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Abstract

This thesis presents a new sampling method to sample cpMSSM parameter configurations based on pMSSM
parameter configurations, while providing a theoretical guide to understand its physics context. The sampler
is a normalizing flow model that directly learns to optimize its sampling method with regards to the target
distribution. After creating the necessary dataset, and performing a small optimisation of the learning
process, the result is an automatic, efficient sampler that generated >50% correct samples. This presents
the possibility to more realistically explore and study the parameter space of the cpMSSM. This thesis
exhibits this by using the new sampler for a study into the CP-violating effects of the cpMSSM on the dark
matter relic density. It is shown that these effects are very restricted by limits on the electron electric dipole
moment. However, a novel effect of φAt on the neutralino composition was also observed.
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Chapter 1

Motivation: from SM to cpMSSM

The Standard Model (SM) of Particle Physics stands as the most successful model ever crafted by physicists
to explain natural phenomena all around us. It describes all, currently known, fundamental particles within
matter (fermions), while also describing their fundamental interactions, mediated by force-carrying bosons.
The model’s successes range from a extremely accurate 1 in 100 billion prediction of the magnetic dipole
moment of the electron [1] to the prediction of the Higgs boson [2] and the heavy top quark [3].

However, it has become clear that the SM cannot be the ultimate model due to its inherent flaws. Conse-
quently, the physics community is focusing on theories and models that offer solutions to these problems.
One of the more often-seen ideas is that of supersymmetry (SUSY). Apart from being motivated by a sym-
metry principle, it also solves various flaws of the SM, including dark matter and the hierarchy problem.
Additionally, it allows for an embedding into a grand-unification theory. The hierarchy problem is often
attributed to be the main motivation for SUSY research, as it is one of the few proposals for solving this
issue. In contrast, dark matter and grand unification proposals are more abundant. However, having a
model that addresses all of those issues of the SM while allowing grand-unification is surely enough to spark
academic interest around the world.

Supersymmetry itself is more of a concept or a framework to work in. It could be summarised as the
idea that each fermion has a superpartner with bosonic characteristics and vice versa. The motivation for
the idea lies within the fact that such a symmetry, non-trivially expands the known symmetries of space-
time: Poincaré transformations [4]. Physicists conceptualized different models to ’work’ with SUSY, each
presenting a different mechanism of how supersymmetry manifests. The main differences are on how super-
symmetry is spontaneously broken at lower energies. This breaking is necessary because experiments have
clearly ruled out the possibility of superpartners having the same mass as their partner.

This thesis will focus on the Minimal Supersymmetric Standard Model (MSSM) [5]. This choice is based
on the two fundamental ingredients of the MSSM: minimal particle content and the soft SUSY breaking
mechanism. The first adheres to the guiding principle of Occam’s Razor: the simplest or smallest model
that works should have the preference. The second ingredient acknowledges the current limit of knowledge
regarding the breaking mechanism: we do not know how the symmetry is broken. So, why not just add all
SUSY-breaking terms that do not cancel wanted SUSY characteristics?1 This presents us with the ability
to ‘choose’ the correct breaking mechanism as soon as signs of SUSY are observed in the future.

Problematic for MSSM research is, contrary to what the name suggests, its enormous possible parame-
ter space. The model contains 105 additional real-valued parameters relative to the SM,2 ranging from the
mass parameters of the superpartners to trilinear coupling strengths. This enormous parameter space makes
it impractical to significantly rule out parameter regions, hindering effects to constrain the MSSM and to

1To be more exact we only add extra terms that contain couplings with positive mass dimension. More details will be given
in chapter 3.

2Of course, some parameters might be complex variables, however these are counted as two real-valued parameters.

3



identify focus points for future experiments.

Therefore, a variant of the MSSM has been introduced: the pMSSM [6]. Through knowledge-based and
experimentally motivated requirements, the parameter space is reduced to 19 parameters. The motivation
for these requirements lies in minimisation of flavour violation, experimentally verified-to-be-rare decays and
meson mixing effects. Another motivation is the explicit omission of any CP violation in addition to what
the SM has to offer. However, it is the removal of this last assumption that lies at the heart of this thesis.
Previous research has studied the pMSSM quite well. However, to study the effect of SUSY on CP violating
observables one needs to take consider the existence of CP violation within the model. Furthermore, intro-
ducing more CP violation might be necessary to solve, for example, the matter-antimatter asymmetry in the
universe [7]. This model carries the name cpMSSM. The cpMSSM is essentially the same as the pMSSM,
only with the addition of CP violation. In practice, the addition of CP violation results in 6 independent
phases added to the pMSSM. This partially brings back the problematic side of the MSSM parameter space.
Especially when considering the complex relationship between the phases themselves and the pMSSM pa-
rameter point. This relationship needs to be either understood, or calculation software needs to be used to
determine if a point is interesting and/or viable.

