop structure such as eq. (2.57).

The second conceptual issue, concerning diffeomorphism invariance, can be resolved
by the background field method as well. The transformation of the quantum metric due
to an infinitesimal coordinate transformation (2.11) can be implemented in two distinct
ways: quantum gauge transformations δQ and background gauge transformations δB .
Quantum gauge transformations δQ leave the background metric invariant and attribute
the transformation of the full metric to the fluctuation field:

δQḡµν = 0, δQĝµν = Lv(ḡµν + ĝµν). (2.69)

The background gauge transformations δB distribute the transformation in such a way
that each field transforms as a tensor of the corresponding rank,

δB ḡµν = Lv ḡµν , δB ĝµν = Lv ĝµν . (2.70)

Here, vα is the coordinate transformation generating vector field.

Quantum gauge invariance must then be gauge-fixed using the Faddeev-Popov pro-
cedure [50] by imposing the condition

Fµ[ḡ, ĝ] = 0 (2.71)

on some gauge-fixing functional Fµ[ḡ, ĝ]. Subsequently, one can choose a specific class of
gauge-fixing functionals that break the quantum gauge transformations δQ while trans-
forming covariantly under background gauge transformations δB , i.e. δBFµ = LvFµ.
The background gauge transformations then act as an auxiliary symmetry. Conse-
quently, for a given quantum field χ̃a, its constituent background and fluctuation fields
χ̄a, χ̂a transform covariantly under δB :

∀a δBχ̂
a = Lvχ̂a, δBχ̄

a = Lvχ̄a. (2.72)
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In addition, the effective action Γ[χ̄;χ] is invariant under background gauge transfor-
mations:

δBΓ[χ̄;χ] = 0. (2.73)

This auxiliary symmetry safeguards the effective action from generating background
diffeomorphism violating interaction monomials along the RG flow. By setting all ex-
pectation values of the fluctuation fields to 0 in the effective action, i.e. χ = 0, one
retains an action that is again invariant under the full diffeomorphism group Diff(M).

Gauge-fixing of the δQ-symmetry can be implemented by adding a gauge-fixing action

Sgf[ḡ; ĝ] =
1

2ξ

∫
x

√
ḡḡµνFµFν (2.74)

to the bare action S[ḡ; ĝ]. The gauge-fixing procedure introduces a Faddeev-Popov
determinant

∆FP := det

(
δFµ
δvν

)
, (2.75)

arising from the condition

1 =

∫
Dvα δ(Fβ) det

(
δFµ
δvν

)
. (2.76)

This determinant represents the volume element on orbit space and can be naturally
exponentiated by introducing a ghost action comprising Grassmann-valued ghost and
anti-ghost fields Cµ, C̄ν , respectively. This follows from the identity

detM =

∫
DθDθ̄e−

∫
x
θ̄Mθ, (2.77)

where θ, θ̄ are Grassmann-valued fields, andM is an arbitrary differential operator. The
ghost action accompanying the gauge-fixing action (2.74) is given by [25]:

Sghost[ḡ; ĝ, C̄, C] = −κ−1

∫
x

√
ḡḡµνC̄µ

δFν
δĝαβ

LC (ḡαβ + ĝαβ) , (2.78)

where κ is some normalization coefficient with the dimension of mass. This ghost action
can be recast into the form Sghost ∝

∫
x
C̄MC, where M is the ghost kinetic operator.

The explicit form of M can be obtained in an analogous way to the one in Yang-Mills
theory [51]. This results in the following expression for the Fadeev-Popov determinant:

∆FP =

∫
DCµDC̄νe−

∫
x
C̄MC . (2.79)

The final ingredient that enters the gravitational path integral is a source term coupling
sources J = {tµν , σµ, σ̄ν} to the fluctuation fields,

Ssource[ḡ; ĝ, C̄, C; t, σ, σ̄] =

∫
x

√
ḡ
[
tµν ĝ

µν + σµC̄µ + σ̄µC
µ
]
. (2.80)

As before, the source term allows one to calculate correlation functions of the fluctuation
fields by taking functional derivatives with respect to the corresponding sources. This
gives us the total gravitational action including a generic action, gauge-fixing action,
ghost action, and source term:

Sgrav = S[ḡ; ĝ] + Sgf[ḡ; ĝ] + Sghost[ḡ; ĝ, C̄, C]− Ssource[ḡ; ĝ, C̄, C; t, σ, σ̄]. (2.81)
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By adding the regulator action (2.68) to the weight in the path integral, we obtain the
k-dependent gravitational path integral

Zgrav
k =

∫
Dĝµνe−S

grav−∆Sk . (2.82)

Along lines very similar to Section 2.2.2, one can define a gravitational effective action
from this path integral.

Lastly, we must address the point of background independence [52–54]. Background
independence is a requirement stating that any viable theory of quantum gravity must be
background-independent in the sense that no single metric should play a distinguished
role or be part of the theory’s definition. Rather, spacetime structures should arise from
the theory as predictions, i.e. as solutions to dynamical equations. The introduction of a
background metric ḡµν seemingly contradicts this idea. However, background indepen-
dence can still be achieved by working with an arbitrary background metric and ensuring
no physical predictions depend on it. In a way, by not specifying the background metric,
one quantizes the theory on all backgrounds simultaneously.

2.3.2 The Gravitational FRGE

We investigate the fixed-point structure of the pure gravity and gravity-matter systems
based on the theory’s functional renormalization group (RG) flow of the graviton 2-

point function Γ
(hh)
k . The graviton field hµν will be introduced in section 4.2. In order

to derive this flow equation, we must first generalize the Wetterich equation (2.57). In
that equation, the effective average action functionally depends on a single mean field
ϕ. In our set-up, we have to deal with a multitude of fields. From this point onward,
we make the switch from the covariant setting to the ADM setting. In accordance with
(2.62), we must implement the linear split on the ADM fields. This entails that

σ̃ij = σ̄ij + σ̂ij , Ñi = N̄i + N̂i, Ñ = N̄ + N̂ . (2.83)

The mean ADM fluctuation fields are expressed as follows:

σij := ⟨σ̂ij⟩, Ni := ⟨N̂i⟩, and N := ⟨N̂⟩. (2.84)

As a result of using this split, the effective average action depends on the set of back-
ground fields χ̄ = {N̄ , N̄i, σ̄ij , ...} and the set of mean fluctuation fields χ = {N,Ni, σij , ...}.
Consequently, the 2-point function and regulator in the trace argument of eq. (2.57)
become matrix-valued in field space, carrying field indices χa, χb, where a, b label the
fields contained in the set χ. We write

Γ
(χaχb)
k :=

δ2Γk[ϕ]

δχaδχb
, (2.85)

where, what a slight abuse of notation, we use the same symbol Γk for the scalar- and
matrix-valued effective average action. The regulator term entering the exponent of the
path integral now takes the following form:

∆Sk[χ̄, χ̂] =
1

2

∫
dτddyN̄

√
σ̄χ̂a (Rk)χ̂aχ̂b

(
□̄
)
χ̂b. (2.86)

Here, Rk represents the matrix-valued regulator in field space, and a sum over the field
indices a, b is implied. The background Laplacian □̄, defined in (2.66), in terms of ADM
fields is given by

□̄ =
1

N̄2

{
−D̄2

0 + N̄ i
(
D̄iD̄0 + D̄0D̄i

)
−
(
N̄2σ̄ij + N̄ iN̄ j

)
D̄iD̄j

}
. (2.87)
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Each matrix element (Rk)χaχb provides a mass term in the denominator of the corre-
sponding free field propagator. We employ a Type I regularization [55], which means
that the form of the matrix Rk follows from the substitution rule

□̄ 7→ Pk(□̄) = □̄+Rk(□̄). (2.88)

Here, Rk represents a scalar cut-off function and, for the purpose of this work, is taken
to be of the Litim-type,

Rk(□̄) =
(
k2 − □̄

)
Θ
(
k2 − □̄

)
. (2.89)

Here, Θ(x) is the Heaviside step function and k the RG scale. In explicit computations,
we will work on a flat background so the scalar regulator can simply be converted to
momentum space as

Rk(p
2) =

(
k2 − p2

)
Θ
(
k2 − p2

)
. (2.90)

Note that this regulator is the simplest choice that satisfies the requirements of eq.
(2.36). To incorporate the contributions from all mean fields in the trace argument, we
replace the trace by the supertrace: Tr 7→ Str. The supertrace STr sums over discrete
field indices, integrates over loop momenta, and provides a minus-sign for Grassmann-
valued fields. The previously discussed generalizations lead to the following form of the
Wetterich equation:

∂tΓk =
1

2
STr

[(
Γ
(χaχb)
k +Rk

)−1

(∂tRk)χbχa

]
:=

1

2
STr

[
(Gk)χaχb

(
Ṙk

)
χbχa

]
. (2.91)

Here, we have introduced the notation

(Gk)χaχb :=
(
Γ
(χaχb)
k +Rk

)−1

, (2.92)

representing the χaχb matrix element of the regularized propagator Gk and(
Ṙk

)
χaχb

:= (∂tRk)χaχb (2.93)

as the t-derivative of the χaχb matrix element of the regulator matrix Rk.

2.4 Constructing approximate Solutions of the FRGE

In this section, we discuss the approximation schemes that can be employed to evaluate
the flow eq. (2.91). One can group the approximation schemes into two approaches.
We start by discussing the background approximation, introduced for Yang-Mills and
gravity in [49, 56] respectively, and reviewed in [36]. This approximation evaluates
the flow at zeroth order in the fluctuation fields. Then, we cover the fluctuation field
approach, reviewed in [36, 57, 58]. In this approach, one projects the flow onto higher-
order vertex structures based on the fluctuation fields. In our computation, we solve the

FRGE at the level of the graviton 2-point function Γ
(hh)
k . Technically, this falls into the

latter category. We give a derivation for the flow equation of the 2-point function Γ
(2)
k

at the end of this section.

2.4.1 The Background Approximation

Finding exact solutions to the formally exact flow equation (2.91) is quite difficult.
Hence, one must adopt an approximation scheme which makes the information encoded
in this flow equation accessible. The approximation scheme most commonly used in
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FRGE approaches to quantum gravity is the background approximation. One starts by
expanding the effective average action as

Γk[χ̄, χ] = Γ̄k[χ̄] + Γ̂k[χ̄, χ]. (2.94)

Here, Γ̄k[χ̄] corresponds to the background effective average action, which is evaluated
at vanishing mean fluctuation fields χ = 0. The last term captures the contributions to
the effective average action from the fluctuation fields. This means that the background
effective average action depends on a single metric field only, i.e. the background metric.

One then evaluates the flow equation (2.91) at zeroth order in the fluctuation fields,
i.e.

∂tΓk
∣∣
χ=0

=
1

2
STr

[(
Γ
(2)
k +Rk

)−1

Ṙk

] ∣∣∣∣
χ=0

. (2.95)

Note that this equation is not closed since the LHS does not depend on χ, whereas the

Hessian Γ
(2)
k on the RHS does receive contributions from the fluctuation fields. One can

provide this closure by identifying the functional derivatives of the effective average ac-
tion with respect to the background fields and the fluctuation fields up to a gauge-fixing
term [36].

The benefit of this approximation is that it dramatically decreases the size of the the-
ory space, making practical computations very feasible. Seemingly, this approximation
also comes with the advantage of manifest diffeomorphism invariance. However, this
turns out to be false. One can show that this approximation does not fulfil the required
symmetry identities, called the modified Nielsen and modified Slavnov-Taylor identi-
ties. These identities encode diffeomorphism invariance and background independence,
respectively. For a detailed discussion, see [36].

2.4.2 The Fluctuation Field Approach

The fluctuation field approach goes beyond the background approximation. Rather
than evaluating the flow at zeroth order in the fluctuation fields, it projects the flow
onto higher-order vertex structures associated with the fluctuation fields. These vertex
structures can be generated by a systematic expansion scheme of the effective average
action.

There exist three general systematic expansion schemes for the effective average
action [59], having differing ranges of applicability. They are the derivative expansion,
loop expansion, and vertex expansion. The approximation method that is most suitable
for the fluctuation approach is the vertex expansion. We will use this approximation
in order to generate the vertices needed to evaluate the flow equation. The vertex
expansion,

Γk[χ̄, χ] =

∞∑
n=0

P ({an})
∫

Γ
(χa1 ...χan )
k [χ̄]χa1 ...χan , (2.96)

expands the effective average action in powers of the mean fluctuation fields, where
summation over the indices ai is implied. The integration is over all possible spacetime
points x1, ..., xn on which the vertex and mean fields depend. This expansion involves a

sum over all possible vertices Γ
(χa1

...χan )

k , which serve as expansion coefficients and carry
the k-dependence. The combinatorial factors P ({an}) ensure that the vertices satisfy

Γ
(χa1 ...χan )
k =

δn

δχa1 ...δχan
Γk[χ̄, χ]

∣∣∣∣
χ=0

. (2.97)
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The vertices are evaluated at vanishing mean fluctuation fields χ = 0 and, in gen-
eral, feature non-trivial tensor structures. They are are constructed from the background
fields χ̄ and depend on the fields’ momenta and the dimensionful couplings of the the-
ory. This expansion separates the contributions from the background fields χ̄, contained
in the expansion coefficients (2.97), and mean fluctuation fields χ, multiplying the ex-
pansion coefficients. The full vertex expansion is, of course, exact. One can make an
approximation by truncating this expansion at some order n = Ntrunc <∞.

For later convenience, we introduce a basis on the space of tensor structures T (χa1 ...χan )

that contract n fluctuation fields. The expansion coefficients (2.97) can be expanded in
this basis as follows

Γ
(χa1 ...χan )
k [χ̄] =

∑
j

ūn,j(k)T (χa1 ...χan )
j [χ̄]. (2.98)

Here, the expansion coefficients ūn,j(k) are the scale-dependent dimensionful couplings
of the theory. Their k-dependence can be obtained by substituting the vertex expan-
sion (2.96) into the flow eq. (2.91) and matching the coefficients multiplying identical
tensor structures on both sides of the equation. The full details of this procedure are
demonstrated in Section 6.

By substituting the expansion (2.96) into the flow equation (2.91), it becomes clear
that solving the Wetterich equation amounts to solving an infinite set of coupled differ-

ential equations encoding the k-dependence of the n-point functions Γ
(χa1 ...χan )
k . This

will be illustrated in what follows. The LHS of this equation can be written in the
expanded form

∂tΓk[χ̄, χ] =

∞∑
n=0

P (an)

∫ (
∂tΓ

(χa1 ...χan )
k [χ̄]

)
χa1 ...χan . (2.99)

Subsequently, we take the m-th functional derivative with respect to the mean fields
χa1 ...χam on both sides of the flow equation. The LHS becomes

δm

δχa1 ...δχam
∂tΓk[χ̄, χ]

∣∣
χ=0

= ∂tΓ
(χa1 ...χam )
k [χ̄], (2.100)

and the RHS can be written as

δm

δχa1 ...δχam
1

2
STr

[(
Γ
(χaχb)
k +Rk

)−1 (
Ṙk

)
χbχa

] ∣∣∣∣
χ=0

=

1

2
STr

[
δm

δχa1 ...δχam

(
Γ
(χaχb)
k +Rk

)−1
∣∣∣∣
χ=0

(
Ṙk

)
χbχa

]
. (2.101)

At this point, we can observe that the flow of the m-point function Γ
(χa1 ...χam )
k is driven

by the n-point functions with n ∈ {2, ..., (m+1), (m+2)} entering the RHS of the flow
equation. Eventually, we want to determine the k-dependence of the couplings ūn,j at
some order n. This requires knowledge about the couplings ūn+1,j and ūn+2,j at order
n+1 and n+2, respectively. Thus, this defines an infinite hierarchy of equations since,
for instance, the k-dependence of the coupling ūn+1,j depends on the couplings ūn+2,j

and ūn+3,j , etc. One way to close this hierarchy is by identifying couplings at different
orders. In this work, all couplings are generated from the Einstein-Hilbert ansatz (4.5).
In other words, the couplings appearing in the 2-, 3-, and 4-point vertices are identical
to the couplings at zeroth order, i.e.

∀ j ūj := ū0,j = ū2,j = ū3,j = ū4,j . (2.102)
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Figure 2: Diagrammatic representation of the flow equations of Γk, the 1-point vertex

Γ
(1)
k , and the 2-point vertex Γ

(2)
k . The blue lines can represent either gravitational or

matter fields and the red dotted lines represent ghost fields. The crossed-out circle rep-
resents a regulator insertion. This figure was adapted from [36].

We proceed by working out the flow equations of the 1- and 2-point functions. To
this end, we need the following matrix identity

∂

∂α
M−1(α) = −M−1 ∂M(α)

∂α
M−1. (2.103)

This identity gives the expression for the parameter derivative of an α-dependent, inverse
matrix M−1 with respect to α. We can extend this identity to functional derivatives.
Specifically, taking a functional derivative with respect to χ of an arbitrary inverse
matrix M−1[χ] gives

δ

δχ
M−1[χ] = −M−1[χ]

δM[χ]

δχ
M−1[χ]. (2.104)

Then, taking a functional derivative with respect to χa1 of the flow eq. (2.91) gives

∂tΓ
(χa1 )
k = −1

2
STr

[(
Γ
(χaχb)
k +Rk

)−1 δΓ
(χbχc)
k

δχa1

(
Γ
(χcχd)
k +Rk

)−1
∣∣∣∣
χ=0

(
Ṙk

)
χdχa

]
.

(2.105)

We can summarize this result as:

∂tΓ
(χa1 )
k = −1

2
STr

[
(Gk)χaχb Γ

(χbχcχa1 )
k (Gk)χcχd

(
Ṙk

)
χdχa

]
. (2.106)

Here, we have substituted the regularized propagator Gk, defined in (2.92). Subsequently,
we take another functional derivative with respect to χa2 before setting χ = 0 on both
sides of the flow eq. (2.91). This generates the flow equation of the 2-point function:

∂tΓ
(χa1χa2 )
k =

1

2
STr

[
− δ

δχa2

{
(Gk)χaχb Γ

(χbχcχa1 )
k (Gk)χcχd

} ∣∣∣∣
χ=0

(
Ṙk

)
χdχa

]

=
1

2
STr

[
−
{
δ (Gk)χaχb

δχa2
Γ
(χbχcχa1 )
k (Gk)χcχd + (Gk)χaχb

δΓ
(χbχcχa1 )
k

δχa2
(Gk)χcχd

+ (Gk)χaχb Γ
(χbχcχa1 )
k

δ (Gk)χcχd

δχa2

}∣∣∣∣
χ=0

(
Ṙk

)
χdχa

]
(2.107)
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Using the derivation of the flow equation for the 1-point function, (2.106), we can write
the final result as:

∂tΓ
(χa1χa2 )
k =STr

[
(Gk)χaχb Γ

(χbχcχa1 )
k (Gk)χcχd Γ

(χdχeχa2 )
k (Gk)χeχf

(
Ṙk

)
χfχa

]
− 1

2
STr

[
(Gk)χaχb Γ

(χbχcχa1χa2 )
k (Gk)χcχd

(
Ṙk

)
χdχa

]
. (2.108)

Under the supertrace, the internal indices a, ..., f of the matrices in field space are
understood to be summed over. The external indices a1 and a2 are fixed. Eq. (2.108)

represents the flow equation of the 2-point function Γ
(χa1χa2 )
k , which explicitly depends

on the 3-, and 4-point functions. This equation forms the basis for the analysis of the RG
flow of the pure gravity and gravity-matter systems. The diagrammatic representations
of the first three flow equations are illustrated in Fig 2.

3 Asymptotic Safety

This section covers the topic of asymptotic safety. In Section, 3.1, we give a brief
outline of the problem one encounters when trying to quantize gravity perturbatively.
Subsequently, we discuss how asymptotic safety can be a possible solution to this prob-
lem. In addition, we give a review of the asymptotic safety mechanism and its relevant
definitions in Section 3.2.