To conduct research on the workings of the cpMSSM, a substantial number of not experimentally excluded
parameter combinations are required. Currently, at the HEP department of the Radboud University, these
combinations are produced using Gaussian Particle Filters [8]. This method samples new parameter con-
figurations (referred to as points) from a n-dimensional Gaussian distribution. However, this filter heavily
relies on finetuning by the user since every Gaussian distribution has two configurable parameters (mean
and variance) per dimension. Also, in order to make points, one already needs correct points to center the
Gaussian distribution on. This introduces a potential bias into the sampled points, as it becomes harder to
explore unknown regions effectively.

This thesis aims to explore a potential solution for this challenge within the world of Machine Learning
(ML). In other words, the goal is to use ML to efficiently and effectively ‘transform’ a pMSSM point into
large numbers of cpMSSM points. This eliminates the need for a ‘handcrafted’ Gaussian Particle Filter. Ad-
ditionally, there is an expectation that an ML model will generate more diverse samples within the cpMSSM
parameter space.

After training such a model and, ideally, enabling it to generate a substantial number of non-excluded
cpMSSM points, this thesis will seek to demonstrate its usefulness beyond adhering to the CP violating
eEDM limit.3 Therefore, we explore one of the main advantages of SUSY: its potential dark matter can-
didate. One of the observables related the dark matter candidate is that of the dark matter relic density4.
Astronomical observations confirm the existence of exotic, yet-to-be-understood, matter must exist that does
not interact electromagnetically. Commonly this matter is referred to as dark matter [9]. SUSY models can
feature a viable dark matter candidate, particularly when the lightest supersymmetric particle (LSP) is a
superpartner of the neutral SM bosons and R-parity5 is assumed. The quantity of dark matter remaining
in the universe is termed the dark matter relic density, and this should align with current experimental
observations. Currently, no extensive research has been done on what the effect of CP violation is on the
relic density within SUSY, although the existence of an effect has been shown before [10]. Such effects are
anticipated since couplings that determine the annihilation of the LSP, are (indirectly) affected by CP vio-
lating phases [10]. However, existing research has predominantly concentrated on very specific points with
very specific values for the added phase(s), as they were limited in the amount and diversity of cpMSSM
points they could create. By introducing a new ML-based sampler we hope to significantly contribute to a
better understanding of CP-violating effects on the dark matter relic density and other CP-violating effects
within supersymmetry.

3electron Electric Dipole Moment, see 4.1.
4From here on the dark matter relic density will just be called the relic density. No other form of relic density is of interest

within this thesis. Therefore, as is often done, we abbreviate to relic density only.
5For an explanation: see the end of section 3.3.2.
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Chapter 2

Used Conventions

This chapter will present the conventions and notations used within this thesis. Given the subject of super-
symmetry this is especially important, as there are many conventions possible.

First a small list of the more basic notations:

• We use all ‘normal’ conventions with regards to indices: Greek indices are used for four-vectors, etc.

• Repeated indices are summed over.

• We have ~ = c = ε0 = kB = 1 for the natural units.

• We define the electron charge as qe = Qee = −1e.

• g′, g and g3 represent the couplings of U(1), SU(2) and SU(3) respectively.

• σµ or σ̄µ represent the Pauli matrices: where σµ = (I2, ~σ) and σ̄µ = (I2,−~σ), and ~σ = (σ1, σ2, σ3).

• σµν ≡ i
4 (σ

µσ̄ν − σν σ̄µ) and σ̄µν ≡ i
4 (σ̄

µσν − σ̄νσµ) .

Further we use the mostly-plus spacetime metric:

ηµν = diag(−1,+1,+1,+1), (2.1)

in contrast to many other QFT-related works. However, this choice is made because its consequences are
mostly reflected within the basis of the supersymmetry theory. For this basis [11] is used as a guide, and thus
the same convention is used. If results or other expressions are presented using the mostly-minus metric, this
is mentioned if important for the result. Most prominently this results in p2 = −m2 for on-shell particles
and the generator of spacetime translations, Pµ, being −i∂µ instead of i∂µ.