3.1 The Problem of Quantizing Gravity Perturbatively

The goal of the asymptotic safety approach to gravity is to construct a consistent and
predictive theory of quantum gravity. This requires a description of gravity at trans-
Planckian-energies E ≳ 1019 GeV, i.e. a UV completion. The standard technique
successful in quantizing the Standard Model forces, the methods of perturbative quan-
tization, cannot be applied to gravity as it produces unphysical results. Specifically,
perturbative quantization of gravity leads to a perturbatively non-renormalizable QFT
in which new divergences appear at every order in perturbation theory [11–14]. If one
aims to absorb every divergence by introducing counterterms, the procedure of pertur-
bative renormalization necessarily produces an infinite number of free parameters that
need to be fixed by experiment. This means that the resulting theory has no predictive
power. The culprit is the gravitational coupling constant: Newton’s constant GN . This
coupling has a negative mass dimension [GN ] = −2. At the level of quantum mechanical
amplitudes describing graviton scattering processes, this means that every vertex factor
of GN has to be accompanied by a center of mass energy s in order to obtain a dimen-
sionless scattering amplitude. Clearly, such amplitudes become highly problematic at
very high energies. The failure of perturbative quantization of gravity has proliferated
numerous efforts seeking a theory of quantum gravity capable of providing high-energy
predictions.

3.2 The Mechanism of Asymptotic Safety

This thesis focuses on the asymptotic safety approach to quantum gravity. Its main
conjecture is that there exists a UV completion of gravity within the framework of QFT
achievable through non-perturbative renormalization. Non-perturbative renormaliza-
tion is realized by adopting Wilson’s generalized view on renormalization [27]. The idea
of applying asymptotic safety to gravity was first introduced by Steven Weinberg [26]
and was put forward as a mechanism that could protect physical scattering amplitudes
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featuring gravitational interactions from UV divergences.

The starting point for the asymptotic safety approach is the path integral (2.16)
adapted to gravity [60]. As described in section 2.2.2, one then defines a functional
related to the path integral called the effective average action Γk. The space of all
permissible action functionals A[·] is called the theory space T . The action functionals
A[·] ∈ T contain interaction monomials Oi built from the field content of the theory.
Furthermore, these functionals must respect the underlying symmetries of the theory,
e.g. diffeomorphism invariance. The monomials Oi form a natural basis allowing one to
expand the effective average action as

Γk =
∑
i

ūi(k)Oi. (3.1)

The expansion coefficients ūi(k) are dimensionful k-dependent couplings and serve as
coordinates on T . For the purpose of RG flow evaluation, it is more convenient to work
with the dimensionless counterparts of these couplings:

ui(k) = k−di ūi(k). (3.2)

Here, di :=
[
ūi
]
is the canonical mass dimension of the dimensionful coupling. The RG

scale dependence of the dimensionless couplings is captured in the beta functions

βui({uj}) := ∂tu
i(k). (3.3)

The beta functions can also be expressed as

βui = k∂k
(
k−di ūi(k)

)
= −dik−di ūi(k) + k−dik∂kū

i(k) = −diui(k) + k−diβūi . (3.4)

The first term on the RHS of (3.4) is the contribution to the beta function from the
canonical mass dimension and the second term represents the corrections due to quantum
fluctuations. Notably, from dimensional analysis of eq. (3.3), it follows that the beta
functions are independent of k so the equations are, in general, an infinite dimensional
system of coupled autonomous first order differential equations. The solutions are called
RG trajectories and they describe a path through theory space parameterized by the RG
scale k. In this way, the problem of solving the functional integral (2.59) is translated
into finding globally well-defined RG trajectories

k 7→ Γk, (3.5)

which exist for all values k ∈ [0,∞). Typically, the behavior of the RG trajectories at
the end-points k = 0 and k = ∞ is controlled by fixed points of the system. The fixed
points of the RG flow are defined as the points {uj} = {uj∗} where all beta functions
simultaneously vanish, i.e.

∀ i βui({uj∗}) = 0. (3.6)

The stability of the RG trajectories close to a fixed point {uj} = {uj∗} can be investigated
by linearizing the beta functions around this fixed point:

βi({uj(k)}) =
∑
j

Bij
(
uj(k)− uj∗

)
+O(u2). (3.7)

The stability matrix Bij is defined as

Bij :=
∂βi

∂uj

∣∣∣∣
u=u∗

. (3.8)
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By dropping the O(u2)-terms in (3.7), we get a linear differential equation for the ui(k).
The solution is

ui(k) = ui∗ +
∑
I

CIV
i
I e

−θIt (3.9)

and provides a description of the RG trajectories in the vicinity of a fixed point. The
RG time t appearing in the exponent results from the substitution k0/k = e−t. The
coefficients CI are integration constants, and the vectors V iI are the right eigenvectors
of B, which define the eigendirections of the RG flow around a fixed point. The θI ’s,
known as the stability coefficients or critical exponents, are the corresponding negative
eigenvalues of B: ∑

j

BijV
j
I = −θIV iI . (3.10)

They provide a natural way to distinguish between two types of fixed points: Gaussian
fixed points (GFPs) and non-Gaussian fixed points (NGFPs). Following [38], we define
a GFP as a fixed point for which the stability coefficients agree with the corresponding
canonical mass dimensions of the couplings, i.e. θI = dI . This implies that this fixed
point describes a free theory. In contrast, at a NGFP, the stability coefficients receive
quantum corrections,

θI = dI + quantum corrections, (3.11)

indicating that the underlying theory is an interacting theory. At a NGFP, the theory
exhibits a symmetry that is referred to as quantum scale invariance [61]. This symmetry
ensures that dimensionless couplings remain finite for k → ∞ and is driven by quantum
fluctuations.

At this point, some remarks about the stability coefficients are in order. In general,
the stability coefficients can be complex-valued. The sign of Re(θI) determines whether
Re
(
e−θIt

)
is an increasing or decreasing function. The imaginary part Im(θI) merely

serves as an oscillatory factor when exponentiated and indicates how quickly an RG
trajectory spirals in or out of a fixed point. From eq. (3.9), it becomes clear that RG
trajectories along directions with Re(θI) > 0 are pulled into the fixed point for k → ∞
(t → ∞) and repelled from the fixed point for k → 0 (t → −∞). Such eigendirections
are therefore often called UV attractive or IR repulsive. On the other hand, RG trajec-
tories along eigendirections with Re(θI) < 0 are repelled from the fixed point for k → ∞
(t → ∞) and pulled into the fixed point for k → 0 (t → −∞). Thus, we call these
eigendirections UV repulsive or IR attractive. Of course, there also exists a third case
where Re(θI) = 0. In that case, one must go beyond linearly approximating (3.7) in
order to ascertain whether the given direction is attractive or repulsive. If a theory’s
UV behavior is controlled by a GFP or NGFP, then we call the theory asymptotically
free or asymptotically safe, respectively.

The predictive power of a theory is closely linked to the stability coefficients. Eigendi-
rections with Re(θI) > 0 span a hypersurface in theory space called the UV critical hy-
persurface SUV around a fixed point. This hypersurface is inhabited by RG trajectories
which can be described by eq. (3.9). This is done by setting the integration constants
CJ = 0 for stability coefficients with Re(θI) = 0 and Re(θJ) < 0, corresponding to
marginal and irrelevant directions, respectively. Typically, physical considerations fur-
ther restrict the space of solutions by imposing constraints on the fixed point values.
The dimension of SUV is equal to the number of free parameters CI with Re(θI) > 0,
i.e.

dim
(
SUV

)
= #{CI |Re(θI) > 0}. (3.12)
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The number of free parameters of the theory determines its predictive power since it
matches the number of measurements that one needs to make in order to determine all
physical couplings. Hence, theories with a large number of free parameters are consid-
ered to have a small predictive power. Fortunately, it has been found that dim

(
SUV

)
usually is a finite, small number for fixed points of typical physical systems [25].

If a NGFP controls the UV behavior of the theory, it is expected that the asymptotic
safety mechanism renders the scattering amplitudes finite in the high-energy regime [62,
63]. It is in fact not even necessary for all couplings to remain finite in the UV regime.
Only the couplings that enter physical observables, called the essential couplings, should
remain finite. One of the earliest incarnations of asymptotic safety was the finding that
gravity in d = 2+ ϵ dimensions, where ϵ is some small expansion parameter, exhibited a
non-trivial fixed point [64, 65]. This discovery motivated physicists to find an analytic
continuation of this fixed point to the case d = 4 [66].

In order to find a UV completion of gravity as a QFT, there should be a suitable
NGFP controlling its UV behavior. We require the NGFP to have at least one UV
attractive eigendirection and the fixed value of Newton’s coupling to be non-negative.
The latter requirement is of phenomenological importance since this corresponds to an
attractive gravitational force. In addition, the UV fixed point should be connected to a
classical regime in the IR limit.

This concludes the review part of the thesis. We have now discussed the necessary
theoretical background and will proceed by discussing the setup of this work, starting
with the gravitational sector.

4 The Gravitational Sector

In this section, we discuss the setup for the investigation of the RG flow of the pure
gravity system. We start by making a covariant ansatz for the gravitational bare action,
the Einstein-Hilbert ansatz, in Section 4.1. Then, we express this ansatz in terms of the
ADM fields, introduced in section 2.1, and expand it in powers of the mean fluctuation
fields on a flat background. We introduce the York decomposition of the metric in Section
4.2, which implements a further decomposition of the gravitational degrees of freedom.

This will allow us to project the RG flow onto the graviton 2-point function Γ
(hh)
k in

Section 6.1. Subsequently, we discuss our gauge-fixing procedure of the gravitational
effective average action in Section 4.3. Finally, we introduce the gravitational ghost
sector in Section 4.4, which accompanies this gauge-fixing procedure.

4.1 The Einstein-Hilbert Ansatz

In order to evaluate the flow equation (2.91), we begin by making an ansatz for the
gravitational effective average action. The goal is to construct the graviton 2-point
function on which this equation is projection as well as the vertices driving the RG flow.
This work makes use of the Einstein-Hilbert action,

SEH =
1

16πGN

∫
x

√
g̃ (−R+ 2Λ) , (4.1)

as an ansatz for the gravitational effective average action:

Γgrav
k ≃ 1

16πGk

∫
x

√
g̃ (−R+ 2Λk) . (4.2)
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This ansatz features two running couplings: a running Newton coupling Gk and a run-
ning cosmological constant Λk. In D = 4 spacetime dimensions,

∫
x
=
∫
d4x, so it follows

that [GN ] = −2 and [Λ] = 2 from dimensional analysis of SEH and the requirement that
[SEH] = 0. Thus, we can define the following dimensionless counterparts of the running
couplings

gk := Gkk
2, λk := Λkk

−2. (4.3)

At this point, it is also useful to define the anomalous dimension of Newton’s coupling
ηN . This quantity is defined as

ηN :=
∂tGk
Gk

. (4.4)

The anomalous dimension encodes the deviation of the mass dimension of the running
coupling Gk from the classical mass dimension [GN ] = −2 due to quantum corrections.

By making the ansatz (4.2), the full RG flow is projected onto a subspace spanned
by the interaction monomials that are present in the effective average action. It should
be noted that this approximation still allows for a non-perturbative treatment since we
are not assuming the coupling constants to be small. In terms of ADM fields, this ansatz
becomes

Γgrav
k =

1

16πGk

∫
dτd3yÑ

√
σ̃
(
KijKij −K2 −(3) R+ 2Λk

)
. (4.5)

Here, the indices i, j ∈ {1, 2, 3}, and the extrinsic curvature tensor Kij is given by

Kij =
1

2
Lnσ̃ij =

1

2Ñ

(
∂τ σ̃ij −DiÑj −DjÑi

)
. (4.6)

We denoteK := σijKij as its trace, Di denotes the spatial covariant derivative, and
(3)R

is the 3-dimensional intrinsic curvature of the spatial hypersurfaces στ . For convenience,
we label the four interaction monomials in ansatz (4.5) as

I1 :=

∫
dτd3yÑ

√
σ̃KijKij , I2 :=

∫
dτd3yÑ

√
σ̃K2,

I3 :=

∫
dτd3yÑ

√
σ̃ (3)R, I4 :=

∫
dτd3yÑ

√
σ̃. (4.7)

Our ansatz can then be expressed as

Γgrav
k =

1

16πGk
(I1 − I2 − I3 + 2ΛkI4) . (4.8)

For computational purposes, we must choose an explicit background metric. This work
expands the ansatz (4.5) around a flat background metric. This entails that (3)R̄ = 0
and D̄i = ∂i. Furthermore, we have that the background metric ḡµν = δµν = diag(1, δij).
By comparing this expression for the background metric with the matrix form (2.10),
one can deduce that

σ̄ij = δij , N̄ = 1, and N̄i = 0. (4.9)

4.2 The York Decomposition

The fluctuation fields σ̂ij , N̂i can be further decomposed using the York decomposition
[67, 68]. This decomposition is based on the following. Let us consider a d-dimensional
manifold equipped with a metric g̃µν . Firstly, if the background is closed and the man-
ifold one considers is complete, any vector ξµ can be uniquely expressed as a sum of
its transverse part ξTµ and longitudinal part ξLµ with respect to the covariant derivative
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Dν . That is, up to ambiguities associated with (conformal) Killing vectors of the back-
ground metric, i.e. the zero-modes of the projection operators [69]. Implementing this
decomposition on ξµ gives

ξµ = ξTµ + ξLµ := ξTµ +Dµη, DµξTµ = 0. (4.10)

Here, we have written the longitudinal vector ξLµ as the gradient of a scalar field η. The
longitudinal and transverse modes can be obtained from the full vector field via the
projection operators [69]

[ΠL]µ
ν
= −Dµ□

−1Dν , [ΠT]µ
ν
= δµ

ν − [ΠL]µ
ν
, (4.11)

respectively. Here, □ = −g̃µνDµDν . The projection operators satisfy the usual condi-
tions

ΠL ·ΠL = ΠL, ΠT ·ΠT = ΠT, ΠL ·ΠT = ΠT ·ΠL = 0. (4.12)

Secondly, any symmetric tensor Tµν can be decomposed into a traceless symmetric tensor

T̊µν and a trace part, which we encode in the scalar field T . This decomposition is given
as

Tµν = T̊µν +
1

d
g̃µνT, g̃µν T̊µν = 0, g̃µνTµν = T. (4.13)

This split is usually referred to as the trace-traceless decomposition. The traceless modes
T̊µν can be further decomposed into transverse-traceless (TT) TTT

µν and longitudinal

modes TL
µν . The tensor Tµν is then expressed as

Tµν = TTT
µν + TL

µν + T trace
µν = TTT

µν + TL
µν +

1

d
g̃µνT, (4.14)

where we have that
DµTTT

µν = 0, g̃µνTTT
µν = 0. (4.15)

Furthermore, the longitudinal part can be expressed in terms of a vector field ξµ as

TL
µν = Dµξν +Dνξµ − 2

d
g̃µνD

αξα. (4.16)

This bring us to the the so-called “minimal” TT decomposition, which is expressed as

Tµν = TTT
µν +Dµξν +Dνξµ − 2

d
g̃µνD

αξα +
1

d
g̃µνT. (4.17)

To arrive at the complete TT decomposition, we use the split (4.10) on the vector field
ξµ such that the longitudinal tensor can be re-expressed in terms of a transverse vector
and a scalar field. This yields

TL
µν = Dµξ

T
ν +Dνξ

T
µ +DµDνη +DνDµη −

2

d
g̃µν

=0︷ ︸︸ ︷
DαξTα −2

d
g̃µνD

αDαη

= Dµξ
T
ν +Dνξ

T
µ + (DµDν +DνDµ) η −

2

d
g̃µνD

2η. (4.18)

Here, we have used the transversality condition on ξTµ , see eq. (4.10). Plugging this
expression back into the minimal TT decomposition (4.17) gives us the full TT or York
decomposition:

Tµν = TTT
µν +Dµξ

T
ν +Dνξ

T
µ + (DµDν +DνDµ) η −

2

d
g̃µνD

2η +
1

d
g̃µνT. (4.19)
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The projection operators for this decomposition [69] are slightly more involved and given
as

[Πtrace]αβ
ρσ

=
1

d
g̃αβ g̃

ρσ, [Π2L]αβ
ρσ

= [P1]
µ
αβ [P

−1
2 ]νµ(−Dγ)[12 −Πtrace]γν

ρσ
. (4.20)

Here, [12]µν
ρσ

= 1
2 (δµ

ρδν
σ + δµ

σδν
ρ) is the identity operator on the space of rank-2

tensors and the operators P1, P
−1
2 are given by [69]

[P1]
µ
αβ = 2D(αδ

µ
β) −

2

d
g̃αβD

µ, [P−1
2 ]µ

ν
=

[
□δµν −Rµν −

d− 2

2
DµDν

]−1

. (4.21)

Now, we apply the York decomposition to our setting with the previously described
tools at our disposal. Among other things, this entails that we restrict the background
metric to the flat metric and d = 3. The York fields that we introduce are purely
fluctuating fields. We leave them “unhatted” to keep the notation light. To this end,
we decompose the fluctuation shift vector N̂i into a transverse vector mode ui and
longitudinal mode represented as the gradient of the scalar field B:

N̂i = ui + ∂iB, ∂iui = 0. (4.22)

The background Laplacian takes the form ∆ = −δij∂i∂j on a flat background. The

fields ui and B are obtained from N̂i via the projection operators

ΠB
i
j = ∂i∂−2∂j , Πu

i
j = δij − ∂i∂−2∂j . (4.23)

We decompose the spatial metric fluctuation field σ̂ij into a TT tensor mode hij , a
transverse vector mode vi, a scalar mode E, and a scalar trace mode ψ := σ̄ij σ̂ij :

σ̂ij = hij + ∂ivj + ∂jvi + ∂i∂jE − 1

3
σ̄ij∂

2E +
1

3
σ̄ijψ. (4.24)

These fields satisfy the following constraints:

∂ihij = 0, σ̄ijhij = 0, ∂ivi = 0. (4.25)

The component fields in (4.24) are obtained from σ̂ij via the following projection oper-
ators:

Πψ
ij
kl =

1

3
σ̄ij σ̄kl,

ΠE
ij
kl =

(
∂i∂j − 1

3
δij∂2

)(
2

3
∂4
)−1(

∂k∂l −
1

3
δkl∂

2

)
,

Πv
ij
kl = 2

(
δ
(j
(l ∂

i)∂−2∂k)

)
− 2∂i∂j∂−4∂k∂l,

Πh
ij
kl = [12]

ij
kl −Πijψ kl −ΠE

ij
kl −Πijv kl. (4.26)

These projections operators form an orthogonal basis on the space of symmetric rank-2
tensors, and the projection operators in eq. (4.23) form an orthogonal basis on the space
of rank-1 tensors. In Section 6.1, it will be useful to expand tensor structures in terms
of these projection operators.

The field redefinitions in eq. (4.22) and (4.24) result in a non-trivial Jacobian. This
can be accounted for be rescaling the fluctuation fields

vi →
1√
∆
vi, E → 1

∆
E, B → 1√

∆
B. (4.27)
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The reason for implementing a further decomposition of the gravitational degrees of
freedom is as follows. The TT tensor hij has two degrees of freedom, which correspond
to two transverse polarization directions. From a phenomenological point of view, this
motivates why one uses this decomposition since gravitational waves share the same
physical properties. The York decomposition (4.24) then allows us to project the RG
flow onto this mode. Furthermore, from a computational point of view, the advantage
of this decomposition is that dealing with differential operators becomes very simple
as most contractions with ∂i vanish due to transversality constraints [69], making the
switch to momentum space rather straightforward. The price one pays for this conve-
nience is the introduction of additional fields. In the sequel, we shall refer to the field
hij as “the graviton field”.

At this point, we have introduced a considerable number of fields. Let us take a
step back and provide a brief overview of the field redefinitions in the gravitational
sector. We started with a metric g̃µν . The ADM decomposition encoded the degrees

of freedom of g̃µν in the fields {σ̃ij , Ñi, Ñ} in Section 2.1. Subsequently, we discussed
the background field formalism in Section 2.3.1, which implemented a linear split into
a background field χ̄ and fluctuation field χ̂. For the ADM fields, this entailed that
σ̃ij = σ̄ij + σ̂ij , Ñi = N̄i+ N̂i, and Ñ = N̄ + N̂ . Lastly, in this section, we implemented

the York decomposition on the fluctuation fields σ̂ij and N̂i. This final decomposition
encoded the degrees of freedom of σ̂ij into {hij , vi, E, ψ} and the degrees of freedom of

N̂i into {ui, B}.

4.3 Gauge Fixing of the Gravitational Sector

In principle, by substituting the complete decomposition of the fluctuation fields (4.22,
4.24) into the EH action (4.5), one can compute the 2-, 3-, and 4-point vertices needed
to evaluate the flow equation. However, the 2-point vertices computed from this action
exhibit non-relativistic dispersion relations, as was shown in [39]. The reason for this is
that, although the EH action is fully relativistic, the ADM decomposition of the space-
time metric into a spatial metric, shift vector, and lapse function is non-linear in the
fluctuation fields. This can result in the loss of relativistic vertices. In momentum space,
this entails that that the numerical factors multiplying the external 3-momentum and

energy, |p⃗3|2 and
(
p03
)2
, respectively, in general do not match for a given fluctuation field.

This work uses the gauge-fixing method from [39], which demonstrated that for a
unique choice of gauge parameters ci one can recover relativistic dispersion relations.
The idea behind this method is that the introduction of gauge-fixing terms that are bilin-
ear in the fluctuation fields can fix the discrepancy in the numerical factors multiplying

|p⃗3|2 and
(
p03
)2
. The gauge-fixing action [39] is defined as

Γgf
k =

1

32πGk

∫
dτd3yN̄

√
σ̄
(
F2 + σ̄ijFiFj

)
. (4.28)

Here, the gauge functionals F , Fi are linear in the fluctuations fields σ̂ij , N̂i, N̂ . The
most general form of these functionals is

F = c1∂τ N̂ + c2∂
iN̂i + c3∂τ σ̂,

Fi = c4∂τ N̂i + c5∂iN̂ + c6∂iσ̂ + c7∂
j σ̂ij . (4.29)

The following choice of gauge parameters ci leads to relativistic dispersion relations at
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Index Matrix element 16πGkδ
2Γgrav

k Matrix element 16πGk

(
δ2Γgrav

k + Γgf
k

)
hh 1

2

(
|p⃗3|2 +

(
p03
)2)− Λk

1
2

(
|p⃗3|2 +

(
p03
)2)− Λk

vv
(
p03
)2 − 2Λk |p⃗3|2 +

(
p03
)2 − 2Λk

uu |p⃗3|2 |p⃗3|2 +
(
p03
)2

EE 1
9

(
−|p⃗3|2 + 3

(
p03
)2)− 2

3Λk
1
3

(
|p⃗3|2 +

(
p03
)2)− 2

3Λk

Eψ 2
9 |p⃗3|

2 0

ψψ − 1
9

(
|p⃗3|2 + 3

(
p03
)2)

+ 1
6Λk − 1

12

(
|p⃗3|2 +

(
p03
)2)

+ 1
6Λk

Nψ − 4
3 |p⃗3|

2 + 2Λk −
(
|p⃗3|2 +

(
p03
)2)

+ 2Λk

NN 0 |p⃗3|2 +
(
p03
)2

NE − 4
3 |p⃗3|

2 0

BB 0 |p⃗3|2 +
(
p03
)2

Table 1: Matrix elements of the 2-point functions of the gravitational effective average
action in momentum space without gauge-fixing and with gauge-fixing. The results have
been obtained via the vertex expansion (2.96) and the gauge-fixing method as prescribed
in Section 4.3. The latter ensures a relativistic dispersion for all components of the
2-point function.

the level of the 2-point function [39]:

c1 = −
√
2, c2 = −

√
2, c3 =

1√
2
, c4 = −

√
2, c5 =

√
2, c6 =

1√
2
, c7 = −

√
2.

(4.30)
The resulting 2-point functions of the gravitational effective average action with and
without this gauge-fixing procedure are listed in Table 1. They have been obtained us-
ing the vertex expansion (2.96), discussed in Section 2.4.2, and the gauge-fixing method
as prescribed in this section.

From Table 1, it can be seen that the vertices have acquired a relativistic dispersion
after the gauge-fixing action has been added. The propagator matrix Gk is obtained by

inverting the matrix Γ
(2)
k +Rk. The results of this are listed in Table 10 in Appendix

B. For instance, the graviton propagator takes the form

(Gk)hh =
32πGk

|p⃗3|2 + (p03)
2 − 2Λk +Rk(p21)

. (4.31)

The cosmological constant has the status of a mass term at the level of the propagator.
More precisely, one can identify a running squared mass µ2

k with the running cosmo-
logical constant via µ2

k = −2Λk. Subsituting this relation brings the propagator in the
canonical form Gk ∝ 1/(p2+m2). In GR, gravitational waves are described by a massless
field. Therefore, one can make the argument that the renormalized mass of the graviton
should vanish in the IR limit. The value of Λk should therefore be quenched to 0 in
that limit on the basis of this argument. This constrains the fixed point value of the
dimensionless cosmological constant λk. In particular, fixed point values λIR∗ = ±∞ will
lead to a negative/positive renormalized squared mass for the graviton in the IR and are
therefore unphysical. This will be important later when we discuss the IR fixed points
of pure gravity and gravity matter systems in Section 7.
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4.4 The Gravitational Ghost Sector

The gauge-fixing (4.28, 4.29, 4.30) of the gravitational effective average action introduces
the Faddeev-Popov determinants

∆S = det

(
δF
δχ̂ai

)
, ∆V = det

(
δFj
δχ̂ai

)
(4.32)

at the level of the gravitational path integral. These determinants can be exponentiated
in the usual way following the Faddeev-Popov procedure [50], see section 2.3.1. We
introduce the Grassmann-valued scalar (anti-)ghost fields c̄, c and vector (anti-)ghost
fields b̄i, b

j . We treat these fields as purely fluctuating fields, i.e. their corresponding
background fields are set to 0. The gravitational ghost action then takes the standard
form

Γgh
k =

∫
dτd3yN̄

√
σ̄

[
c̄
δF
δχ̂ai

(
δc,bj χ̃

ai
)
+ b̄j

δFj
δχ̂ai

(δc,bk χ̃
ai)

]
. (4.33)

Here, δc,bj χ̃
ai corresponds to the transformation (2.14) of the ADM field χ̃ai in which

the fields {f, ζk} are replaced by {c, bk}. The total gravitational ghost action with terms
quadratic in the fluctuation fields only and evaluated on a flat background is given by

δ2Γgh
k = 2

√
2

∫
dτd3y

[
c̄
(
−∂2τ − ∂k∂

k
)
c+ b̄i

(
−∂2τ − ∂k∂

k
)
bi
]
. (4.34)

At this point, we have all the ingredients to investigate the RG flow of the pure gravity
system based on the action

ΓPG
k = Γgrav

k + Γgf
k + Γgh

k . (4.35)

In the upcoming chapter, we discuss the inclusion of matter degrees of freedom.

5 The Matter Sector

In this section, we add a matter sector to the gravitational system. We start by spec-
ifying the covariant matter actions. Subsequently, recast them in terms of the ADM
decomposition. We end this section with some brief remarks on the limitations and
approximations of our chosen matter sector.

5.1 The Covariant Matter Action

We supplement the gravitational degrees of freedom with a matter sector consisting ofNs
scalar fields Φ̃a and Nv Abelian gauge fields Ãaµ minimally coupled to gravity. The label
a enumerates the fields and runs from a = 1, ..., Ns for scalar fields and from a = 1, ..., Nv
for gauge fields and (anti-)ghost fields which accompany the gauge fixing procedure of
the gauge sector. The fields of the matter sector are treated as purely fluctuating fields
so we replace the tildes with hats from this point forward. Minimal coupling to gravity
entails that the matter action contains kinetic terms only. Self-interactions of the mat-
ter fields containing n ≥ 3 fields Φ̂a, Âbµ are excluded. Additionally, the gauge fields’
action consists of a gauge-fixing and ghost action that fix the U(1)-gauge invariance.
The minimal coupling to gravity is achieved via metric contractions with g̃µν and the
integration measure

√
g̃ featuring in the matter action. The vertex expansion of the

matter action generates the matter vertices of the theory and they are given in Tables
7, 8 and 9 in the Appendix.
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The covariant matter action for Ns real massless scalar fields Φ̂a minimally coupled
to gravity is given by

Sscalar[Φ̂a] =
1

2

Ns∑
a=1

∫
x

√
g̃g̃µνDµΦ̂

aDνΦ̂
a. (5.1)

The matter action for the Abelian gauge fields is given by

Svector[Âaµ,
ˆ̄Cb, Ĉc] =

1

4

Nv∑
a=1

∫
x

√
g̃g̃µαg̃νβF aµνF

a
αβ +

1

2ξ

Nv∑
a=1

∫
x

√
ḡ
[
ḡµνD̄µÂ

a
ν

]2
+

Nv∑
a=1

∫
x

√
ḡḡµνD̄µ

ˆ̄CaD̄νĈ
a. (5.2)

This action consists of a kinetic term, where F aµν := ∂µÂ
a
ν − ∂νÂ

a
µ is the field tensor for

the Abelian gauge field Âaµ, a gauge-fixing term, and a ghost term consisting of the scalar

(anti-)ghost fields ˆ̄Ca, Ĉb arising from the gauge-fixing term. Henceforth, we adopt the
Feynman gauge setting ξ = 1.

5.2 The 3+1-Decomposition of the Matter Action

The next step is to convert these actions using the ADM decomposition and evaluate
them on a flat background using (4.9). In this 3+1-split, we do not introduce relative
scaling parameters between temporal and spatial derivative operators, as was also done
for the gravitational sector.

We begin by recasting the scalar action using the ADM decomposition. First, we
use partial integration to move the covariant derivative Dµ to the right-most scalar field
as follows:∫

x

√
g̃g̃µνDµΦ̂

aDνΦ̂
a = −

∫
x

Φ̂aDµ

(√
g̃g̃µνDνΦ̂

a
)
= −

∫
x

√
g̃g̃µνΦ̂aDµDνΦ̂

a. (5.3)

In the final step, we made use of the metric compatibility of the covariant derivative.
Next, we expand the metric contraction in this expression, making explicit use of the
matrix form of the inverse metric g̃µν (2.10). This yields

g̃µνΦ̂aDµDνΦ̂
a =g̃00Φ̂aD2

τ Φ̂
a + g̃0iΦ̂aDτDiΦ̂

a + g̃j0Φ̂aDjDτ Φ̂
a + g̃ijΦ̂aDiDjΦ̂

a

=
1

Ñ2
Φ̂aD2

τ Φ̂
a − Ñ i

Ñ2
Φ̂aDτDiΦ̂

a − Ñ j

Ñ2
Φ̂aDjDτ Φ̂

a

+

(
σ̃ij +

Ñ iÑ j

Ñ2

)
Φ̂aDiDjΦ̂

a

=
1

Ñ2
Φ̂aD2

τ Φ̂
a − 2

Ñ i

Ñ2
Φ̂aDτDiΦ̂

a +

(
σ̃ij +

Ñ iÑ j

Ñ2

)
Φ̂aDiDjΦ̂

a. (5.4)

The derivation of the gauge fields action in the ADM decomposition follows along the
same lines. At the level of the gauge fields, the 3+1-split is implemented by disentangling

its temporal and spatial components, i.e. Âaµ =
(
Âa0 , Â

a
i

)
. In the following, we derive

the ADM decomposition for the three constituent actions separately. We start with the
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ghost action. Analogous to eq. (5.3), one can move the background covariant derivative
D̄µ to the ghost field Ĉa by partial integration. Then, we expand the contraction of the
inverse background metric using eq. (2.10) and implement the background conditions
(4.9). This yields:

ḡµν ˆ̄CaD̄µD̄νĈ
a = ḡ00 ˆ̄Ca∂2τ Ĉ

a + ḡij ˆ̄Ca∂i∂jĈ
a = ˆ̄Ca

(
∂2τ + δij∂i∂j

)
Ĉa. (5.5)

The decomposed integrand of the gauge-fixing action can be computed in a similar
fashion. Doing so yields:[

ḡµνD̄µÂ
a
ν

]2
=
(
ḡµν∂µÂ

a
ν

)(
ḡρσ∂ρÂ

a
σ

)
=
(
∂τ Â

a
0 + δij∂iÂ

a
j

)(
∂τ Â

a
0 + δkl∂kÂ

a
l

)
=
(
∂τ Â

a
0

)2
+ 2δij∂τ Â

a
0∂iÂ

a
j + δijδkl∂iÂ

a
j∂kÂ

a
l . (5.6)

Finally, we decompose the kinetic term for the gauge fields. We start by expanding the
contraction of the metric with the field tensors, collecting similar tensor structures, and
substituting the inverse metric elements using eq. (2.10). This gives:

g̃µαg̃νβF aµνF
a
αβ =2g̃00g̃klF a0kF

a
0l − 2g̃j0g̃k0F a0jF

a
0k + 4g̃0ig̃klF a0kF

a
il + g̃ij g̃klF aikF

a
jl

=
2

Ñ2

(
σ̃kl +

ÑkÑ l

Ñ2

)
F a0kF

a
0l −

2Ñ jÑk

Ñ4
F a0jF

a
0k −

4Ñ i

Ñ2

(
σ̃kl +

ÑkÑ l

Ñ2

)

+

(
σ̃ij +

Ñ iÑ j

Ñ2

)(
σ̃kl +

ÑkÑ l

Ñ2

)
F aikF

a
jl. (5.7)

Expanding this expression and collecting terms yields the following expression:

g̃µαg̃νβF aµνF
a
αβ =σ̃ij σ̃klF aikF

a
il +

2

Ñ2

[
σ̃klF a0kF

a
0l − 2σ̃klÑ iF a0kF

a
il + σ̃ijÑkÑ lF aikF

a
jl

− 2

Ñ2
Ñ iÑkÑ lF a0kF

a
il +

1

Ñ2
Ñ iÑ jÑkÑ lF aikF

a
jl

]
. (5.8)

Finally, we notice that the last two terms between brackets involve contractions be-
tween the antisymmetric tensors F ail , F

a
ik and symmetric tensors Ñ iÑ l, Ñ iÑk respec-

tively, which trivially vanish. This brings us to the final result for the decomposed
kinetic term for the gauge fields:

g̃µαg̃νβF aµνF
a
αβ = σ̃ij σ̃klF aikF

a
il +

2

Ñ2

[
σ̃klF a0kF

a
0l − 2σ̃klÑ iF a0kF

a
il + σ̃ijÑkÑ lF aikF

a
jl

]
.

(5.9)
Substituting the gauge fields Âa0 , Â

a
i into the field tensors in (5.9) gives a very lengthy

expression and is therefore omitted. The previously obtained results can be summarized
into the fully decomposed matter action

Smatter = Sscalar + Svector, (5.10)

where

Sscalar =
1

2

Ns∑
a=1

∫
dτd3yÑ

√
σ̃

[
1

Ñ2
Φ̂aD2

τ Φ̂
a − 2

Ñ i

Ñ2
Φ̂aDτDiΦ̂

a

+

(
σ̃ij +

Ñ iÑ j

Ñ2

)
Φ̂aDiDjΦ̂

a

]
, (5.11)
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and

Svector =

Nv∑
a=1

∫
dτd3yÑ

√
σ̃

[
1

4
F aijF

a,ij

+
1

2Ñ2

(
σ̃ijF a0iF

a
0j − 2σ̃jlÑ iF aijF

a
0l + σ̃ikÑ jÑ lF aijF

a
kl

)]
+

1

2

Nv∑
a=1

∫
dτd3y

[(
∂τ Â

a
0

)2
+ 2δij∂τ Â

a
0∂iÂ

a
j + δijδkl∂iÂ

a
j∂kÂ

a
l

]

−
Nv∑
a=1

∫
dτd3y ˆ̄Ca

(
∂2τ + δij∂i∂j

)
Ĉa. (5.12)

Adding the actions (4.5, 4.28, 4.33, 5.10) gives us the total EAA for the gravity-matter
system

Γk = Γgrav
k + Γgf

k + Γgh
k + Smatter. (5.13)

Some remarks about the matter sector are in order. By construction, the matter
action does not feature any non-minimal couplings to gravity and higher order self-
interactions among the matter fields. Consequently, the only vertex structures that

contribute to the flow of Γ
(hh)
k are of the form Γ

(hΦΦ)
k , Γ

(hAA)
k , Γ

(hhΦΦ)
k , and Γ

(hhAA)
k ,

where A can be A0 or Ai. For example, vertices of the form Γ
(hΦA)
k and Γ

(hhΦA)
k will

not contribute to the flow as they would require a coupling between the scalar and
gauge fields. Secondly, it should be noted that we have neglected the wave function
renormalization factors of the matter fields. Generally, one includes a wave function
renormalization factor for every field and, subsequently, treats them as running couplings
depending on the RG scale k. For instance, for a scalar field Φ̂a one would replace

Φ̂a 7→
(
ZΦ̂a

k

)1/2
Φ̂a, such that DµΦ̂

aDνΦ̂
a 7→ ZΦ̂a

k DµΦ̂
aDνΦ̂

a. (5.14)

Here, ZΦ̂a

k is the RG scale dependent wave function renormalization factor for the field

Φ̂a. Including such a factor for each field generates an equal number of additional flow

equations. The quantity ∂t lnZ
Φ̂a

k =
(
∂tZ

Φ̂a

k

)
/ZΦ̂a

k encodes the anomalous dimension

of the field Φ̂a, similar to the anomalous dimension of Newton’s coupling ηN in eq. (4.4).
Thus, one could say that neglecting Zk, i.e. setting Zk = 1 for all matter fields, amounts
to classical power counting of the matter fields.

6 RG Flow Evaluation

In this section, we discuss the evaluation of the flow equation (2.108). We begin by
projecting the flow onto the 2-point vertex structure of the graviton field in Section 6.1.1.
Then, we discuss the p03- and p⃗3-projection schemes in Section 6.1.2. These projection
schemes organize the trace contributions and allow for a systematic determination of
the systems’ beta functions. After the flow projection, we explain the general structure
of how we evaluate the supertrace on the RHS of the flow equation in Section 6.2.
This supertrace receives contributions from 3- and 4-point vertices, which are treated
separately. We provide two prototypical calculations of trace components that contribute
to the 4-point vertex part of the supertrace to illustrate the computational techniques
that were employed. We end this section by giving the explicit expressions for the beta
functions of the complete gravity-matter system and they constitute the central result
of this section. The properties of the beta functions are thoroughly analyzed in Section
7.
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6.1 Flow Projection

In the following two subsections, we discuss the projection of the flow equation. We
start by projecting the flow onto the 2-point vertex structure of the graviton field.
Subsequently, we discuss the momentum projection schemes of the flow equation.

6.1.1 Projection onto the 2-Point Vertex Structure of the Graviton Fields

The flow of Γ
(2)
k is projected onto the 2-point vertex structure of the graviton fields

hij . In principle, this is done by taking functional derivatives of Wetterich’s equation
adapted to gravity (2.91) with respect to the external fields hij(p3), hkl(p4), carrying
external momentum p3 and p4 respectively, i.e.

∂tΓ
(hh)
k :=

δ2

δhij(p3)δhkl(p4)
∂tΓk =

1

2

δ2

δhij(p3)δhkl(p4)
STr

[
Gk Ṙk

]
. (6.1)

Our computation uses the vertex expansion (2.96) in order to extract the 2-, 3-, and
4-point vertices in terms of the mean fluctuations fields. Subsequently, we substitute
the mean ADM fields σij and Ni via the York decomposition in eq. (4.22) and (4.24).
In order to arrive at the correct tensor structures, we must account for the chain rule
for the functional derivative. This is best illustrated by considering a specific example.
For instance, we can recast a functional derivative of the effective average action with
respect to hij in terms of a functional derivative with respect to σij in the following
way:

δΓk
δhij(p4)

=

∫
q

δΓk
δσab(q)

δσab(q)

δhij(p4)
=

∫
q

δΓk
δσab(q)

Πh
ij
ab(q)δ

4(p4 − q) =
δΓk

δσab(p4)
Πh

ij
ab(p4).

(6.2)
Here, Πh is the projection operator of hij , defined in (4.26). Applying this rule twice
gives us the structure

δ2Γk
δhij(p3)δhkl(p4)

=
δ2Γk

δσab(p3)δσcd(p4)
Πh

ij
ab(p3)Πh

kl
cd(p4). (6.3)

The projectors Πh,Πv,ΠE ,Πψ span a basis and one can expand the tensor structure
multiplying the two projection operators in eq. (6.3) in this basis, i.e.