The basics of SUSY are given using 2-dimensional Weyl spinors. The specific representation used of the
4× 4 gamma matrices, in 2× 2 blocks, is:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−I2 0
0 I2

)
. (2.2)

Within this representation a four component Dirac spinor can be written as follows:

ΨD =

(
ξα
χ†α̇

)
, Ψ̄D = (χα ξ†α̇) (2.3)

Here ξ and χ represent Weyl spinors (respectively a left and right-handed version), and we directly see the
convention to index the ’lower’ spinor representation using dotted indices. To work within the space of Weyl
spinors we also need a definition of an inner product:

ξχ ≡ ξαχα = εαβξ
αχβ . (2.4)
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Here εαβ is an antisymmetric symbol defined as follows:

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0. (2.5)

For some intuition we briefly look at how this translates to the Standard Model. Dirac spinors are used to
represent the fermions within the Standard Model. We then get for the electron:(

e
ē†

)
≡
(
eL
eR

)
, (2.6)

where the eL can be found within a chiral doublet together with νeL and we can find eR as a chiral singlet,
the right handed electron. Thus, compared to the general example we have: ξ = e = eL and χ = ē = e†R,
where we have suppressed spinor indices.

Lastly, it is nice to state the nomenclature used for particles within supersymmetry. Each SM particle
has their corresponding superpartner (called sparticle). This extends to fermions, having sfermions as scalar
superpartner, which holds for all subcategories of fermions. On the other hand we denote the superpartner
of bosons by appending -ino. Thus gauge bosons have gauginos as spin-1/2 superpartner and the Higgs
bosons have higgsino superpartners.

2.1 Used Abbreviations
This section presents a list of all commonly used abbreviations in this thesis

BSM Beyond the Standard Model
C Charge conjugation

cpMSSM pMSSM with explicit CP violation
CPV CP Violation
DM Dark Matter

eEDM electron Electric Dipole Moment
GPF Gaussian Particle Filter
HEP High Energy Physics
LEP Large Electron Positron collider
LHC Large Hadron Collider
LR Likelihood Ratio

LSP Lightest Supersymmetric Particle
ML Machine Learning

MLP Multi Layer Perceptron
MSSM Minimal Supersymmetric Standard Model

P Parity
pMSSM phenomenological Minimal Supersymmetric Standard Model

QFT Quantum Field Theory
RQS Rational Quadratic Spline
SM Standard Model

SUSY Supersymmetry
T Time reversal
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Chapter 3

Theory

3.1 Standard Model
Before we delve into the world of supersymmetry (SUSY) we first need a small, and very brief, look into the
Standard Model (SM).

Figure 3.1: The elementary particles of the Standard Model. This includes the fermions, subdivided into
leptons and quarks, and the Higgs boson and gauge bosons [12].

Figure 3.1 shows all bosons and fermions within the SM. Fermions consist of two groups: quarks and leptons.
Quarks come in three generations, each generation having an up and down variant under the electroweak
force. Leptons also come in those same three generations, but instead of an up and down variant they come
in a chargeless neutrino and charged, electron-like variants. The weak force is one of three fundamental
forces described by the SM.1 These forces are carried by four different types of gauge bosons. In the SM
these are a result of demanding local gauge invariances (gauge symmetries) under the gauge group:

SU(3)C × SU(2)L × U(1)Y .

Within the SM Lagrangian invoking these gauge invariances locally also leads to interactions between those
gauge bosons and fermions. These interactions thus represent the force at the level of elementary particles.
The particle that is involved with the introduction of this interaction, the gauge boson, can therefore be seen
as its carrier. More specifically, the SU(3)C gauge group gives rise to the strong force and its corresponding

1The fourth force, gravity, can currently not be understood within a QFT framework, which is the framework of the SM.
The description of general relativity in a QFT framework is therefore a separate field of study.
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eight massless gluons. The combination SU(2)L × U(1)Y gives rise to the electroweak interactions, a com-
bination of the electromagnetic and weak force. The involved gauge bosons are the W± and Z for the weak
interaction and the γ, denoting the photon, for the electromagnetic force. A small note should be made that
the coupling strength belonging to U(1)Y , the hypercharge, is not equal to the coupling strength belonging
to U(1)Q, the electromagnetic charge. This difference is an (essential) part of electroweak symmetry breaking.