δ2Γk
δσabδσcd

= c1Πh
abcd + c2Πv

abcd + c3ΠE
abcd + c4Πψ

abcd. (6.4)

The expansion coefficients ci can be determined by explicit computation. This expansion
only holds on a flat background, on which the derivative operators contained in the
projection operators all mutually commute. On a general (curved) background, the
projections operators will generally involve complicated curvature structures arising from
the interchange of covariant derivatives. Substituting this expansion in (6.3) leads to
contractions between the projection operators of which the only non-vanishing one is
Πh ·Πh = Πh if the external momenta p3 and p4 agree. Thus, the tensor structure (6.3)
can be written as

δ2Γk
δhij(p3)δhkl(p4)

= ūk(p3)Πh
ijklδ4(p3 − p4). (6.5)

Here, ūk(p3) is a dimensionful running coupling depending on the external momentum
p3. Thus, the LHS of the flow equation schematically has the following structure

∂tΓ
(hh)
k = ∂tūk(p3)Πh. (6.6)

40



Likewise, the RHS of the flow equation is projected onto the 2-point vertex structure
of the graviton field. This projected RHS contains 3- and 4-point vertices that also

feature other component and matter fields, e.g. Γ
(hhNψ)
k . In that case, one also needs

to consider the projection operators that arise from taking functional derivatives with
respect to these fields in order to get the same tensor structures on both sides of the
flow equation. The projection onto the graviton 2-point function is then implemented
by retaining tensor structures that multiply the projection operator Πh that is related
to the external indices only.

6.1.2 The Momentum Projection Schemes

We proceed by discussing the projection of the flow equation. The explicit form of
ūk(p3) in the Einstein-Hilbert ansatz is given by

ūk(p3) =
1

32πGk
(p23 − 2Λk). (6.7)

This signals that ūk(p3) could be regarded as a form factor, depending on the 4-
momentum squared p23.

Considering the foliation structure of our theory, ūk(p3) should also be correspond-
ingly modified into a form in which the temporal and spatial components are disentan-

gled. Consequently, ūk(p3) would be promoted into a function depending on
(
p03
)2

and

|p⃗3|2, separately. The simplest case would be that ūk(p3) is linear in
(
p03
)2

and |p⃗3|2,
but with different coefficients, i.e.

ūk

((
p03
)2
, |p⃗3|2; k

)
=

1

32πGk

(
αk
(
p03
)2

+ |p⃗3|2 − 2Λk

)
. (6.8)

Here, αk is a scale dependent coupling encoding the asymmetry between the temporal
and spatial momentum components in the 2-point vertex. In a sense, it sets the speed
at which these modes propagate.

For the full system, we can extract the RG flows of Gk and Λk from the
(
p03
)2
-

dependent part, |p⃗3|2-dependent part, and the momentum-independent part of ūk(p3).
In this work, we set αk = 1 for simplicity. The case where αk is kept as a running
coupling is investigated for pure gravity in [70]. The running of Gk is captured either

by the
(
p03
)2
-dependent or the |p⃗3|2-dependent part. Therefore, we have two choices of

projections. The p03-projection of the flow equation is obtained by setting p⃗3 = 0 and

retaining terms up to O
((
p03
)2)

. Likewise, the p⃗3-projection of the flow equation is

obtained by setting p03 = 0 and retaining terms up to O
(
|p⃗3|2

)
. The LHS of the flow

equation for both projections is given by

p03 − projection:
1

32π
∂t

(
1

Gk

)(
p03
)2

Πh −
1

16π
∂t

(
Λk
Gk

)
Πh, (6.9)

p⃗3 − projection:
1

32π
∂t

(
1

Gk

)
|p⃗3|2Πh −

1

16π
∂t

(
Λk
Gk

)
Πh. (6.10)

Notice that we have three different contribution types. We have tensor structures

multiplying
(
p03
)2
, tensor structures multiplying |p⃗3|2, and tensor structures containing

no external momentum dependence. To obtain a similar structure on the RHS of the
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flow equation, we Taylor expand it in powers of p⃗3 and p03. This yields:

RHS = T0Πh + Tp03
(
p03
)2

Πh + Tp⃗3 |p⃗3|2Πh + Tp03p⃗3p
0
3|p⃗3|Πh + higher order terms.

(6.11)

Here, T0 represents the zeroth order expansion term and captures the trace contribu-
tions with no external momentum dependence. The expansion coefficients Tp03 and Tp⃗3

capture the trace contributions multiplying
(
p03
)2

and |p⃗3|2, respectively. The term Tp03p⃗3
collects all second order mixed contributions. This term invariably vanishes in either
projection since we set either p03 = 0 or p⃗3 = 0.

In general, the contributions T0, Tp03 , and Tp⃗3 depend on the running couplings Gk
and Λk, the RG scale k, and the anomalous dimension of Newton’s coupling ηN , defined
in eq. (4.4). The dependency on the anomalous dimension is a result of the t-derivative of
the regulator Rk. In addition, for the gravity-matter systems, these trace contributions
receive contributions from matter vertices and depend on the number of scalar fields Ns
and number of gauge fields Nv. The projection then retains terms up to quadratic order
in the external momentum only. This yields:

RHS ≃ T0(Gk,Λk, ηN , Ns, Nv; k)Πh + Tp03(Gk,ΛkηN , Ns, Nv; k)
(
p03
)2

Πh

+ Tp⃗3(Gk,Λk, ηN , Ns, Nv; k)|p⃗3|2Πh. (6.12)

Matching both sides of the flow equation for either projection gives us the system of
equations:

p03 − projection:


1

32π∂t

(
1
Gk

)
= Tp03(Gk,Λk, ηN , Ns, Nv; k)

1
16π∂t

(
Λk

Gk

)
= T0(Gk,Λk, ηN , Ns, Nv; k),

(6.13)

p⃗3 − projection:


1

32π∂t

(
1
Gk

)
= Tp⃗(Gk,Λk, ηN , Ns, Nv; k)

1
16π∂t

(
Λk

Gk

)
= T0(Gk,Λk, ηN , Ns, Nv; k).

(6.14)

The trace contributions on the RHS are obtained by evaluating the supertrace. This
will be discussed in the next section.

6.2 Trace Evaluation

We proceed by discussing the evaluation of the supertrace on the RHS of the flow
equation. Projecting the flow onto the 2-point vertex structure of the graviton fields
brings the flow equation (2.108) in the following form:

∂tΓ
(hh)
k =STr

[
(Gk)χaχb Γ

(hχbχc)
k (Gk)χcχd Γ

(hχdχe)
k (Gk)χeχf

(
Ṙk

)
χfχa

− 1

2
(Gk)χaχb Γ

(hhχbχc)
k (Gk)χcχd

(
Ṙk

)
χdχa

]
. (6.15)

On the RHS, the projection entails that the 3-point vertices always contain one func-
tional derivative with respect to the graviton field and the 4-point vertices contain two
functional derivatives with respect to graviton field. We adopt the following notation
for the 3- and 4-point vertex matrix elements:(

Γ
(3)
k

)
χaχb

:= Γ
(hχaχb)
k =

δ3Γk
δhijδχaδχb

,
(
Γ
(4)
k

)
χaχb

:= Γ
(hhχaχb)
k =

δ4Γk
δhijδhklδχaδχb

.

(6.16)
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In this notation, the indices of the matrices always correspond to the fields running in
the loop.

Recall that the supertrace STr provides a sum over all possible vertices, integrates
over all loop momenta, and provides a minus sign for Grassmann-valued fields. To make
this more explicit, we write out the 3- and 4-point vertex contributions to the supertrace
in terms of a sum over field indices a and integration over loop momenta p1 and p2. For
the 3-point vertex contribution this yields:

STr
[
Gk Γ

(3)
k Gk Γ

(3)
k Gk Ṙk

]
=

∫
p1,p2

∑
a,...,f

[
(Gk)χaχb (p1)

(
Γ
(3)
k

)
χbχc

(p1, p2, p3)

(Gk)χcχd (p2)
(
Γ
(3)
k

)
χdχe

(p1, p2, p4) (Gk)χeχf (p1)(
Ṙk

)
χfχa

(p1)

]
. (6.17)

We use the notation
∫
p
:=
∫

d4p
(2π)4 . Notice that one 3-point vertex depends on the exter-

nal momentum p3, whereas the other 3-point vertex depends on the external momentum
p4. This is because the former 3-point vertex contains a functional derivative with re-
spect to hij(p3), i.e. the external field that couples to this vertex is hij(p3). The latter
3-point vertex contains a functional derivative with respect to hkl(p4) so this vertex is
connected to the external field hkl(p4). Similarly, for the 4-point vertex contribution we
have:

STr
[
Gk Γ

(4)
k Gk Ṙk

]
=

∫
p1,p2

∑
a,...,d

[
(Gk)χaχb (p1)

(
Γ
(4)
k

)
χbχc

(p1, p2, p3, p4) (Gk)χcχd (p2)

(
Ṙk

)
χdχa

(p1)

]
. (6.18)

Here, the 4-point vertex depends on both external momenta p3 and p4 since it contains
a functional derivative with respect to hij(p3) as well as hkl(p4). This entails that the
vertex is connected to both external fields.

In general, the trace contributions exhibit two types of structures:

Type A:

∫
dp01

∫
d3p⃗1 T

A(|p⃗1|2, (p01)2, p3; k),

Type B:

∫
dp01

∫
d3p⃗1 f

(
|p⃗1|2, (p01)2

)
TBijk...(p1, p3; k)p1

ip1
jp1

k... (6.19)

Here, f is a function that depends on the squared loop 3-momentum |p⃗1|2 and squared
loop energy (p01)

2. The function TA and tensor TBijk... depend on the external field hij ,
the fields running in the loop, the k-dependent couplings, the external momentum p3,
and the loop momentum p1. In Type A structures, the loop 3-momenta pi1 are fully
contracted among themselves within TA. As a result, TA is strictly a function of the
loop 3-momentum squared and the integral can be performed straightforwardly using
spherical coordinates. This will be discussed later.

For Type B structures, the tensor TBijk... contains uncontracted tensor structures

other than uncontracted loop 3-momenta p1i that contract with loop 3-momenta p1
ip1

jp1
k....

For instance, one could have the structure hik(p3)h
k
j (−p3)p1ip1j or hij(p3)hij(−p3)pk3p1k.

When dealing with a Type B structure, we need trace technology that tells us how one
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integrates over uncontracted loop momenta. In our computation, we encounter momen-
tum integrals that feature at most six uncontracted loop 3-momenta. The following loop
integrals [71] exhaust all possibilities:

∫
d3|p⃗1|f(|p⃗1|2)TBipi1 =0,∫

d3|p⃗1|f(|p⃗1|2)TBijpi1p
j
1 =

∫
d3|p⃗1|f(|p⃗1|2)TBij

|p⃗1|2

3
δij ,∫

d3|p⃗1|f(|p⃗1|2)TBijkpi1p
j
1p
k
1 =0,∫

d3|p⃗1|f(|p⃗1|2)TBijklpi1p
j
1p
k
1p
l
1 =

∫
d3|p⃗1|f(|p⃗1|2)TBijkl

|p⃗1|4

15

(
δijδkl + δikδjl

+ δilδjk
)
,∫

d3|p⃗1|f(|p⃗1|2)TBijklmpi1p
j
1p
k
1p
l
1p
m
1 =0,∫

d3|p⃗1|f(|p⃗1|2)TBijklmnpi1p
j
1p
k
1p
l
1p
m
1 p

n
1 =

∫
d3|p⃗1|f(|p⃗1|2)TBijklmn

|p⃗1|6

105

(
δijδklδmn

+ δijδkmδln + δijδknδml + ...
)
. (6.20)

Here, all possible combinations for the product of three Kronecker delta functions should
be included in the last formula.

6.2.1 Trace 4-Point Contribution

In the following, we outline the general structure of the trace evaluation. The super-
trace receives contributions from 3- and 4-point vertices. These contributions have to
be dealt with separately since the assignment of loop momenta to propagators and the
statements of momentum conservation at the vertices differ between the 3- and 4-point
diagrams.

We start with the trace component corresponding to the 4-point vertex diagram, de-
noted STr(4). An illustration of this diagram is given in Fig. 3. We call this contribution
the 4-point trace henceforth. The diagram consists of a single 4-point vertex, represented

by Γ
(4)
k , and this vertex depends on the loop momenta p1, p2 and the external momenta

p3, p4 of the external gravitons due to the functional derivatives it contains with respect
to hij(p3), hkl(p4). The internal lines represent the propagators Gk(p1),Gk(p2). The
regulator insertion, depicted by a crossed-our circle, is connected to both internal lines.
At the 4-point vertex, the statement of 4-momentum conservation can be represented
by the delta function

δ(4)

(∑
i

pi

)
= δ(4) (p1 + p2 + p3 + p4) . (6.21)

We are allowed to freely choose all momentum directions in this diagram. We choose all
momenta to be incoming with respect to the 4-point vertex. This entails that p2 = −p1
and p4 = −p3. Consequently, the propagators only depend on the loop momentum p1
and the 4-point vertex on the loop momentum p1 and external momentum p3. Further-
more, the integral over loop momenta can be represented by a single integral over p1.

To calculate to total 4-point trace, one has to consider all possible diagrams of the
form represented in Fig. 3. One can choose a single internal line to be the propagator
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Figure 3: Diagrammatric representation of the 4-point diagram contributing to the flow

of Γ
(hh)
k , which is denoted STr(4). The arrows indicate the chosen momentum directions.

In particular, all particles are considered incoming at the 4-point vertex. The internal
lines represent the propagators Gk, the external lines represent the external graviton fields
hij(p3), hkl(p4) on which the flow is projected, and the crossed-out circle represents a

regulator insertion which enters as Ṙk in the RHS of the flow equation.

of the field χa. Then, one considers all possible assignments of the other internal lines
and adds up these contributions. This corresponds to the χa-component of the 4-point

trace. We denote this quantity by STr
(4)
χa . Summing over all χa trace components then

yields to total 4-point trace:

STr(4) =
∑
a

STr
(4)
χa . (6.22)

In what follows, we provide a calculation of two trace components contributing to the
4-point trace STr(4) to demonstrate the computational steps. We begin by discussing
an example of a Type A structure, defined in eq. (6.19). For this purpose, we calculate

the ψ-component of the 4-point trace, STr
(4)
ψ . This trace component is given by

STr
(4)
ψ = −1

2

∫
p1

∑
a,b,c

(Gk)ψχa (p1)
(
Γ
(4)
k

)
χaχb

(p1, p3) (Gk)χbχc (p1)
(
Ṙk

)
χcψ

(p1).

We can evaluate the sum over the fields indices a, b, c by checking which matrix ele-

ments of the three matrices Gk,Γ(4)
k , Ṙk are non-vanishing. Table 10 indicates that the

matrix elements of (Gk)ψχa are non-vanishing when χa = ψ,N . The same holds for

the matrix elements of Ṙk, which are obtained as t-derivatives of the matrix elements

of Rk. The latter are discussed in Appendix B. This fixes the first index of Γ
(4)
k . The

non-vanishing components of Γ
(4)
k are extracted via the vertex expansion (2.96) and

are
(
Γ
(4)
k

)
ψψ

,
(
Γ
(4)
k

)
ψN

for χa = ψ, and
(
Γ
(4)
k

)
Nψ

,
(
Γ
(4)
k

)
Nψ

for χa = N . Then one
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repeats the same procedure for the last two matrices. This yields:

STr
(4)
ψ = −1

2

∫
p1

[
(Gk)ψψ (p1)

(
Γ
(4)
k

)
ψψ

(p1, p3) (Gk)ψψ (p1)
(
Ṙk

)
ψψ

(p1)

+ (Gk)ψψ (p1)
(
Γ
(4)
k

)
ψψ

(p1, p3) (Gk)ψN (p1)
(
Ṙk

)
Nψ

(p1)

+ (Gk)ψψ (p1)
(
Γ
(4)
k

)
ψN

(p1, p3) (Gk)Nψ (p1)
(
Ṙk

)
ψψ

(p1)

+ (Gk)ψψ (p1)
(
Γ
(4)
k

)
ψN

(p1, p3) (Gk)NN (p1)
(
Ṙk

)
Nψ

(p1)

+ (Gk)ψN (p1)
(
Γ
(4)
k

)
Nψ

(p1, p3) (Gk)ψψ (p1)
(
Ṙk

)
ψψ

(p1)

+ (Gk)ψN (p1)
(
Γ
(4)
k

)
Nψ

(p1, p3) (Gk)ψN (p1)
(
Ṙk

)
Nψ

(p1)

+ (Gk)ψN (p1)
(
Γ
(4)
k

)
NN

(p1, p3) (Gk)Nψ (p1)
(
Ṙk

)
ψψ

(p1)

+ (Gk)ψN (p1)
(
Γ
(4)
k

)
NN

(p1, p3) (Gk)NN (p1)
(
Ṙk

)
Nψ

(p1)

]
. (6.23)

Thus, we see that there are eight terms or, equivalently, eight diagrams that contribute

to STr
(4)
ψ . The relevant 4-point vertices appearing in this trace contribution are(

Γ
(4)
k

)
ψψ

=
1

1152πGk

(
−4p⃗ 2

1 − 12
(
p01
)2

+ 15p⃗ 2
3 + 3

(
p03
)2 − 6Λk

)
hij(p3)hij(−p3)Πψ,(

Γ
(4)
k

)
ψN

=
(
Γ
(4)
k

)
Nψ

=
1

192πGk

(
−4p⃗ 2

1 − 3p⃗ 2
3 +

(
p03
)2

+ 2Λk

)
hij(p3)hij(−p3)Πψ,(

Γ
(4)
k

)
NN

=
1

16πGk

(
p03
)2
hij(p3)hij(−p3). (6.24)

Notice that the off-diagonal matrix elements with field labels ψN and Nψ are identi-
cal in this case since the interchange of the field labels ψ,N means that the momenta
p1, p2 = −p1 are interchanged. This interchange has no effect on the matrix element
since p⃗1 appears quadratically. The projection operator Πψ appears as a consequence
of the chain rule for funcational derivates, c.f. eq. (6.2).

The integral over all 4-momenta pµ1 = (p01, p⃗1) can be split into an integral over all
energies p01 and all 3-momenta p⃗1. The latter can be carried out using spherical coordi-
nates if the integrand, say some function f(p1) = f(p01, p⃗1), is spherically symmetric, i.e.
if f(p01, p⃗1) = f(p01, |p⃗1|). Fortunately, this is always the case. For Type A contributions
spherical symmetry holds trivially. For Type B contributions it also holds because of
the integral identities in eq. (6.20). The conversion of the loop momentum integration
to spherical integration is given by:∫

p1

f
(
p01, |p⃗1|

)
=

∫
d4p1
(2π)4

f
(
p01, |p⃗1|

)
=

1

(2π)4

∫ ∞

−∞
dp01

∫
R3

d3p⃗1f
(
p01, |p⃗1|

)
=

1

(2π)4

∫ ∞

−∞
dp01

[∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞

0

d|p⃗1||p⃗1|2f
(
p01, |p⃗1|

)]
=

1

4π3

∫ ∞

−∞
dp01

∫ ∞

0

d|p⃗1||p⃗1|2f
(
p01, |p⃗1|

)
. (6.25)

In general, the 4-point supertrace components can be written down as a sum of two
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types of contributions:

STr(4) = −1

2

∫ ∞

−∞
dp01

∫ ∞

0

d|p⃗1||p⃗1|2
[
D(4)(p1, p3; k)δ(k

2 − |p⃗1|2 −
(
p01
)2
)

+H(4)(p1, p3; k)Θ(k2 − |p⃗1|2 −
(
p01
)2
)

]
. (6.26)

Here, the function D(4) captures all contributions multiplying a delta function δ(k2 −
|p⃗1|2 −

(
p01
)2
), and the function H(4) captures all contributions multiplying a Heaviside

step function Θ(k2 − |p⃗1|2 −
(
p01
)2
). The overall factor of 1/(4π3) from eq. (6.25) is

absorbed in the definitions of D(4) and H(4). For the 4-point trace, the delta-part
exclusively comes from the scale derivative of the regulator:

∂tRk ∝ k∂k
[
(k2 − p21)Θ(k2 − p21)

]
= 2k2

(
Θ(k2 − p21) + (k2 − p21)δ(k

2 − p21)
)
. (6.27)

Consequently, D(4) ∝ (k2 − p21), and the delta-part of the 4-point trace vanishes after
integration since ∫ ∞

−∞
dx xδ(x) = 0. (6.28)

In general, one could also have mixed terms multiplying a product of delta and Heaviside
functions but, in this case, these also vanish since∫ ∞

−∞
dx xδ(x)Θ(x) = 0Θ(0) = 0. (6.29)

With this in mind, we can write the 4-point trace as

STr(4) = −1

2

∫ ∞

−∞
dp01

∫ ∞

0

d|p⃗1||p⃗1|2H(4)(p1, p3; k)Θ(k2 − |p⃗1|2 −
(
p01
)2
)

= −1

2

∫ k

0

(∫ √
k2−|p⃗1|2

−
√
k2−|p⃗1|2

|p⃗1|2H(4)(p1, p3; k)dp
0
1

)
d|p⃗1|. (6.30)

We have taken into account the action of the step function by modifying the integration
bounds.