We have one boson left to explain: the Higgs Boson. The Higgs boson is introduced via the Higgs mechanism,
which also gives the W± and Z their mass. This concept is called electroweak symmetry breaking and boils
down to introducing a new complex scalar doublet of Higgs fields: the Higgs doublet, and a corresponding
Higgs potential involving this doublet. The main characteristic of the doublet is that it has a specific, non-
zero vacuum expectation value in the ground state (‘vacuum state’) of the SM theory. The principal idea is
that due to the SU(2)L ×U(1)Y gauge symmetry we have degenerate states in the SM ground state for the
newly-introduced Higgs doublet. By setting a vacuum expectation value (vev) for the doublet we ‘choose’ one
of those states as the actual ground state of the doublet. The idea is to make this choice in a specific manner:
in the ground state we still need invariance under U(1)Q. Therefore, we only set a vev for the electromag-
netically, neutral scalar field of the doublet. As a result, the SU(2)L × U(1)Y symmetry ‘spontaneously’
breaks into a U(1)Q symmetry in the SM ground state. Consequently, the W± and Z acquire mass terms re-
lated to the non-zero vev. In contrast by only setting a vev for the neutral field, the photon remains massless.

The above mechanism is introduced into the SM to remain consistent with the experimentally measured
masses of the W± and Z gauge bosons. However, due to this mechanism, we also introduce a new boson
with non-zero mass: the Higgs boson. This boson, and its mass, was experimentally verified in 2012 [2].

The W± and Z masses, together with the Higgs mass, fermions masses, and their respective interaction
strengths are the free parameters of the SM. Aside from the interaction between the Higgs boson and the
lightest fermions and the four-point coupling strengths associated with the Higgs mechanism, all of these
have at this point been experimentally confirmed and measured. This verification shows the success of the
SM and its predictions. For a more detailed look into both the Standard Model and its QFT framework, as
well as electroweak symmetry breaking we refer to the extensive work of [13].

3.1.1 Discrete Symmetries
One of the more abundant topics within this thesis will be that of CP violation. CP violation is a form
of violating a discrete symmetry, in this case violating the combined action of charge conjugation (C) and
parity (P). A system is symmetric under ‘C’ if it is invariant under charge conjugation, which interchanges
particles and antiparticles. It is symmetric under ‘P’ if it is invariant under a parity transformation, i.e
spatial inversion: ~x → −~x, where ~x is the three-dimensional spatial vector. The third important discrete
symmetry of nature is T: Time-reversal. Naturally, a system is symmetric under ‘T’ if it is invariant under
the reversal of time. A system, or interaction, that breaks one of these symmetries is then, for example,
called C violating. The SM, as all physical laws and models, has something called CPT symmetry. This
means that under the simultaneous action of C, P and T the system remains invariant.

In the SM (and SUSY) CP violation is introduced by non-absorbable phases. The best example of this
is the CKM matrix of the SM. This matrix introduces mixing between up and down-like quarks. Thus the
complex-valued 3 × 3 matrix is always sandwiched between two three-dimensional vectors. Therefore by
assigning phases to these vectors we can always absorb 5 of the 9 possible phases in the CKM matrix. By
other characteristics of the matrix, like unitarity, 3 other phases can be rotated away, leaving 1 phase that
in no way can be absorbed. If such a phase becomes non-zero, CP violation is introduced within the theory.

3.2 Supersymmetry
This section will introduce the basics of supersymmetry using the method of supersymmetric Lagrangians,
while also shortly showcasing the arguments for using superfields. Although the former will be slightly more
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in-depth, it will not be fully detailed and not all calculations will be present. For more details and/or
calculations the reader is referred to [11, 4].

3.2.1 Supersymmetric Lagrangians
The idea of supersymmetry is easiest to explain when looking at a small ‘toy model’ containing only the
minimal content: a left-handed two-component (Weyl) fermion, denoted by ψ, and its superpartner, a com-
plex scalar field φ. Within such a model it is possible to define the simplest working transformation that
represents supersymmetry.

We can start with the simplest form of a Lagrangian containing these two fields and only kinetic terms.
Such a model, including supersymmetry, is called a non-interacting Wess-Zumino Model [14]:

L = Lscalar + Lfermion, (3.1)

Lscalar = −∂µφ∗∂µφ, Lfermion = iψ†σ̄µ∂µψ. (3.2)

Now we introduce supersymmetry and thus need to define a transformation of the scalar field into the fermion
field and vice versa, in other words:

δφ ∝ ψ, δψ ∝ φ. (3.3)

As we want this transformation to correspond to a symmetry, namely supersymmetry, two requirements can
be used to determine the actual expression for the transformation.

1. The action of the theory needs to be invariant under the transformation.

2. The algebra of supersymmetry needs to be closed.

We first set the transformation of the scalar field to be of the simplest form possible.

δφ = εψ, δφ∗ = ε†ψ†. (3.4)

Here the εα represents a generic, infinitesimal, two-component, fermionic (Weyl) object. In essence, it
represents/parameterizes the supersymmetry transformation, while also making sure that the transformation
is consistent at the level of spinorial indices. Given the mass dimension of 3

2 for the fermionic field and 1 for
the scalar field, ε needs to have a mass dimension of − 1

2 . We then need the aforementioned two requirements
to set the second transformation. The first requirement is mathematically formulated as follows:

δS =

∫
d4x(δLscalar + δLfermion) = 0 (3.5)

This means that the Lagrangian itself can only transform up to a total derivative.2 By calculating δLscalar
and demanding that δLfermion cancels all terms up to a total derivative, the following candidate SUSY
transformation for fermions can be found:

δψα = −i(σµε†)α∂µφ, δψ†
α̇ = i(εσµ)α̇∂µφ

∗ (3.6)

Now we need to check the second requirement: does this transformation result in a closed algebra? To check
this we apply the commutator of two transformations with two different ε’s to the two fields (fermion and
scalar). In that case, we find a derivative of the field the commutator was applied to. In other words, we
find a space-time translation, which is one of the main symmetries of any QFT theory. We could therefore
conclude the algebra of the symmetry to be closed under the Poincaré group, were there not a small catch.
When applying the commutator to the fermionic field, ψ, extra terms are present if ψ is off-shell, i.e. when
its equations of motion are not valid. These terms are problematic, as we want to use supersymmetry within
a QFT framework, in which particles can be off-shell as well.

2Or, in other words, only a term representing a 4-divergence can be added to the Lagrangian.
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This can be solved by using a trick: introducing a new complex, scalar field F , without any kinetic terms and
thus with trivial equations of motion: an auxiliary field3. This idea is quite logical, as we are introducing a
symmetry between a scalar field with two degrees of freedom and a fermionic field that, when off-shell, has
four degrees of freedom. If the fermion is on-shell, two of those degrees of freedom become dependent on the
other via the equations of motion, and thus only then the symmetry ’works’. However, in the off-shell case
we need the extra two degrees of freedom of the fermion to be present in its partner, scalar field as well.
These off-shell degrees of freedom are now present in the degrees of freedom of the F field, which, by design,
disappear when they are not needed (i.e. in the on-shell case).

All in all, this results in a new part for the Lagrangian.

Laux = F ∗F, (3.7)

which also directly shows the mass dimension of 2 of the F field. The trick now consists of adding this field
F to the transformation rule of ψ, while also defining a suitably chosen transformation for F . The new
transformation for ψ becomes:

δψα = −i(σµε†)α∂µφ+ εαF, δψ†
α̇ = i(εσµ)α̇∂µφ

∗ + ε†α̇F
∗ (3.8)

The next step is to determine the transformation of the new field F . This transformation is specified by the
fact that we need the algebra to be closed at all times. Thus, the transformation of F needs to cancel the
equation of motion terms that remain when applying the commutator of transformations to ψ, as mentioned
earlier. This leads to:

δF = −iε†σ̄µ∂µψ, δF ∗ = i∂µψ
†σ̄µε, (3.9)

and due to this transformation we find:

[δε1 , δε2 ] X = i(−ε1σµε†2 + ε2σ
µε†1)∂µX, (3.10)

where X denotes any of the involved fields: φ, φ∗, ψ, ψ†, F, F ∗. As mentioned, we see the term −i∂µ, which
corresponds with the generator of space-time translations.

This last point can be written in a slightly more convenient way. For this one needs to use Noethers
theorem: any continuous symmetry4 of the Lagrangian results in a conserved current. Through this current,
it is possible to construct the conserved charges, which are the generators of the supersymmetry transfor-
mations. These generators are denoted by Qα and Q†

α̇. After this procedure5 the algebra of supersymmetry
can be neatly written down:

{Qα,Q†
α̇} = −2σµ

αα̇Pµ (3.11)

{Qα,Qβ} = {Q†
α̇,Q

†
β̇
} = 0. (3.12)

Here Pµ is the generator of space-time translations, the same transformations of which we saw signs within
equation 3.10. Furthermore, we note that the new generators are fermionic generators,6 which was to be
expected as we need fermions to transform to scalars and vice versa. This is also the reason for anti-
commutators instead of commutators.