Now, let us evaluate this expression for STr
(4)
ψ . The Heaviside-part of this contribu-

tion is given by

H
(4)
ψ =

2k2 + (−k2 + |p⃗1|2 +
(
p01
)2
)ηN

24k4π3(−2 + 3λk)(1− 2λk)2

[
4|p⃗1|2(−2 + 3λk)− 6(

(
p01
)2

+ k2λ2k)

− 3
(
p03
)2

(−1 + λk) + (3 + 9λk)|p⃗3|2
]
. (6.31)

Note that we have expressed the result in terms of the anomalous dimension of Newton’s
coupling ηN , defined in eq. (4.4). Plugging this into eq. (6.30) and evaluating the
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integrals gives

STr
(4)
ψ = −1

2

∫ k

0

(∫ √
k2−|p⃗1|2

−
√
k2−|p⃗1|2

|p⃗1|2H(4)
ψ (p1, p3; k)dp

0
1

)
d|p⃗1|

=
k2(1 + 3λk)(−6 + ηN )

384π2(−2 + 3λk)(1− 2λk)2
|p⃗3|2

− k2(−1 + λk)(−6 + ηN )

384π2(−2 + 3λk)(1− 2λk)2
(
p03
)2

− k4(−8(5− 6λk + 6λ2k) + (5− 6λk + 8λ2k)ηN )

1536π2(−2 + 3λk)(1− 2λk)2
. (6.32)

The above expression constitutes the result for STr
(4)
ψ . Note that we have explicitly sep-

arated the contributions into a term multiplying |p⃗3|2,
(
p03
)2
, and a term containing no

external momentum dependence. This is convenient for momentum projection schemes
we discussed in Section 6.1.2.

Next, we compute a typical 4-point trace component of Type B. An example of such

a trace component is STr
(4)
B . This is given by:

STr
(4)
B = −1

2

∫
p1

∑
a,b,c

(Gk)Bχa (p1)
(
Γ
(4)
k

)
χaχb

(p1, p3) (Gk)χbχc (p1)
(
Ṙk

)
χcB

(p1)

= −1

2

∫
p1

(Gk)BB (p1)
(
Γ
(4)
k

)
BB

(p1, p3) (Gk)BB (p1)
(
Ṙk

)
BB

(p1). (6.33)

In this case, the trace contribution STr
(4)
B only contains one term since the off-diagonal

components of the above matrices vanish in the column/row with index χa = B. The
4-point vertex appearing in this trace component is given by(

Γ
(4)
k

)
BB

=
1

16πGk|p⃗1|2

(
pi1p

j
1p3ip3jh

kl
3 (p3)h4kl(−p3)

+ pi1p
j
1|p⃗3|2h3

k
i (p3)h4jk(−p3)

)
ΠB . (6.34)

This 4-point vertex clearly exhibits a Type B structure since it contains two loop 3-
momenta contracted with the external 3-momenta and external graviton fields. Thus,
by the second identity of (6.20), we need to make the following replacement under the
trace:

pi1p
j
1 7→ 1

3
δij |p⃗1|2. (6.35)

Applying this give us the following Heaviside-part H
(4)
B of STr

(4)
B :

H
(4)
B =

2k2 −
(
k2 − |p⃗1|2 −

(
p01
)2)

ηN

4k4π3
|p⃗3|2. (6.36)

Substituting this into the 4-point trace master formula (6.30) gives

STr
(4)
B =

k2(−6 + ηN )

192π2
|p⃗3|2. (6.37)

The results for all 4-point trace components are tabulated in Table 11 in Appendix C.
Since the expressions for the gravitational sector are rather lengthy, we only present the
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χa T0-part of STr
(4)
χa Tp03-part of STr

(4)
χa Tp⃗3-part of STr

(4)
χa

Φ 0 0 0

A0 − k4

384π2 0 0

Ai − 7k4

384π2 0 0

Table 2: 4-point trace components STr
(4)
χa of matter fields χa split up in the T0-, Tp03-,

and Tp⃗3-parts. These contributions have been calculated for Ns = Nv = 1. The results
for arbitrary Ns and Nv are obtained by multiplying the scalar field contributions by Ns
and the gauge field contributions by Nv.

results for the matter sector here. These are given in Table 2.

Before we proceed with the discussion of the 3-point trace, we end with a remark on
the matter contributions. The trace components in Table 2 have been calculated for a
single scalar and gauge field separately, i.e. for Ns = 1, Nv = 0 and Ns = 0, Nv = 1.
To obtain the trace contributions for Ns scalar fields and Nv gauge fields, one simply
multiplies these quantities by Ns and Nv respectively. This can be argued as follows.
The matter action (5.10) is just the sum over Ns and Nv identical kinetic terms. In
particular, this means that if one chooses an internal line to be the propagator of, for
instance, χa, the other internal line must be the same field χa because we do not have
any interactions among different scalar fields. The same argument holds for the gauge
fields. Therefore, the matter trace contributions are sourced by Ns and Nv identical
copies of the same diagram.

6.2.2 Trace 3-Point Contribution

Let us proceed by discussing the computational algorithm for the 3-point trace, denoted
STr(3). A diagrammatic representation of this trace contribution is illustrated in Fig.
4. One can identify two key differences between this diagram and the 4-point diagram
of Fig. 3. Firstly, this diagram features two vertices instead of one. Moreover, the

statement of momentum conservation differs between the left-most vertex Γ
(3),L
k and

the right-most vertex Γ
(3),R
k , which we will call ”L-vertex” and ”R-vertex”, respectively.

The chosen assignment of momentum directions is indicated in Fig. 4. This leads to the
following statements of 4-momentum conservation:

L-vertex: δ4 (p1 + p2 + p3) , R-vertex: δ4 (−p1 − p2 + p4) . (6.38)

We also have an overall delta function which ensures external momentum conservation.
With our chosen momentum directions this entails that p4 = −p3.

Secondly, the two propagators Gk connected to the regulator insertion, indicated by
a crossed-out circle in Fig. 4, carry loop momenta p1 and −p1 respectively, whereas
the “lower” propagator G̃k carries loop momentum p2 = −p1 − p3. Consequently, this
propagator contains a Heaviside step function depending on two momenta p1 and p3.
This makes carrying out the 4-momentum integral very involved. To facilitate the 3-
point trace computation, we Taylor expand the propagator G̃k(p1, p3) around vanishing
external momentum, i.e. p3 = 0. Subsequently, we only retain terms up to quadratic
order in the external temporal and spatial momenta, in accordance with the momentum
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Figure 4: Diagrammatric representation of the 3-point diagram contributing to the flow

of Γ
(hh)
k . The arrows indicate the chosen momentum directions. In particular, all par-

ticles are considered incoming at the left-most 3-point vertex. The internal lines repre-
sent the propagators Gk or G̃k, the external lines represent the external graviton fields
hij(p3), hkl(−p3), on which the flow is projected. The crossed-out circle represents a

regulator insertion, which enters as Ṙk on the RHS of the flow equation. We explic-
itly distinguish between the ”upper” propagators Gk that connect to the regulator and
the ”lower” propagator G̃k as they have a different momentum dependence. This is in
contrast to the 4-point case. Additionally, we also distinguish between the left- and right-

most vertex, which are indicated by Γ
(3),L
k and Γ

(3),R
k respectively.

projection schemes, discussed in Section 6.1.2. For a general function f depending on
the loop momentum pµ1 = (p01, p⃗1) and external momentum pµ3 = (p03, p⃗3), this expansion
is given by

f(|p⃗1 + p⃗3|, |p01 + p03|) =f(|p⃗1|, |p01|) +
∂f(|p⃗1|, |p01|)

∂|p⃗1|
p⃗1 · p⃗3
|p⃗1|

+
∂f(|p⃗1|, |p01|)

∂|p01|
p01p

0
3

|p01|

+
1

2

∂2f(|p⃗1|, |p01|)
∂|p⃗1|2

(p⃗1 · p⃗3)2

|p⃗1|2

+
1

2

∂f(|p⃗1|, |p01|)
∂|p⃗1|

(
p⃗3 · p⃗3
|p⃗1|

− (p⃗1 · p⃗3)2

|p⃗1|3

)
+

1

2

∂2f(|p⃗1|, |p01|)
∂|p01|2

(
p03
)2

+
∂2f(|p⃗1|, |p01|)
∂|p01|∂|p⃗1|

p⃗1 · p⃗3
|p⃗1|

p01p
0
3

|p01|

+O
(
|p⃗3|3,

(
p03
)3
, |p⃗3|2

(
p03
)
, |p⃗3|

(
p03
)2)

. (6.39)

Applying this expansion to G̃k(p1, p3) introduces an additional source of delta func-
tions. This is due to the |p⃗1|- and p01-derivatives acting on the Heaviside step function
in G̃k(p1, p3). As a consequence, the 3-point trace receives both H(3) and D(3) contri-
butions. This is in contrast to the 4-point trace. Therefore, the general formula for the
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3-point trace can be expressed as

STr(3) =

∫ ∞

−∞
dp01

∫ ∞

0

d|p⃗1||p⃗1|2
[
D(3)(p1, p3; k)δ

(
k2 − |p⃗1|2 −

(
p01
)2)

+H(3)(p1, p3; k)Θ
(
k2 − |p⃗1|2 −

(
p01
)2)]

. (6.40)

Again, the overall factor of 1/(4π3) appearing in eq. (6.25) is absorbed in the definitions
of D(3) and H(3). The evaluation of the D(3)-terms then uses that

δ
(
x2 − α2

)
=

1

2|α|
(δ (x+ α) + δ (x− α)) , where α ∈ R. (6.41)

Applying this property to the momentum integral of the term containing D(3) gives∫ ∞

0

d|p⃗1||p⃗1|2D(3)(p1, p3; k)δ
(
k2 − |p⃗1|2 −

(
p01
)2)

=

∫ ∞

0

d|p⃗1|
|p⃗1|2D(3)(p1, p3; k)

2

√
k2 − (p01)

2

{
δ

(
|p⃗1|+

√
k2 − (p01)

2
)
+ δ

(
|p⃗1| −

√
k2 − (p01)

2
)}

.

(6.42)

The delta function restricts the integration in momentum space to the spherical shell of

radius k =

√
|p⃗1|2 + (p01)

2
. Hence, we obtain

∫ ∞

0

d|p⃗1||p⃗1|2D(3)δ
(
k2 − |p⃗1|2 −

(
p01
)2)

=

(√
k2 − (p01)

2
)2

2

√
k2 − (p01)

2
D(3)

∣∣∣∣
|p⃗1|=

√
k2−(p01)

2

=
1

2

√
k2 − (p01)

2
D(3)

∣∣∣∣
|p⃗1|=

√
k2−(p01)

2
. (6.43)

Here, the arguments of D(3) have been suppressed to lighten notation. After applying
the delta function to the |p⃗1|-integral, we are left with an p01-integral over the interval
[−k, k]. This leads us to the master formula for the 3-point trace:

STr(3) =
1

2

∫ k

−k
dp01

√
k2 − (p01)

2
D(3)(p1, p3; k)

∣∣∣∣
|p⃗1|=

√
k2−(p01)

2

+

∫ k

0

(∫ √
k2−|p⃗1|2

−
√
k2−|p⃗1|2

|p⃗1|2H(3)(p1, p3; k)dp
0
1

)
d|p⃗1|. (6.44)

Bearing in mind the subtle differences that were just discussed, the procedure of cal-
culating the 3-point trace contributions is completely analogous to that of the 4-point
trace, albeit computationally more demanding. The 3-point trace components of all
fields are listed in Tables 12, 13, and 14 in Appendix C. The matter contributions are
tabulated in Table 3. As explained at the end of Section 6.2.1, one obtains the total trace
contribution of Ns scalar and Nv gauge fields simply by multiplying the corresponding
quantities with Ns and Nv, respectively.

A final remark on the momentum projection schemes is in order. In Table 3, one
can observe that the Tp03- and Tp⃗3-parts of the 3-point trace contributions of the gauge
fields A0 and Ai do not agree. This discrepancy is also present in the gravitational
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χa T0-part of STr
(3)
χa Tp03-part of STr

(3)
χa Tp⃗3-part of STr

(3)
χa

Φ k4

384π2 − k2

384π2 − k2

384π2

A0
k4

256π2
k2

256π2 − k2

256π2

Ai
13k4

768π2 − 23k2

768π2 − 17k2

768π2

Table 3: 3-point trace components STr
(4)
χa of matter fields χa split up in the T0-, Tp03-,

and Tp⃗3-parts. These contributions have been calculated for Ns = Nv = 1. The results
for arbitrary Ns and Nv are obtained by multiplying the scalar field contributions by Ns
and the gauge field contributions by Nv.

sector. An example of this can be found in eq. (6.32), where the Tp03- and Tp⃗3 -parts

of STr
(4)
ψ do not match. In the latter case, one can track back this difference to the

4-point vertex
(
Γ
(4)
k

)
NN

, given in eq. (6.24). This vertex exhibits a non-relativistic

dispersion since it only depends on the temporal external momentum p03. Hence, this
vertex only contributes to the 4-point trace in the p03-projection. This signals that the
p03- and p⃗3-projections do not yield identical results.

6.3 Beta Functions

In the previous section, we highlighted the general structure of the computational steps
of the trace evaluation of the 3- and 4-point trace contributions and presented the
corresponding results. We proceed by solving the flow equations in both projections for
the beta functions in terms of the trace contributions in Section 6.3.1. Subsequently,
we provide the explicit expressions for the beta functions in Section 6.3.2. The beta
functions of the gravitational sector have been obtained in [70]. The matter contributions
to the gravitational beta functions are novel and constitute the central result of this
chapter.

6.3.1 Solving the Flow Equation for the Beta Functions

The beta functions of the dimensionless couplings gk, λk, given in eq. (4.3), are defined
as

βg := ∂tgk, βλ := ∂tλk. (6.45)

We substitute the dimensionful couplings Gk,Λk for their dimensionless counterparts
and use beta functions (6.45) in the flow equations (6.13, 6.14). This transforms these
equations into a coupled system of first order differential equations for gk and λk for
each projection. These systems are given as:

p03 − projection:


k2(2gk−βg)

32πg2k
= Tp03(gk, λk, Ns, Nv; k)

k4(4gkλk+gkβλ−λkβg)

16πg2k
= T0(gk, λk, Ns, Nv; k),

(6.46)

p⃗3 − projection:


k2(2gk−βg)

32πg2k
= Tp⃗3(gk, λk, Ns, Nv; k)

k4(4gkλk+gkβλ−λkβg)

16πg2k
= T0(gk, λk, Ns, Nv; k).

(6.47)
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Polynomial Expression

p1λ(λk) 12
(
18λ4k − 116λ3k + 142λ2k − 61λk + 8

)
p̃1λ(λk) −27λ4k + 211λ3k − 259λ2k + 106λk − 12

p2λ(λk) 10
(
68040λ6k + 439308λ5k − 1156914λ4k + 1012717λ3k − 419962λ2k − 11760

)
p3λ(λk) 408240λ8k − 2262816λ7k + 6128784λ6k − 10347048λ5k

+10788945λ4k − 6629544λ3k + 2229588λ2k − 344176λk + 12704

p̃3λ(λk) 4968λ4k − 67980λ3k + 94335λ2k − 40380λk + 4148

p4λ(λk) 88248λ5k − 180807λ4k + 125287λ3k + 3744λ2k − 30324λk + 6376

p̃4λ(λk) 20055λ4k − 32850λ3k + 19676λ2k − 771λk − 2158

Table 4: Polynomials appearing in the beta functions (6.50).

The terms T0, Tp03 , and Tp⃗3 are defined in Section 6.1.2. They are obtained by taking
the sum over all 3- and 4-point trace components, which are listed in Tables 11, 12, 13,
and 14 in Appendix C. Solving both systems for βg, βλ yields

p03 − projection:

βg = 2gk − 32πg2k
k2 Tp03

βλ = −2λk − 16πgk
k4

(
2k2λkTp03 − T0

)
,

(6.48)

p⃗3 − projection:

{
βg = 2gk − 32πg2k

k2 Tp⃗3
βλ = −2λk − 16πgk

k4

(
2k2λkTp⃗3 − T0

)
.

(6.49)

The beta functions display the expected structure of eq. (3.4). The first term cor-
responds to the canonical mass dimension of the dimensionful couplings. The second
term corresponds to quantum fluctuations, and, unsurprisingly, depends on the trace
contributions.

6.3.2 Beta Functions of the Gravity-Matter Systems

With the solutions for the beta functions given in eq. (6.48, 6.49), we can construct
their explicit expressions by substituting the trace contributions T0, Tp03 , Tp⃗3 . Doing so
yields the following results:

βg =(2 + ηN ) gk,

βλ =(ηN − 2)λk +
gk
π

{
p1λ(λk) + ηN p̃

1
λ(λk)

24 (1− 2λk)
2
(2− 3λk)

2 +
p2λ(λk) + ηN p̃

2
λ(λk)

7200 (1− 2λk)
3
(2− 3λk)

3 − Ns
24π

}
.

(6.50)

The polynomials p1,2λ , p̃1,2λ are given in Table 4. The anomalous dimension ηN is given
by

ηN =
gkB1(λk)

1− gkB2(λk)
. (6.51)

53



The functions B1 and B2 depend on the chosen momentum projection. For the p03-
projection they take the form

B
p03
1 (λk) =

48λ2k − 60λk + 19

2π(1− 2λk)2(2− 3λk)2
− p3λ(λk)

360π(1− 2λk)4(2− 3λk)4
+

5Nv
6π

+
Ns
12π

,

B
p03
2 (λk) =− 48λ2k − 60λk + 19

12π(1− 2λk)2(2− 3λk)2
+

p̃3λ(λk)

720π(1− 2λk)3(2− 3λk)2
. (6.52)

The p⃗3-projection yields an additional contribution for both functions:

Bp⃗31 (λk) =Bp01 (λk)−
p4λ(λk)

315π(2− 3λk)2(1− 2λk)4
,

Bp⃗32 (λk) =Bp02 (λk)−
p̃4λ(λk)

630π(2− 3λk)2(1− 2λk)3
. (6.53)

These additional contributions reflect that the p03- and p⃗3-projection of the flow equation
do not yield identical results, which was already observed at the end of Section 6.2. No-
tably, the matter contributions are the same between both projections. The discrepancy
in the B functions between both projections originates from the gravitational sector and
is most likely a result of the non-linearity of the ADM decomposition.

In addition, a notable feature of the beta functions can be observed. We find that
there is no Nv contribution entering the beta function βλ, apart from the one residing
in the anomalous dimension ηN . The reason for this is that the T0-part of the 3- and
4-point trace contributions of the gauge fields exactly cancel each other. This can be
seen from Tables 2 and 3.

The beta functions (6.50) form the central result of this section. In the next section,
we perform the analysis of the RG flow based on their properties.