We can now make quite an interesting remark, although mostly unimportant to this thesis. Within the
above algebra we notice the link of SUSY with spacetime translations. To some this raises the question:
what if, like gauge symmetries, we make SUSY a locally valid transformation? In other words, the ε that
parameterizes the SUSY transformations becomes dependent on spacetime. At that point we would intro-
duce a new boson, in analogy with other gauge bosons. But now that boson would be one that interacts

3To be more exact: the equations of motion for this field are: F = F ∗ = 0
4As noted before, we speak of a symmetry if the Lagrangian is invariant under the transformation up to a total derivative.

Officially only the action needs to be truly symmetric.
5Again: for these, and other steps omitted within this thesis, see [11]
6This can be noticed by the fact that the generators have a spinorial index.
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with spacetime. Could such a boson then be regarded/used as a carrier of gravity? In other words, would
that introduce general relativity on the scale of quantum mechanics? This is an actual idea looked into for
a quantum theory of gravity. The interested reader is referred to [15] for more details.

3.2.2 Other Supersymmetric Arguments
The previous section introduced the theory of supersymmetry through the idea of introducing a super-
symmetric Lagrangian, or more specifically a supersymmetric transformation. However, there is another
motivation to introduce supersymmetry, one that is even a little more fundamental as it more motivates the
idea.

The SM is a model that has inherent symmetries. Since it contains the symmetries that any QFT model
in flat spacetime needs to respect: the symmetries under Lorentz transformations and translations. These
symmetries are grouped within the Poincaré group. The Poincaré group is the largest set of (non-trivial)
spacetime symmetries that are currently found within nature. It is then interesting to try to extend this
symmetry as far as nature allows. Be it out of curiosity or in an attempt to resolve flaws of the SM.

In some way, this is already being done, through gauge symmetries. Only these symmetries can not be
seen as a ‘true extension’, as all generators of gauge groups commute with the generators of the Poincaré
group:

[T a, T b] = ifabcT c (3.13)
[T a,Pµ] = [T a,Mρσ] = 0. (3.14)

Here T denotes a generic generator of a generic SU(N) gauge group. In other words, gauge symmetries
extend the Poincaré group trivially, and the resulting ’extended’ symmetry group is just a direct prod-
uct of both initial groups. It has been shown, through the Coleman-Mandula no-go theorem [16], that there
does not exist any symmetry with bosonic generators that can extend the Poincaré group in a non-trivial way.

It is exactly within this theorem that lies the motivation for supersymmetry. The theorem refers to bosonic
generators. Bosonic generators are generators that change a bosonic (fermionic) state into another bosonic
(fermionic) state. Therefore, instead of bosonic operators we introduce the only other option: fermionic
operators. Fermionic generators change the amount of spin by 1

2 . Thus we introduce the core idea of
supersymmetry, in more mathematical terms:

Qα|Boson〉 = |Fermion〉α, Qα|Fermion〉α = |Boson〉. (3.15)

It turns out that this does extend the Poincaré group in a non-trivial and closed way:

[Qα,Pµ] = 0 (3.16)

{Qα,Q†
α̇} = −2σµ

αα̇Pµ (3.17)
[Mρσ,Qα] = −(σρσ)βαQβ (3.18)

{Qα,Qβ} = {Q†
α̇,Q

†
β̇
} = 0. (3.19)

The attentive reader might have seen the similarities with equation 3.11, thus showing supersymmetry to be
a very good and interesting extension of the current spacetime symmetries within the SM.

To work upwards from the above-mentioned, generic, symmetry towards a working supersymmetric model,
a lot of technicalities are required. One of these is the usage of two new coordinates, just as a fourth was
needed within space-time and Lorentz transformations. Out of this idea superfields emerged. Superfields are
fields that contain multiple, smaller component fields. These component fields then represent the particles,
with both the particle and its corresponding sparticle being present within one superfield. Thus, superfields
could be seen as ‘overlapping’ fields that represent the symmetry per SM particle. The background theory
for this endeavour can be found in [4].
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3.2.3 Hierarchy Problem
Within chapter 1, it is mentioned that one of the advantages of supersymmetry is its natural solution to the
hierarchy problem. This section will both explain the hierarchy problem, as well as present (the idea of) the
solution that supersymmetry provides for this problem.