7 RG Flow Analysis

In this section, we provide the analysis of the RG flow. The computations underlying
the results have been obtained with Mathematica. We start by considering the pure
gravity system in Section 7.1. This system corresponds to the values Ns = Nv = 0. We
examine the system’s fixed points in Section 7.1.1 and its phase diagram in Section 7.1.2.
For further analysis, we select one NGFP in each momentum projection scheme that
is suitable for providing the UV completion of the theory. Subsequently, we consider
the contributions to the flow equation due to the matter fields in Section 7.2. We start
by investigating the number of NGFPs in the Ns-Nv parameter plane in Section 7.2.1.
Then, we consider three subsystems: gravity-scalar in Section 7.2.2, gravity-gauge in
Section 7.2.3, and gravity-scalar-gauge in Section 7.2.4. For each subsystem, we examine
the influence of the matter fields on the pure gravity NGFP and phase diagram. The
results of the gravity-matter system are novel and constitute the central result of this
thesis.

7.1 The Pure Gravity System

We start our analysis by investigating the pure gravity system. The results are identical
to the work [70] for αk = 1 and have been obtained in cooperation.
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7.1.1 Pure Gravity Fixed Points

The beta functions of the pure gravity system, denoted βG, are obtained by setting
Ns = Nv = 0 in eq. (6.50), i.e.

βGg (λk, gk) := βg(λk, gk, Ns = 0, Nv = 0),

βGλ (λk, gk) := βλ(λk, gk, Ns = 0, Nv = 0). (7.1)

We find the fixed points of this system by imposing

βGg (λ∗, g∗) = 0, βGλ (λ∗, g∗) = 0. (7.2)

This system of equations is solved numerically using Mathematica. We find that both
momentum projection schemes admit a GFP:

GFP: g∗ = 0, λ∗ = 0,

θ1 = 2, θ2 = −2. (7.3)

As expected, the stability coefficients match the couplings’ canonical mass dimensions.
We observe that there is one UV-attractive (for θ1 = 2) and one UV-repulsive eigendi-
rection (for θ2 = −2) along which RG trajectories emanating from this fixed point
propagate. The eigenvector corresponding to the UV-attractive eigendirection at the
GFP is given by (1, 0)T in both projections, i.e. it aligns with the gk = 0-axis. This
entails that RG trajectories attracted to the GFP in the UV lie on the line gk = 0.
Conversely, RG trajectories with a non-zero Newton’s coupling are not attracted to this
fixed point in the UV.

The stability coefficient θ2 = −2 corresponds to the IR-attractive eigendirection.
The corresponding eigenvector, (1,−96π/25)T, spans the IR-attractive direction at the
GFP. This entails that RG trajectories in the vicinity of the GFP approach the GFP
along the positive gk- and negative λk-direction. Hence, the RG trajectories attracted
to the GFP in the IR flow inward from the region where gk > 0 and λk < 0.

Let us continue with the NGFPs that were found in our computation. We find a
single non-trivial (quasi) fixed point controlling the IR behavior of the flow in both
momentum projections. This point and its stability coefficients are given by

IRFP: gIR∗ = 0, λIR∗ =
1

2
,

θ1 = −1, θ2 = −4. (7.4)

The beta functions at this fixed point are indeterminate. This fixed point was therefore
not found by solving the system (7.2) numerically but by studying the phase diagram.
We discuss its properties in Section 7.1.2.

We find a set of three NGFPs controlling the UV behavior of the flow for both the
p03- and p⃗3-projection of the flow equation. We select one NGFP in accordance with
the requirements discussed at the end of Section 3.2. The selected fixed point and the
stability coefficients are given by

NGFP
p03
1 : g∗ = 1.425, λ∗ = −0.116,

θ1,2 = 4.424∓ 1.375i,

NGFPp⃗31 : g∗ = 0.784, λ∗ = −0.069,

θ1 = 2.725, θ2 = 5.012. (7.5)
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Projection FP
Couplings Stability coefficients

g∗ λ∗ θ1 θ2

p03

GFP 0 0 2 −2

IRFP 0 0.5 −1 −4

NGFP1 1.43 −0.12 4.42− 1.38i 4.42 + 1.38i

NGFP2 5.86 2.24 9.37 4.52

NGFP3 −0.40 0.14 1.41− 3.84i 1.41 + 3.84i

p⃗3

GFP 0 0 2 −2

IRFP 0 0.5 −1 −4

NGFP1 0.78 −0.07 2.73 5.01

NGFP2 0.36 1.04 27.50 −5.17

NGFP3 −0.23 0.22 −0.80− 5.06i −0.80 + 5.06i

Table 5: Fixed points and their corresponding stability coefficients of the pure gravity
system in the p03- and p⃗3-projection. NGFP1 serves as the reference NGFP for analyzing
the fixed point deformation under the addition of matter fields for both projections.

Qualitatively speaking, we find the same NGFP in both projections. Both NGFPs are
located in the region given by gk > 0 and λk < 0, act as UV attractors for nearby RG
trajectories, and are connected to a classical regime in the IR. We discuss the behavior
of the RG trajectories in Section 7.1.2.

Table 5 shows the complete set of fixed points and their corresponding stability co-
efficients. In the following, we will refer to the selected NGFPs (7.5) as the “reference
NGFPs”. They correspond to NGFP1 in the Table 5 for both projections. It should be
noted that both projection schemes do not necessarily lead to a qualitatively identical set
of fixed points. This can be observed by comparing the stability coefficients of NGFP2

and NGFP3. In the p⃗3-projection, NGFP2 has one UV-attractive and one UV-repulsive
eigendirection and NGFP3 has two UV-repulsive eigendirections. In contrast, in the
p03-projection, both NGFP2 and NGFP3 have two UV-attractive eigendirections. It is
therefore highly non-trivial to note that our reference NGFPs do share identical qualities.

7.1.2 Pure Gravity Phase Diagram

Now that we have the fixed point structure of the pure gravity system, we proceed by
discussing the corresponding phase diagrams. Fig. 5 provides an illustration of this. We
begin by demarcating the region of theory space that is physically interesting. Firstly,
we note that we are only interested in RG trajectories with gk > 0 as the line gk = 0
cannot be crossed by RG trajectories with an initial value of gk0 > 0 for some value of
k = k0. Secondly, the phase diagrams in both projections admit three singular lines

λsing1 =
1

2
, λsing2 =

2

3
, and gsing =

1

B2(λk)
. (7.6)

These constitute the singularities of the beta functions (6.50). The pure gravity beta
functions (7.1) possess the same singularities. The first two singular lines coincide with
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Figure 5: Flow diagrams of the pure gravity system in the p03-projection (a) and the p⃗3-
projection (b) restricted to the physically interesting region, where gk ≥ 0 and λk ≤ 1/2.
The blue arrows indicate the direction of the RG flow, which is from UV to IR. The
reference NGFPs (7.5) and GFP (7.3), and IRFP (7.4) are marked with a black dot.
The solid red line represents the singular line gk = gsing, and the solid black and purple
lines represent the separatrices of the RG trajectories. One separatrix, the black line,
connects the reference NGFP in the UV with the GFP in the IR for both projections.

divergences of the term between brackets in the beta function βλ. The latter singular
line coincides with a divergence in the anomalous dimension ηN (6.51), which appears
in both beta functions. RG trajectories cannot cross these singular lines. The NGFP
controlling the UV behavior of the flow is situated the the left of the line λsing1 = 1

2 in
both projection schemes. Therefore, we limit our discussion of the phase diagrams to
this physically interesting region, given by the bounds

0 ≤ gk ≤ 1

B2
and λk ≤ 1

2
. (7.7)

Note that NGFP2 and NGFP3 from Table 5 are screened by the singular lines (7.6).
This means that these fixed points do not influence the RG trajectories in our region of
interest.

We proceed by discussing the behavior of RG trajectories within the region given by
eq. (7.7). In the following, we divide the phase diagram in five regions, based on the
qualitative behavior of the RG trajectories. This division is similar to the one in [66],
[72], and a brief summary of the characteristics is given in Table 6. Notably, the phase
diagrams of both momentum projections are qualitatively identical so we can discuss
the RG trajectories’ behavior without referring to a specific momentum projection.

Starting with the UV behavior of the RG flow, we observe that the RG trajectories
either emanate from the NGFP1 or from the singular line λsing1 = 1

2 . Only NGFP1 can
serve as a physically viable UV completion of the theory. Hence, we are solely interested
in RG trajectories starting from this fixed point.

The IR behavior of the RG flow is governed by a set of points. Viewed from NGFP1,
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Figure 6: Graphs of the functions f−1 (a) and h−4 (b), defined in eq. (7.9), on a
logarithmic scale as a function of RG time t = ln(k/k0) for a selection of Type III
trajectories in the p03-projection. These graphs serve as an example of the scaling behavior
of Type III trajectories in the vicinity of the IRFP (7.4). The same behavior is observed
in the p⃗3-projection.

Type UV behavior IR behavior

I NGFP (λ∗, g∗) Regular, (λk, gk) → (−∞, 0+)

II NGFP (λ∗, g∗) GFP (0, 0)

III NGFP (λ∗, g∗) IRFP ( 12
−
, 0+)

IV NGFP (λ∗, g∗) Singular, (λk, gk) → (λk, g
sing(λk)),

or (λk, gk) → (−∞,∞)

V Singular, (λk = 1
2 , gk > 0) IRFP ( 12

−
, 0+)

Table 6: Classification of the RG trajectories of the pure gravity system’s phase diagrams
shown in Figure 5 based on their UV and IR behavior.

there is one special RG trajectory that connects this point to the GFP. In Fig. 5, this
is represented as a solid black line (separatrix), and this trajectory falls into the Type
II category of Table 6. To the left of this line, there exists a region where RG tra-
jectories flow towards the point (−∞, 0) for t → −∞. We call such RG trajectories
Type I. Above this region, RG trajectories starting from the NGFP in the UV either
run towards (−∞,∞) or they terminate on the singular line gk = gsing. We collectively
classify these RG trajectories as Type IV.

The phase diagram reveals that the GFP is unstable as an IR fixed point since a
small deviation from the black line drives trajectories away from this point. Follow-
ing the discussion at the end of Section 4.3, the points (−∞, 0) and (−∞,∞) would
correspond to a positive renormalized squared graviton mass µ2 := −2Λ0 appearing in
the graviton propagator. Therefore, these points cannot serve as a phenomenologically
viable IR fixed point of the theory as gravitons should be massless in the IR regime.
Hence, we will not discuss the Type I and IV trajectories any further.

Next, we observe that RG trajectories to the right of the separatrix connecting the
NGFP and GFP are pulled into the IRFP (7.4) in the IR limit. Its location is exactly

where the lines gk = 0 and λk = λsing1 meet. To determine whether this fixed point
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Figure 7: Graphs showing λk (a) and gk (b) as a function of RG time t = ln(k/k0) for
a selection of Type III trajectories in the p03-projection. The behavior of the Type III
trajectories is controlled by the interplay of the NGFP1 (7.5), GFP (7.3), and the IRFP
(7.4). There is a clear cross over from the scaling regime of the NGFP1 to the scaling
regime of the IRFP in the neighbourhood of t = 0, where the flow is governed by the
GFP. In the p⃗3-projection, the same behavior is observed.

leads to physically interesting IR behavior, we must investigate the scaling properties
of the RG trajectories flowing into this point. The scaling behavior reveals the stabil-
ity coefficients of the fixed point, which indicate whether the fixed point is IR-attractive.

We distinguish between two types of RG trajectories that approach the IRFP in the
IR limit. Type III start from the NGFP in the UV, whereas Type V trajectories start
from the singular line λk = λsing1 in the UV. We do not discuss the Type V trajectories
since their UV behavior is unphysical. The beta functions at the IRFP are indeterminate
so we must select individual RG trajectories in its vicinity and compute their scaling
properties. Using eq. (3.9), we can describe the scaling behavior of the RG trajectories
(λk(t), gk(t)) in the vicinity of the IRFP (λIR∗ = 1

2 , g
IR
∗ = 0) by

λIR∗ − λ(t) ∝ c1e
−θ1t, g(t)− gIR∗ ∝ c2e

−θ2t. (7.8)

Here, θ1 and θ2 are the to-be-determined stability coefficients of the IRFP, and the
constants c1 and c2 depend on the chosen RG trajectory. We use Mathematica to
numerically integrate the flow for a selection of initial conditions (λk(0), gk(0)) corre-
sponding to Type III trajectories. Then, we fit the stability coefficients by investigating
for which values of θ1 and θ2, the graphs of

fθ1(t) =
(
λIR∗ − λ(t)

)
eθ1t, hθ2(t) =

(
g(t)− gIR∗

)
eθ2t (7.9)

approach a horizontal asymptote as t → −∞. Such graphs reveal the scaling behavior
of eq. (7.8). This analysis yields the following scaling behavior close to the IRFP:

λIR∗ − λ(t) ∝ c1e
t, g(t)− gIR∗ ∝ c2e

4t. (7.10)

Fig. 6 illustrates this scaling behavior for a selection of Type III trajectories in the
p03-projection. We observe the same scaling behavior in the p⃗3-projection. This scaling
behavior indicates that Type III trajectories are attracted to the IRFP in the IR limit
(t → −∞) as both stability coefficients, θ1 = −1 and θ2 = −4, are IR-attractive. Im-
portantly, this particular fixed point value for the dimensionless cosmological constant
entails that Λk = λkk

2 is quenched to 0 for Type III trajectories in the IR limit (k → 0).
Consequently, the renormalized squared graviton mass µ2 = −2Λ0 also vanishes in this
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limit.

We conclude that the RG flow of the physically interesting RG trajectories (Type
II, III) is governed by the interplay of the NGFP1 (7.5), the GFP (7.3), and the IRFP
(7.4). Fig. 7 illustrates this interplay for a selection of Type III trajectories in the
p03-projection. These graphs indicate that there are three distinct scaling regimes. For
large t, the RG trajectories are in the scaling regime of the NGFP1 and the values of
gk and λk are very close to this fixed point value. In the neighborhood of t = 0, the
trajectories are in the scaling regime of the GFP. This regime is characterized by the
dimensionful couplings Gk and Λk being constant. Finally, by lowering t to negative
values, the trajectories enter the scaling regime of the IRFP and the dimensionless cou-
plings get very close to this fixed point value.

This completes the analysis of the pure gravity system. In the next section, we
analyze the influence of matter fields on the pure gravity fixed point structure and
phase diagram.

7.2 The Gravity-Matter Systems

In this section, we analyze the RG flow of the gravity-matter systems. The results pre-
sented here are novel and constitute the central result of this thesis. We start by investi-
gating the number of NGFPs as a function of Ns and Nv in Section 7.2.1. Subsequently,
we examine three subsystems: gravity-scalar, gravity-gauge, and gravity-scalar-gauge in
Sections 7.2.2, 7.2.3, and 7.2.4, respectively. There, we study the deformation of the
reference NGFP and phase diagram as a function of Ns and Nv.

7.2.1 Number of Fixed Points in the Ns-Nv Parameter Plane

It is important to analyze the number NGFPs in the Ns-Nv parameter plane before
we investigate the deformation of the phase diagram and reference NGFPs under the
addition of matter fields. Chiefly, this reveals if and how the addition of matter fields
influences the possibility of a UV completion. The number of NGFPs is equal to the
number of real-valued non-trivial roots of the gravity-matter beta functions (6.50). We
employ Mathematica to numerically find the roots of the beta functions and then count
the number of real-valued solutions. The color plots in Fig. 8 show the results of this
computation.

First, we discuss the number of NGFPs in the p03-projection in Fig. 8(a). The Ns-
Nv parameter plane can be divided into two distinct regions separated by a boundary,
represented by the green line. The blue region possesses a single NGFP with nega-
tive Newton coupling. The brown region admits three NGFPs of which one is suitable
for a UV completion of the theory. There is a special point at the boundary point
(Nv ≈ 3, Ns ≈ 2.6), represented by the white dot, where there is one NGFP with one
relevant and one irrelevant direction. Our numerical analysis indicates that near the
boundary, one critical exponents exhibits a significant increase as this boundary point
is approach and flips sign as it is reached. This can be seen in Fig. 9, where the graphs
of both critical exponents of NGFP1 as a function of Ns are shown for Nv = 3.

We can extend the numerical analysis to the p⃗3-projection as well. Fig. 8(b) pro-
vides the distribution of NGFPs in the Ns-Nv parameter plane. Notably, the parameter
plane has an additional red region, which houses five NGFPs. The red and brown re-
gion to the left of the green boundary belong to the “phase” where the beta function
admits a NGFP suitable for UV completion. In contrast, the brown and blue regions
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Figure 8: Color plot of the number of NGFPs, indicated in white, in the Ns-Nv parameter
plane in the p03-projection (a) and p⃗3-projection (b). In both projections, there exists a
phase where the beta functions admit a NGFP that is suitable for a UV completion.
These phases are the brown/red regions in the diagram to the left of the green boundary
with a total of three and five NGFPs respectively. The blue and brown regions to the
right of this boundary correspond to a phase where the beta functions do not admit a
NGFP with g∗ > 0, making these regions physically uninteresting.

to the right of the green line do not possess a phenomenologically interesting NGFP.
It is worth mentioning that the shape of the bounds on Ns and Nv related to this
fixed point remains similar across both projections. In both projections, an increase
in Ns reduces the number of permissible gauge field Nv for retaining the existence of
NGFP1, and vice versa. We find the explicit bounds on Ns and Nv later in Section 7.2.4.

The mechanism behind the transition between the colored regions is fixed point an-
nihilation. For increasing values of Ns or Nv, two real-valued roots of the beta function,
i.e. NGFPs, can “annihilate” each other when their values become equal. At that point,
the real-valued roots become complex-valued and they form a complex conjugate pair
of roots. Complex roots do not count as NGFPs so this corresponds to a change in the
number of NGFPs in the diagram. Of course, this mechanism also works in the opposite
direction: a complex conjugate pair of roots can transition to two distinct real-valued
roots. This explains why the number of NGFPs of neighbouring regions differs by two.
When the system transitions from, say, one to three NGFPs, a complex conjugate pair
of roots has become real-valued. Conversely, when the system transitions from three
to one NGFP, two real-valued roots have annihilated each other, forming a complex
conjugate pair of roots.

To summarize, one can distinguish two “phases” within the Ns-Nv parameter plane,
qualitatively speaking. One phase, represented by the brown and red regions to the
left of the green line, is characterized by the existence of a NGFP suitable for UV
completion. The second phase, given by the brown and blue regions to the right of
the green line, admits no such NGFP. The great increase in one critical exponent as
one reaches the boundary point (Nv ≈ 3, Ns ≈ 2.6) in the p03-projection implies that
quantum fluctuations dominate over classical power counting in the neighborhood of this
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Figure 9: This figure depicts the critical exponents of the NGFP1 (7.5) as a function of
Ns as the boundary point (Nv ≈ 3, Ns ≈ 2.6) is approached for Nv = 3. This boundary
point corresponds to the white dot in Fig. 8. The graph of θ1 indicates that this critical
exponent significantly increases near the boundary and flips sign once the boundary is
crossed.

point. Therefore, this warrants further investigation using larger truncations in future
studies. In the next sections, we analyze the gravity-matter systems’ properties within
the brown and red regions to the left of the green line of the Ns-Nv parameter plane.

7.2.2 The Gravity-Scalar System

The dependency of the beta functions on the number of scalar and vector fields allows
us to analyze how the fixed point structure of the pure gravity system is affected by
the addition of matter fields. We start our analysis by considering the gravity-scalar
subsystem. The beta functions of this system are obtained by setting Nv = 0 in eq.
(6.50). It should be noted that the beta functions depend on the chosen momentum
projection, as discussed at the end of Section 6.3.2. Therefore, we give the results for
both projections. First, we investigate the deformation of the reference NGFPs (7.5) as
a function of the number of scalar fields Ns. To this end, we numerically solve the flow
equation for g∗ and λ∗ as a function of Ns using Mathematica.

The graphs depicting the functions g∗ = g∗(Ns) and λ∗ = λ∗(Ns) are shown in Fig.
10(a) and 10(b) respectively. One can make the following observations on the basis
of these figures. Firstly, they show that g∗ increases as a function of Ns, whereas λ∗
decreases as a function of Ns in both projections. Secondly, we observe a change in the
number of fixed points in both projections, indicated by the dashed vertical lines. In
particular, NGFP1 (reference NGFP) and NGFP2 annihilate each other at Ns ≃ 22.4 in
the p⃗3-projection and at Ns ≃ 23.1 in the p03-projection. They form a complex conjugate
pair for values Ns larger than this critical value. This phenomenon corresponds to the
crossing of the green boundary line along the Ns-axis in Fig. 8. To the right of this
boundary, there is no NGFP with g∗ > 0. Thus, the number of scalar fields is bounded
from above by Ns ≃ 23.1 and Ns ≃ 22.4 for the p03- and p⃗3-projection, respectively.