The hierarchy problem has to do with the experimentally found Higgs mass of 125 GeV. First of all, it
is a perfectly possible value for the Higgs mass according to the SM. The problem more lies with the fact
that it is much lower than ‘naturally’ expected. As we know, the SM is most likely a ‘low energy’ theory, that
in one way or another originates from a higher energy theory. Therefore, in some way, the SM is expected
to couple to (new) particles at this high energy scale. Most of the particles are stable against the effects this
could introduce. The scalar Higgs boson as described within the SM, however, would not be. Thus we, kind
of, would expect the mass of the Higgs boson to be closer to the high energy scale.

To quantify this, we can look at the 1-loop corrections to the Higgs mass using a fermion residing at that
higher scale:

q

H

f

f

H

.

For this diagram we need the following Feynman rule:

H

f

f

= −iλf . (3.20)

If we calculate these corrections we find:7

δm2
H =

−2λ2f
(2π)4

(
2

∫
d4l

l2 −m2
f

+

∫
d4l (4m2

f − q2)

(l −m2
f )((l + q)2 −m2

f )

)∣∣∣∣
q2=m2

H

, (3.21)

where λf = mf/v is the dimensionless Yukawa coupling between the Higgs boson and the heavy fermions.
Furthermore, we have mf as the mass of the fermion, which is assumed to be at the scale of new physics. By
counting the powers of the integral we see that the first integral therefore is quadratically divergent, and the
second logarithmically divergent. In other words, the first term seems to suggest a much higher correction
than the observed Higgs mass itself. So either we have very high fine-tuning8 or we need a new mechanism
that cancels that first integral.

That is where SUSY comes in. SUSY introduces two new interactions that contribute to the 1-loop correc-
tions of the Higgs mass:

7Note that these calculations use the mostly-minus metric.
8And let it be known that physicists really hate this word, both people who use it as an argument against theories, as well

as people who use it against those people. For more on this, see the thesis of Marrit Schutten [17]
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q

H

f̃1,2

f̃1,2

H

q

H

f̃1,2

H

In these diagrams the fermion has been replaced by two sfermions: one for the left-handed fermion field and
one for the right-handed field. The two scalar fields have the exact same, high, mass as the original fermion.

To calculate the above diagrams we need the associated Feynman rules:

H

f̃i

f̃i

= −2iλsv,

H

H

f̃i

f̃i

= −2iλs. (3.22)

A small, but important, remark regarding these rules needs to be made. We see that the first rule contains a
triple scalar coupling of mass dimension one. The second rule, on the other hand, contains a dimensionless
quartic scalar coupling.

Now we first look at the expression resulting from the second interaction that is introduced by SUSY.
The contribution of that interaction is:

4λs
(2π)4

∫
d4l

l2 −m2
f̃

, (3.23)

here mf̃ is the mass of both the left and right-handed sfermion, which we naturally assume to be equal.
As mentioned, within exact SUSY, this mass of the sfermion equals the mass of the fermion. Due to these
masses being the same this term perfectly cancels with the quadratically divergent term of 3.21 if λs = λ2f .
This relation holds true due to the way we introduce fermion/sfermion interactions, more on this will be
given in 3.3.2. Further, the relative minus sign emerged because of the difference in loop contents: a fermion
loop gets a relative minus sign with respect to a bosonic loop according to the Feynman rules.

However, even if the mass of the fermion and sfermion are not exactly equal9 we find the following dif-
ference term: ∫

d4l

(
1

l2 −m2
f̃

− 1

l2 −m2
f

)
= (m2

f̃
−m2

f )

∫
d4l

1

(l −m2
f̃
)(l −m2

f )
, (3.24)

which is still only logarithmically divergent.

Thus the only thing left to check is that the first diagram does not re-introduce quadratic divergences.
For this diagram we find:

8λ2sv
2

∫
d4l

(2π)4
1

(l −m2
f̃
)((l + q)2 −m2

f̃
)

∣∣∣∣
q2=m2

H

, (3.25)

which is only logarithmically divergent. Therefore SUSY proposes a working solution to the Hierarchy
problem, due to the SUSY couplings for fermions and sfermions being related. Again, how we introduce
these related couplings is explained in 3.3.2.