To investigate whether the reference NGFP is suitable for a UV completion of the
theory within the above-mentioned bounds, we need to know whether it remains UV
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Figure 10: Graphs (a) and (b) depict the position (λ∗, g∗) of NGFP1 as a function of
Ns in the p03-projection (blue lines) and p⃗3-projection (orange lines). The fixed point
values (λ∗, g∗) at Ns = 0 correspond to the pure gravity case in (7.5). The dotted lines
at Ns ≃ 23.1 and Ns ≃ 22.4 indicate the value of Ns at which the reference NGFPs
become complex-valued in the p03- and p⃗3-projection respectively. Graphs (c)-(e) show
the behavior of the stability coefficients θ1 and θ2 of the reference NGFP as a function
of Ns.

attractive. Fig. 10(c) and 10(d) show the real- and imaginary-part the stability co-
efficients of the reference NGFP as a function of Ns in the p03-projection. Fig. 10(e)
shows the real-parts of both (real-valued) stability coefficients of the reference NGFP as
a function of Ns in the p⃗3-projection. These graphs indicate that all stability coefficients
retain a positive real part up to the critical values for Ns. Consequently, the reference
NGFP remains UV attractive within the bounded region. Thus, we find the following
bounds on Ns that allow for a UV completion of the gravity-scalar system

p03-projection: Ns ≲ 23.1, p⃗3-projection: Ns ≲ 22.4. (7.11)

At this point, it is interesting to examine the gravity-scalar phase diagram within
the bounds (7.11). For this purpose, we select a representative value of Ns = 4. All
other values of Ns within the mentioned bounds lead to a similar phase diagram. Fig.
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Figure 11: Pure gravity phase diagram (a) alongside the gravity-scalar phase diagrams
(b) with Ns = 4 in the p03-projection. Comparison of the two diagrams signals that the
behavior of the RG flow of the gravity-scalar system is qualitatively identical to the pure
gravity case.

11 depicts this phase diagrams of the gravity-scalar matter system alongside the pure
gravity system in the p03-projection. The phase diagrams diagrams in the p⃗3-projection
are qualitatively identical. By juxtaposing these phase diagrams, we observe that the
fixed point structure and RG trajectory behavior of the pure gravity system persists
under the addition of Ns = 4 scalar fields, qualitatively speaking. Notably, the IRFP
also persists and RG trajectories in its vicinity exhibit the same scaling behavior (7.10)
as the pure gravity case, see Fig. 12. This is also observed for other values of Ns within
the bounds (7.11). Thus, the RG flow is controlled by the same set of fixed points as
in the pure gravity, namely: a GFP at (0, 0), a (deformed) NGFP providing the UV
completion of the theory, and an IRFP at ( 12 , 0).

7.2.3 The Gravity-Gauge System

We proceed by investigating the gravity-gauge system. Its beta functions are obtained
by setting Ns = 0 in eq. (6.50). The analysis of the RG flow for this system follows
along the same lines as the gravity-scalar system.

We start with the NGFP deformation as a function of the number of gauge fields
Nv. The position of the reference NGFP as a function of Nv for the two momentum
projections is given in Fig. 13(a) and 13(b). For this system, we find that for both pro-
jections there is a critical number of gauge fields, beyond which the NGFP with positive
Newton coupling disappears. These critical values are indicated by the dashed lines and
correspond to Nv ≃ 3.6 for the p03-projection and Nv ≃ 4.8 for the p⃗3-projection. This
change in the number of fixed points corresponds to the crossing of the green line along
the Nv-axis in Fig. 8 and the mechanism behind it is explained in Section 7.2.1.

We continue by examining the scaling behavior around the NGFP within the above-
mentioned bounds on Nv. The stability coefficients as a function of Nv are illustrated
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Figure 12: Graphs of the functions f−1 (a) and h−4 (b), defined in eq. (7.9), on a
logarithmic scale as a function of RG time t = ln(k/k0) for a selection of Type III
trajectories in the p03-projection for the gravity-scalar system with Ns = 4. The same
behavior is observed in the p⃗3-projection. Comparison of these graphs with Fig. 6 signals
that the scaling behavior of RG trajectories in the vicinity of the IRFP remains the same
for the gravity-scalar system.

in Fig. 13(c)-(e). For the p⃗3-projection, both (real-valued) stability coefficients stay
positive so the NGFP retains two UV attractive directions up to the critical value for
Nv. In contrast, we see that the real part of one critical exponent drops below zero
at Nv ≈ 3.3 while the other remains positive in the p03-projection. This indicates that
the NGFP in the p03-projection has one UV attractive and one UV repulsive direction
for 3.3 ≲ Nv ≲ 3.6. In other words, the NGFP becomes a saddle point. In addition,
Re(θ1) significantly increases at Nv ≈ 2.0 signalling that one should consider a refined
truncation above this value. Still, the NGFP remains suitable for a UV completion.
Thus, the bounds on the Nv that allow for a UV completion of the gravity-gauge system
are given as

p03-projection: Nv ≲ 3.6, p⃗3-projection: Nv ≲ 4.8. (7.12)

Analogous to the gravity-scalar system, we also examine the gravity-gauge phase dia-
grams within the bounds (7.12). We choose the value Nv = 1 as an example an its phase
diagrams are depicted in Fig. 14 alongside the pure gravity system in the p03-projection.
The phase diagrams in the p⃗3-projection are qualitatively identical. Similarly, as for
the gravity-scalar case, we observe that the phase diagrams do not significantly change
under the addition of gauge fields at the qualitative level within the bounds (7.12).
Analogous to the gravity-scalar case, we find that the IRFP persists as a suitable IR
attractive fixed point. Fig. 15 shows the scaling behavior of a selection of Type III
trajectories for the case Nv = 1.

To summarize, similar to the gravity-scalar system, the gravity-gauge system exhibits
the same properties as the pure gravity system within certain bounds on Nv, given by
(7.12). In this region, its RG flow is governed by the interplay of a (deformed) NGFP,
the GFP, and the IRFP ( 12 , 0). A noteworthy difference is that the NGFP becomes a
saddle point for 3.3 ≲ Nv ≲ 3.6 in the p03-projection, which does not occur within the
bounds (7.11) for the gravity-scalar case.

7.2.4 The Gravity-Scalar-Gauge System

In the previous two subsections, we have shown that the existence of a NGFP with a
viable phenomenology puts bounds on the number of matter fields for gravity-scalar and
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Figure 13: Graphs (a) and (b) depict the position (λ∗, g∗) of NGFP1 as a function of
Nv in the p0-projection (blue lines) and p⃗3-projection (orange lines). The fixed point
values (λ∗, g∗) at Nv = 0 correspond to the pure gravity case in (7.5). The dotted lines
at Nv ≃ 3.6 and Nv ≃ 4.8 indicate the value of Nv at which the reference NGFPs
become complex-valued in the p03- and p⃗3-projection respectively. Graphs (c)-(f) show
the behavior of the stability coefficients θ1 and θ2 of the reference NGFP as a function
of Nv.

gravity-gauge systems. In addition, we have illustrated that the fixed point structure
and phase diagrams retain their properties under the addition of both scalar and gauge
matter fields at the qualitative level within these bounds.

At this point, we can calculate the bounds representing the regions to the left of the
green boundary in Fig. 8. We assume that this boundary is a straight line given by the
equation Ns = aNv + b. Using the upper bounds of Ns for Nv = 0 (7.11) and Nv for
Ns = 0 (7.12), we can set up a system of linear equations in Ns and Nv to determine a
and b. This gives us the following inequalities representing the above-mentioned regions:

p03-projection: Ns + 6.4Nv < 23.1, p⃗3-projection: Ns + 4.7Nv < 22.4. (7.13)
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Figure 14: Pure gravity phase diagram (a) alongside the gravity-gauge phase diagrams
(b) with Nv = 1 in the p03-projection. Comparison of the two diagrams signals that the
behavior of the RG flow of the gravity-vector system is qualitatively identical to the pure
gravity case.
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Figure 15: Graphs of the functions f−1 (a) and h−4 (b), defined in eq. (7.9), on a
logarithmic scale as a function of RG time t = ln(k/k0) for a selection of Type III
trajectories in the p03-projection for the gravity-gauge system with Nv = 1. The same
behavior is observed in the p⃗3-projection. Comparison of these graphs with Fig. 6 signals
that the scaling behavior of RG trajectories in the vicinity of the IRFP remains the same
for the gravity-gauge system.

In order to get a more realistic picture of the possibility of asymptotic safety in
gravity-matter systems, one should investigate the system which includes all matter
degrees of freedom. Therefore, we examine the phase diagrams of the full gravity-scalar-
gauge system. We restrict this analysis to the region given by the bounds (7.13). The
beta functions of the gravity-scalar-gauge system are given by eq. (6.50). The system
βg = 0, βλ = 0 is solved numerically using Mathematica.

To investigate the phase diagrams of the gravity-scalar-gauge system, we choose a
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Figure 16: Pure gravity phase diagram (a) alongside the gravity-scalar-gauge phase di-
agram (b) with the chosen values Ns = 4, Nv = 1 in the p03-projection. Comparison of
the two diagrams signals that the behavior of the RG flow of the gravity-scalar-vector
system is qualitatively identical to the pure gravity case.
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Figure 17: Graphs of the functions f−1 (a) and h−4 (b), defined in eq. (7.9), on a
logarithmic scale as a function of RG time t = ln(k/k0) for a selection of Type III
trajectories in the p03-projection for the gravity-scalar-gauge system with Ns = 4 and
Nv = 1. The same behavior is observed in the p⃗3-projection. Comparison of these
graphs with Fig. 6 signals that the scaling behavior of RG trajectories in the vicinity of
the IRFP remains the same for the gravity-scalar-gauge system.

sample of points scattered throughout the region given by the bounds (7.13). For each
point (Nv, Ns), we calculated the position of the NGFP, plotted the phase diagram,
and calculated the scaling behavior of RG trajectories in the vicinity of the IRFP. This
analysis found qualitatively identical results for all sample points. As an example, we
present the phase diagram for the case Ns = 4 and Nv = 1 alongside the pure gravity
phase diagram in Fig. 16. These diagrams demonstrate that, like the two previously
studied subsystems, the gravity-scalar-gauge system exhibits the same properties as the
pure gravity system. Specifically, for all sample points we found a NGFP viable for
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UV completion, which controlled the UV behavior of the flow, a GFP, and an IRFP
controlling the IR behavior of the Type III trajectories with the same scaling behavior,
see Fig. 17, as in the pure gravity case.

8 Summary and Outlook

The aim of this project was to investigate the fixed point structure of foliated gravity-
matter systems based on the fluctuation approach and understand their implications for
asymptotic safety of quantum gravity.

We began by introducing a foliation of the underlying spacetime via the ADM de-
composition of the metric, in which the gravitational degrees of freedom are encoded in
the ADM fields σ̃ij , Ñi, and Ñ . In addition, this decomposition generates a preferred
direction which could serve as a time direction. Hereafter, we reviewed the necessary
ingredients of the functional renormalization group equation and discussed its gener-
alization to gravity. In particular, we discussed the conceptual issues one faces when
applying this approach to gravity and how they are resolved by the background field

formalism. Next, we constructed a flow equation for the 2-point function Γ
(2)
k from the

Wetterich equation adapted to gravity (2.91). This equation explicitly depends on the

3- and 4-point functions Γ
(3)
k and Γ

(4)
k . The review part of the thesis concluded with

a chapter on asymptotic safety. Here, we discussed the problem of quantizing gravity
perturbatively and the mechanism of asymptotic safety.

We continued by setting up a purely gravitational system based on the Einstein-
Hilbert action. This action served as an ansatz for the effective average action by
promoting Newton’s constant GN and the cosmological constant Λ to running couplings
Gk and Λk, depending on the coarse-graining scale k. The system also comprised (anti-
)ghost fields, accompanying the gauge-fixing procedure of the diffeomorphism-invariant
action. In the spirit of the background field formalism, we redefined all fields into a
background field and fluctuation field via a linear split. We chose a flat background for
the metric field. The vertices entering the flow equation were eventually extracted from
a vertex expansion of the Einstein-Hilbert ansatz, ghosts action, gauge-fixing action,
and matter action in terms of the mean fluctuation fields.

We implemented a further decomposition of the spatial metric fluctuation field σ̂ij
and shift vector fluctuation field N̂i via the York decomposition. This was done for two
reasons. Firstly, to ameliorate the flow evaluation as the constraints on the York fields
resulted in a significant decrease of terms contributing to the flow. Secondly, this de-
composition introduced the graviton field hij , a transverse-traceless tensor field, which
carries the physically interesting gravitational degrees of freedom. This completed the
setup for the pure gravity system.

Subsequently, we introduced a matter sector consisting of Ns scalar and Nv gauge
fields minimally coupled to gravity. Following this, we discussed the evaluation of the
flow equation. We started by discussing the projection of the flow equation onto the
2-point vertex structure of the graviton fields. In addition, we Taylor expanded the
RHS of the flow equation in powers of the external momentum and retained terms up to
quadratic order only. The scale dependence of the couplings could then be captured by
either the p03- or p⃗3-dependent part, forming two distinct momentum projection choices.
Following this, we thoroughly discussed the evaluation of the supertrace on the RHS
of the flow equation and provided two example computations for the 4-point trace con-
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tribution. We ended this section by presenting the gravity-matter beta functions. The
influence of the matter fields on the beta functions was characterized by contributions
linear in Ns and Nv, see eq. (6.50), (6.52), and (6.53). As a notable feature, the Nv
contributions reside in the anomolous dimension ηN only, whereas βλ receives an addi-
tional Ns-contribution. This was due to the fact that the momentum independent 3-
and 4-point trace contributions of the gauge fields exactly canceled each other.

Based on the resulting beta functions, we analyzed the RG flow of four subsystems:
pure gravity, gravity-scalar, gravity-gauge, and gravity-scalar-gauge. We began the RG
flow analysis of the pure gravity system. Starting with the fixed point structure, the
pure gravity beta functions admitted a NGFP suitable for UV completion in both mo-
mentum projections. Notably, this NGFP was qualitatively identical between the two
momentum projections. Subsequently, we examined the pure gravity phase diagram.
In this diagram, there exist complete RG trajectories (Type II and III) that have phe-
nomenologically viable UV and IR behavior. Their behavior is governed by the interplay
of the NGFP (7.5), a GFP, and an IRFP (λIR∗ , gIR∗ ) = (12 , 0). Notably, the IRFP ensures
that the renormalized squared graviton mass µ2 = −2Λ0 vanishes in the IR limit.

We proceded with the investigation of the gravity-matter systems. These results are
novel and constitute the central result of this thesis. To this end, we started by exam-
ining the number of UV fixed points in the Ns-Nv parameter plane, see Fig. 8. This
revealed that both momentum projection exhibit a “phase” were there exists a NGFP
suitable for UV completion within certain bounds on Ns and Nv. These bounds are
given by Ns + 6.4Nv < 23.1 for the p03-projection and Ns + 4.7Nv < 22.4 for the p⃗3-
projection. Subsequently, we investigated the deformation of the NGFP and the phase
diagram for the three gravity-matter subsystems. Remarkably, we found that, within
the mentioned bounds on Ns and Nv, the gravity-matter systems behaved qualitatively
identical to the pure gravity system. Specifically, the gravity-matter phase diagrams
display that the behavior of the RG trajectories remained under the control of a (de-
formed) NGFP, the GFP, and the IRFP. A small exception was the gravity-gauge system
in the p03-projection. Within the asymptotically safe region, we found that one stability
coefficient becomes significantly large for Ns ≈ 2 and drops below 0 at Ns ≈ 3.3. This
signals that refined truncation should be considered for Ns ≳ 2.0.

Moving on to the IR behavior, we found that the scaling behavior of the RG trajec-
tories in the vicinity of the IRFP remained identical to the pure gravity case, given in
eq. (7.10). Furthermore, as for the pure gravity case, the renormalized squared graviton
mass µ2 = −2Λ0 vanishes at the IRFP. This signals that foliated gravity-matter systems
may also give rise to phenomenologically viable IR behavior in the context of asymptotic
safety.

At this point, it is interesting to compare our results to the other works. We start
by comparing results with the work [39]. There, they considered foliated gravity-matter
systems in the background approximation, hereafter referred to as ”the background
computation”. In their work, the gravity-matter systems also include ND fermions min-
imally coupled to gravity. We can simply set this parameter to 0 in order to make the
comparison.

One can identify two main characteristic differences between our results. Firstly, in
the background computation, the NGFP values g∗, λ∗ decreased/increased respectively
as a function of Ns and Nv. In contrast, we found the opposite behavior, i.e. g∗ increases
as a function of Ns and Nv, and λ∗ decreases as function of Ns and Nv. Secondly, the
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background computation found that the NGFP suitable for UV completion persists for
all values of Ns and Nv for ND = 0. This can be seen as follows. In their work, they
display the number of NGFPs and their properties as color plots in the dλ-dg-plane,
where dg = Ns − Nv − ND and dλ = Ns + 2Nv − 4ND. By setting ND = 0, we have
that dλ > dg, so our results correspond to the region in the dλ− dg-plane above the line
dλ = dg. In that region, their color plots indicate that there always exists at least one
NGFP suitable for UV completion, meaning that there are no bounds on Ns and Nv. In
contrast, our computation indicates that the NGFP providing the UV completion of the
theory only survives within certain bounds on Ns and Nv. These qualitative differences
can be tracked back to the gravity-matter beta functions (6.50). In particular, the signs
in front of the Ns and Nv contributions coming from the B1-functions, given in eq.
(6.52) and (6.53), differ from those of [39].

This comparison highlights that there are characteristic differences between the back-
ground approximation and fluctuation approach in foliated gravity-matter systems. One
can argue that these differences are to be expected since, by definition, the couplings in
the background approximation and the fluctuation approach are different. Comparing
the pure gravity system in our computation with the one from the background compu-
tation signals that they have similar properties around the UV FP. Nevertheless, our
results suggest that, although the pure gravity systems are similar, the matter degrees
of freedom do have a different impact on the NGFP in the two approaches.

Comparing our results to other fluctuation computations reveals that we have ob-
tained qualitatively similar results. In the work [73], the flow of the graviton 2-point
function was computed for the pure gravity case in the covariant setting. We find
that the fixed point structure and phase diagram of our foliated pure gravity system
is in qualitative agreement with their results. The works [33, 35, 74] have investigated
gravity-matter systems in the covariant setting. By comparing the results of our gravity-
matter system to theirs, we see that we obtain similar bounds on the matter sector.

In conclusion, we can take the results of this thesis as evidence that foliated gravity-
matter system are compatible with the asymptotic safety scenario.

For future studies, it would be interesting to consider a matter sector that includes
fermions. This would allows us to investigate the asymptotic safety scenario of the
Standard Model and its most common extensions in a foliated setting. In addition,
to make a better comparison to fluctuation computations in the covariant setting, one
could examine the effect of non-minimal couplings on the fixed point structure of the
pure gravity system.
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A Matter Vertices

Here, we list all 2-, 3-, and 4-point matter vertices that contribute to the flow eq. (6.15).
They are given in Tables 7, 8, and 9 respectively. We associate the 4-momenta p1, p2
with fields running in the loop and the 4-momenta p3, p4 with the external graviton
fields. The vertices have been calculated using the vertex expansion (2.96) applied to
the matter action (5.10). Note that some 3- and 4-point vertices contain uncontracted
3-momenta. They either contract among themselves or with the fields. Seemingly,
this leads to Lorentz symmetry breaking contributions to the flow equation. However,
as discussed in the final paragraph before Section 6.2.1, the uncontracted 3-momenta
disappear when one applies the loop integrals identities (6.20).

Index χaχb Matrix element S
(χaχb)
matter

Φ(p1)Φ(p2) |p⃗1|2 +
(
p01
)2

A0(p1)A
0(p2) |p⃗1|2 +

(
p01
)2

Ai(p1)A
i(p2) |p⃗1|2 +

(
p01
)2

ˆ̄C(p1)Ĉ(p2) 2
(
|p⃗1|2 +

(
p01
)2)

Table 7: Matter 2-point vertices contributing to the flow eq. (6.15). The vertices have
been calculated with the vertex expansion (2.96) applied to the matter action (5.10).

Index χaχbχc Matrix element S
(χaχbχc)
matter

Φ(p1)Φ(p2)hij(p3) −pi1p
j
3

A0(p1)A
0(p2)hij(p3) −pi1p

j
3

Ai(p1)A
j(p2)hij(p3) −

[(
p01
)2

+
(
p01
) (
p03
)
+ pk1p3k + |p⃗1|2

]
Ai(p1)A

j(p2)hjk(p3)
[
p1ip1

k + pk1p3i
]

Ai(p1)A
j(p2)hik(p3) p1jp

k
1

Ai(p1)Ai(p2)hjk(p3) −pj1pk1
Ai(p1)A0(p2)hij(p3)

(
p01
)
pj1

A0(p1)A
i(p2)hij(p3)

(
p01
)
pj1

A0(p1)A
i(p2)hij(p3)

(
p03
)
pj1

C̄(p1)C(p2)hij(p3) −pi1p
j
1

C(p1)C̄(p2)hij(p3) −pi1p
j
1

Table 8: Matter 3-point vertices contributing to the flow eq. (6.15). An illustration of the
3-point diagram can be found in Fig. 4. The vertices have been calculated with the vertex
expansion (2.96) applied to the matter action (5.10). Conservation of 4-momentum at
the 3-point vertices (6.38) has been applied.
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Index χaχbχcχd Matrix element S
(χaχbχcχd)
matter

Φ(p1)Φ(p2)h
ij(p3)hij(p4) − 1

2

[(
p01
)2

+ |p⃗1|2
]

Φ(p1)Φ(p2)hi
k(p3)hjk(p4) 2pi1p

j
1

A0(p1)A
0(p2)h

ij(p3)hij(p4) − 1
2 |p⃗1|

2

A0(p1)A
0(p2)hi

k(p3)hjk(p4) 2pi1p
j
1

A0(p1)A
i(p2)hjk(p3)h

jk(p4)
1
2

(
p01
)
p1i

A0(p1)A
i(p2)hj

k(p3)hik(p4) −
(
p01
)
pj1

A0(p1)A
i(p2)hi

k(p3)hjk(p4) −
(
p01
)
pj1

Ai(p1)A0(p2)hjk(p3)h
jk(p4)

1
2

(
p01
)
p1i

Ai(p1)A0(p2)hj
k(p3)hik(p4) −

(
p01
)
pj1

Ai(p1)A0(p2)hi
k(p3)hjk(p4) −

(
p01
)
pj1

Ai(p1)A
j(p2)hj

k(p3)hik(p4)
[(
p01
)2

+ |p⃗1|2
]

Ai(p1)A
j(p2)hi

k(p3)hjk(p4)
[(
p01
)2

+ |p⃗1|2
]

Ai(p1)Ai(p2)h
jk(p3)hjk(p4) − 1

2

[(
p01
)2

+ |p⃗1|2
]

Ai(p1)A
j(p2)h

kl(p3)hkl(p4)
1
2p1ip1j

Ai(p1)A
j(p2)hk

l(p3)hjl(p4) −p1ipk1
Ai(p1)A

j(p2)hj
l(p3)hkl(p4) −p1ipk1

Ai(p1)A
j(p2)hk

l(p3)hil(p4) −p1jpk1
Ai(p1)A

j(p2)hi
l(p3)hkl(p4) −p1jpk1

Ai(p1)Ai(p2)hj
l(p3)hkl(p4) 2pj1p

k
1

Ai(p1)A
j(p2)hkl(p3)hij(p4) pk1p

l
1

Ai(p1)A
j(p2)hjk(p3)hil(p4) −pk1pl1

Ai(p1)A
j(p2)hjk(p3)hil(p4) −pk1pl1

Ai(p1)A
j(p2)hik(p3)hjl(p4) −pk1pl1

Ai(p1)A
j(p2)hij(p3)hkl(p4) pk1p

l
1

C̄(p1)C(p2)hi
k(p3)hjk(p4) 2pi1p

j
1

C(p1)C̄(p2)hi
k(p3)hjk(p4) pi1p

j
1

Table 9: Matter 4-point vertices contributing to the flow eq. (6.15). An illustration of the
4-point diagram can be found in Fig. 3. The vertices have been calculated with the vertex
expansion (2.96) applied to the matter action (5.10). Conservation of 4-momentum at
the 4-point vertex (6.21) has been applied.
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B Propagators

Table 10 lists the non-vanishing matrix elements of the propagator matrix Gk. They

have been calculated by inverting the matrix Γ
(2)
k +Rk using Mathematica. The matrix

elements of Γ
(2)
k can be found in Table 1 for the gravitational sector and in Table 7 for

the matter sector. The matrix elements of Rk are obtained as

(Rk)hh =
1

2

1

16πGk
Rk(p

2)Πh, (Rk)EE =
1

9

1

16πGk
Rk(p

2)ΠE (B.1)

and similarly for the other elements. The function Rk(p
2) is the scalar regulator, given

in eq. (2.90), and the prefactors follow from the substitution rule (2.88).

χaχb Matrix element (Gk)χaχb

hijhij
32πGk(

|p⃗1|2+(p01)
2
)
−2Λk+Rk(p21)

ψψ
−96πGk

(
Rk(p

2
1)+|p⃗1|2+(p01)

2
)

Rk(p21)
(
2
(
k2+|p⃗1|2+(p01)

2
)
−7Λk

)
+
(
−2Λk+|p⃗1|2+(p01)

2
)(

2
(
|p⃗1|2+(p01)

2
)
−3Λk

)
Nψ 48πGk

−2
(
(|p⃗1|2+(p01)

2
)
+3Λk−2Rk(p21)

NN −8πGk

−2
(
|p⃗1|2+(p01)

2
)
+3Λk−Rk(p21)

BB 16πGk(
|p⃗1|2+(p01)

2
)
−2Λk+Rk(p21)

EE 48πGk(
|p⃗1|2+(p01)

2
)
−2Λk+Rk(p21)

uiui
16πGk(

|p⃗1|2+(p01)
2
)
+Rk(p21)

vivi
16πGk(

|p⃗1|2+(p01)
2
)
−2Λk+Rk(p21)

c̄c 1

2
√
2
((

|p⃗1|2+(p01)
2
)
+Rk(p21)

)
b̄ibi

1

2
√
2
((

|p⃗1|2+(p01)
2
)
+Rk(p21)

)
ΦΦ 1(

|p⃗1|2+(p01)
2
)
+Rk(p21)

A0A0
1(

|p⃗1|2+(p01)
2
)
+Rk(p21)

AiAi
1(

|p⃗1|2+(p01)
2
)
+Rk(p21)

C̄C 1

2
((

|p⃗1|2+(p01)
2
)
+Rk(p21)

)
Table 10: Non-vanishing matrix elements of the propagator Gk in momentum space. The
scalar regulator function Rk is given in eq. (2.90). These results have been obtained by

inverting the matrix Γ
(2)
k +Rk using Mathematica.
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C Trace Components

Here, we list all results for the 3- and 4-point trace components. The results are ordered
in terms of the T0-, Tp03 -, and Tp⃗3-parts, see Section 6.1.2. They have been obtained
using the computational steps explained in Section 6.2.

χa T0-part of STr
(4)
χa Tp03-part of STr

(4)
χa Tp⃗3 -part of STr

(4)
χa

h −k4(40−168λk+(−5+28λk)ηN )
1920π2(1−2λk)2

k2(−6+ηN )
192π2(1−2λk)2

k2(−6+ηN )
192π2(1−2λk)2

v −k4(40−672λk+(−5+122λk)ηN )
7680π2(1−2λk)2

k2(−6+ηN )
192π2(1−2λk)2

k2(−6+ηN )
192π2(1−2λk)2

u k4(−8+ηN )
512π2 0 k2(−6+ηN )

96π2

E − 7k4λk(−6+ηN )
960π2(1−2λk)2

k2(−6+ηN )
384π2(1−2λk)2

k2(−6+ηN )
384π2(1−2λk)2

B 0 0 k2(−6+ηN )
192π2

ψ − −8k4(5−6λk+6λ2
k)

1536π2(−2+3λk)(1−2λk)2
− k2(−1+λk)(−6+ηN )

384π2(−2+3λk)(1−2λk)2
k2(1+3λk)(−6+ηN )

384π2(−2+3λk)(1−2λk)2

− k4(5−6λk+8λ2
k)ηN

1536π2(−2+3λk)(1−2λk)2

N − −24k4(2−5λk+8λ2
k)

1536π2(2−3λk)2(−1+2λk)
k2(−1+3λk)(−6+ηN )

384π2(2−3λk)2(−1+2λk)
k2(−1+5λk)(−6+ηN )

128π2(2−3λk)2(−1+2λk)

− k4(6−17λk+32λ2
k)ηN

1536π2(2−3λk)2(−1+2λk)

c, c̄ 0 0 0

bi, b̄
j 0 0 0

Φ 0 0 0

A0 − k4

384π2 0 0

Ai − 7k4

384π2 0 0

C, C̄ 0 0 0

Table 11: 4-point trace components STr
(4)
χa for all fields χa split up in the T0-, Tp03-, and

Tp⃗3-parts.
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χa T0-part of STr
(3)
χa

h
10g2k(966−4007λk+10434λ2

k+10080λ3
k)

225(−2+3λk)(−1+2λk)3

+
g2k(−966+4615λk−15722λ2

k+16800λ3
k)ηN

225(−2+3λk)(−1+2λk)3

v
10g2k(−25920λ3

k+22806λ2
k−4931λk+612)

450(2λk−1)3(3λk−2)

+
g2k(43200λ

3
k−35462λ2

k+5875λk−612)ηN
450(2λk−1)3(3λk−2)

u − g2k(570λ
2
k−791λk+272)(ηN−10)

150(6λ2
k−7λk+2)

E
10g2k(−45216λ3

k+34458λ2
k−4661λk+786)

1350(2λk−1)3(3λk−2)

+
g2k(75360λ

3
k−55226λ2

k+5413λk−786)ηN
1350(2λk−1)3(3λk−2)

B − 2g2k(20λ
2
k−30λk+11)(ηN−10)

25(6λ2
k−7λk+2)

ψ − 20g2k(6048λ
4
k−8064λ3

k+4041λ2
k−926λk+21)

675(2−3λk)2(2λk−1)3

+
2g2k((10080λ

4
k−12600λ3

k+5483λ2
k−1066λk+21)ηN

675(2−3λk)2(2λk−1)3

N − 20g2k(10080λ
4
k−14679λ3

k+8405λ2
k−2578λk+348)

225(1−2λk)2(3λk−2)3

+
2g2k(16800λ

4
k−22813λ3

k+11261λ2
k−2858λk+348)ηN

225(1−2λk)2(3λk−2)3

c, c̄ 0

bi, b̄
j − k4

16π2

Φ k4

384π2

A0
k4

256π2

Ai
13k4

768π2

C, C̄ 0

Table 12: The T0-part of the 3-point trace components STr
(3)
χa for all fields χa.
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χa Tp03 -part of STr
(3)
χa

h − 6g2k(−6708λ4
k+14988λ3

k−10055λ2
k+1732λk+220)

45k2(2−3λk)2(1−2λk)4

− g2k(17928λ
4
k−36006λ3

k+25417λ2
k−7172λk+612)ηN

45k2(2−3λk)2(1−2λk)4

v
3g2k(22812λ

4
k−53148λ3

k+40831λ2
k−11764λk+864)

45k2(2−3λk)2(1−2λk)4

− g2k(25092λ
4
k−50166λ3

k+35186λ2
k−9820λk+816)ηN

45k2(2−3λk)2(1−2λk)4

u
g2k(−3420λ4

k+5532λ3
k−3617λ2

k+1452λk−328)
15k2(6λ2

k−7λk+2)2

+
17g2k(2−3λk)

2(2λk−1)ηN

15k2(6λ2
k−7λk+2)2

E
6g2k(42084λ

4
k−97836λ3

k+74037λ2
k−20140λk+1068)

270k2(2−3λk)2(1−2λk)4

− g2k(89784λ
4
k−176178λ3

k+119923λ2
k−31580λk+2220)ηN

270k2(2−3λk)2(1−2λk)4

B − 8g2k(180λ
4
k−312λ3

k+260λ2
k−140λk+35)

15k2(6λ2
k−7λk+2)2

+
6g2k(2−3λk)

2(2λk−1)ηN−4

15k2(6λ2
k−7λk+2)2

ψ − 12g2k(4536λ
5
k−7182λ4

k+3756λ3
k−313λ2

k−542λk+210)
135k2(1−2λk)4(3λk−2)3

− 7g2k(36λ
3
k+4λ2

k−5λk−3)(2−3λk)
2ηN

135k2(1−2λk)4(3λk−2)3

N
−4g2k(41958λ

5
k−87318λ4

k+72195λ3
k−30909λ2

k+7070λk−640)
45k2(2−3λk)4(2λk−1)3

+
7g2k(2−3λk)

2(132λ3
k−164λ2

k+53λk−2)ηN
45k2(2−3λk)4(2λk−1)3

c, c̄ − k2

48π2

bi, b̄
j k2

12π2

Φ − k2

384π2

A0
k2

256π2

Ai − 23k2

768π2

C, C̄ 0

Table 13: The Tp03-part of the 3-point trace components STr
(3)
χa for all fields χa.
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χa Tp⃗3-part of STr
(3)
χa

h
g2k(−6(73728λ5

k−171300λ4
k+219324λ3

k−158635λ2
k+50196λk−3748))

315k2(2−3λk)2(1−2λk)4

+
g2k(110592λ

5
k−328464λ4

k+413646λ3
k−276251λ2

k+96628λk−13884)ηN
315k2(2−3λk)2(1−2λk)4

v
g2k(−691200λ5

k+1400364λ4
k−1341660λ3

k+805967λ2
k−271444λk+33960)

315k2(2−3λk)2(1−2λk)4

+
g2k(172800λ

5
k−428436λ4

k+419160λ3
k−205639λ2

k+52088λk−5652)ηN
315k2(2−3λk)2(1−2λk)4

u − g2k(−103572λ4
k+268164λ3

k−245787λ2
k+93316λk+4(2−3λk)

2(924λ2
k−1016λk+277)ηN−11936)

315k2(6λ2
k−7λk+2)2

E − g2k(6(−1511424λ5
k+2887116λ4

k−1808276λ3
k+360781λ2

k+4212λk+1676))
1890k2(2−3λk)2(1−2λk)4

− g2k(2267136λ
5
k−4064256λ4

k+2355282λ3
k−404561λ2

k−22148λk+972)ηN
1890k2(2−3λk)2(1−2λk)4

B − 4g2k((2−3λk)
2(336λ2

k−374λk+103)ηN−2(8316λ4
k−20772λ3

k+18366λ2
k−6668λk+793))

315k2(6λ2
k−7λk+2)2

ψ − 2g2k(−6(34560λ6
k+26208λ5

k−189402λ4
k+216418λ3

k−108029λ2
k+26650λk−2958))

945k2(1−2λk)4(3λk−2)3

− 2g2k(2−3λk)
2(5760λ4

k+10176λ3
k−14188λ2

k+5012λk−591)ηN
945k2(1−2λk)4(3λk−2)3

N −−2(172800λ6
k+43650λ5

k−761514λ4
k+919359λ3

k−448987λ2
k+95238λk−6872)

315k2(2−3λk)4(2λk−1)3

− 2g2k(2−3λk)
2(9600λ4

k+13608λ3
k−22662λ2

k+8773λk−1022)ηN
315k2(2−3λk)4(2λk−1)3

c, c̄ 0

bi, b̄
j k2

16π2

Φ − k2

384π2

A0 − k2

256π2

Ai − 17k2

768π2

C, C̄ 0

Table 14: The Tp⃗3-part of the 3-point trace components STr
(3)
χa for all fields χa.
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7A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt, 1905.

8R. L. Workman et al. (Particle Data Group), “Review of Particle Physics”, PTEP
2022, 083C01 (2022).

9R. Penrose, “Gravitational collapse and space-time singularities”, Phys. Rev. Lett. 14,
57–59 (1965).

10L. Landau, “Niels Bohr and the Development of Physics”, Physics Today 9, 32 (1956).
11G. ’t Hooft and M. J. G. Veltman, “One loop divergencies in the theory of gravitation”,
Ann. Inst. H. Poincare Phys. Theor. A 20, 69–94 (1974).

12M. H. Goroff and A. Sagnotti, “Quantum Gravity at Two Loops”, Phys. Lett. B 160,
81–86 (1985).

13M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior of Einstein Gravity”, Nucl.
Phys. B 266, 709–736 (1986).

14A. E. M. van de Ven, “Two loop quantum gravity”, Nucl. Phys. B 378, 309–366
(1992).

15M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory: 25th anniversary edi-
tion, Vol. 1, Cambridge Monographs on Mathematical Physics (Cambridge University
Press, 2012).

16D.-W. Chiou, “Loop quantum gravity”, International Journal of Modern Physics D
24, 1530005 (2014).

17S. Surya, “The causal set approach to quantum gravity”, Living Reviews in Relativity
22, 10.1007/s41114-019-0023-1 (2019).

18R. Loll, “Discrete lorentzian quantum gravity”, Nuclear Physics B - Proceedings Sup-
plements 94, 96–107 (2001).

19J. Ambjørn, A. Dasgupta, J. Jurkiewicz, and R. Loll, “A lorentzian cure for euclidean
troubles”, Nuclear Physics B - Proceedings Supplements 106-107, 977–979 (2002).

20R. Loll, “Quantum Gravity from Causal Dynamical Triangulations: A Review”, Class.
Quant. Grav. 37, 013002 (2020).

21R. Percacci, “Asymptotic Safety”, 111–128 (2007).
22S. Nagy, “Lectures on renormalization and asymptotic safety”, Annals Phys. 350,
310–346 (2014).

23M. Niedermaier and M. Reuter, “The Asymptotic Safety Scenario in Quantum Grav-
ity”, Living Rev. Rel. 9, 5–173 (2006).

79

https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1002/andp.200590006
https://doi.org/10.1002/andp.200590006
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1002/andp.19163540702
http://www.jstor.org/stable/107135
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1063/1.3060063
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(92)90011-Y
https://doi.org/10.1016/0550-3213(92)90011-Y
https://doi.org/10.1142/s0218271815300050
https://doi.org/10.1142/s0218271815300050
https://doi.org/10.1007/s41114-019-0023-1
https://doi.org/10.1007/s41114-019-0023-1
https://doi.org/10.1007/s41114-019-0023-1
https://doi.org/10.1016/s0920-5632(01)00957-4
https://doi.org/10.1016/s0920-5632(01)00957-4
https://doi.org/10.1016/s0920-5632(01)01903-x
https://doi.org/10.1088/1361-6382/ab57c7
https://doi.org/10.1088/1361-6382/ab57c7
https://doi.org/10.1016/j.aop.2014.07.027
https://doi.org/10.1016/j.aop.2014.07.027
https://doi.org/10.12942/lrr-2006-5


24A. Eichhorn, “An asymptotically safe guide to quantum gravity and matter”, Frontiers
in Astronomy and Space Sciences 5, 47 (2019).

25M. Reuter and F. Saueressig, Quantum gravity and the functional renormalization
group: the road towards asymptotic safety, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, 2019).

26S. Weinberg, “Ultraviolet Divergences in Quantum Theories of Gravitation”, in Gen-
eral Relativity: An Einstein Centenary Survey (1980), pp. 790–831.

27K. G. Wilson and J. B. Kogut, “The Renormalization group and the epsilon expan-
sion”, Phys. Rept. 12, 75–199 (1974).

28E. Gourgoulhon, 3+1 formalism and bases of numerical relativity, 2007.
29R. Percacci and D. Perini, “Constraints on matter from asymptotic safety”, Phys.
Rev. D 67, 081503 (2003).

30R. Percacci and D. Perini, “Asymptotic safety of gravity coupled to matter”, Phys.
Rev. D 68, 044018 (2003).

31D. Perini, “The asymptotic safety scenario for gravity and matter”, PhD thesis (SISSA,
Trieste, 2004).
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