9In other words, we are in a broken SUSY theory, which actually are more prominent than unbroken theories.

13



3.3 Minimal Supersymmetric Standard Model (MSSM)
In this section, we introduce the most well-known SUSY model: the MSSM. The Minimal Supersymmetric
Standard Model is defined by the fact that it contains the minimal needed number of particles for a working
supersymmetric version of the SM.

3.3.1 Particle Content
This section presents the particles present within the MSSM.

Table 3.1: The gauge eigenstates of the MSSM, showing the ’conventional’ SM state, its spin and the
corresponding SUSY state and its spin.

Particles Spin Notation Sparticles Spin Notation
B, W - Bosons 1 B0,W±,W 0 Bino, Wino 1

2 B̃0, W̃±, W̃ 0

Higgs 0 H0
u,H

0
d ,H

+
u ,H

−
d Higgsino 1

2 H̃0
u, H̃

0
d , H̃

+
u , H̃

−
d

Gluon 1 g Gluino 1
2 g̃

L/R up-type quarks 1
2 uL/u

†
R L/R up-type squarks 0 ũL/ũ

∗
R

L/R down-type quarks 1
2 dL/d

†
R L/R down-type squarks 0 d̃L/d̃

∗
R

L/R charged leptons 1
2 eL/e

†
R L/R charged sleptons 0 ẽL/ẽ

∗
R

neutrinos 1
2 νL sneutrinos 0 ν̃L

There are two important things to note from table 3.1. Firstly, we note that there are no new ’conventional’
particles. All particles on the left-hand side of the table, disregarding the Higgs sector, are also part of the
SM. For example, no fourth-generation quark has been introduced. In addition, in analogy with the SM,
no right-handed neutrinos are added.10 However, there is one exception: the MSSM contains two Higgs
doublets. Why this is necessary will be explained in section 3.3.2.

A point of notation: within this thesis as well as in [11] the notation of superfields (see section 3.2.2) is
used from time to time. The notation itself is presented in table 3.2 for chiral supermultiplets. These super-
field symbols represent both the conventional particle as well as the sparticle within a chiral supermultiplet.
To get some intuition: ū here truly denotes a ‘supermultiplet’: ū ∝ (u†R, ũ

∗
R), whereas Q denotes a doublet

Table 3.2: The notation of superfields and the chiral supermultiplet they represent for the superfield symbols
used within this thesis. This means that the vector superfields representing the gauge bosons and their
gauginos are not listed, as their superfield notation is not used within this thesis.

Superfield Particles Sparticles
Q (uL, dL) (ũL, d̃L)
ū u†R ũ∗R
d̄ d†R d̃∗R
L (νL, eL) (ν̃L, ẽL)
ē e†R ẽ∗R
Hu (H+

u ,H
0
u) (H̃+

u , H̃
0
u)

Hd (H0
d ,H

−
d ) (H̃0

d , H̃
−
d )

of supermultiplets: Q ∝
(
(uL, ũL)

(dL, d̃L)

)
. Although this notation is not conventional, it does provide some

10The idea of right-handed neutrinos is becoming more conventional. However, the MSSM does not incorporate them, following
the path of minimal particle content.
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intuition. Further, the convention for ū, d̄ and ē reflects the SUSY way to handle the right-handed (singlet)
fields that feature in the SM. This way involves using conjugation to turn a right-handed Weyl spinor into
a left-handed variant and treating the scalar superpartner accordingly. At this point it is also good to note
that these superfields behave similarly to Weyl spinors in an inner product:

Q ·Hu = εabQ
aHb

u. (3.26)

Here a, b = 1, 2 and the · is explicitly used to showcase that the inner product is of two superfields and
therefore follows 3.26 and not the conventional four-vector inner product.

3.3.2 Introducing Interactions
Now we know the particle content of the MSSM we can start to have a more insightful look at interactions
within a SUSY model. The Wess-Zumino model of section 3.2.1 did not contain any interaction terms. The
introduction of non-gauge interactions within a SUSY model will be performed in general terms, thus also
following the notation of section 3.2.1.

We start by writing down all possible interaction terms that can be contained within a renormalizable
theory. In other words, the included terms must have a mass dimension from the fields and derivatives that
does not exceed four. We get the following interaction Lagrangian:

Lint = (−1

2
W ijψiψj +W iFi + xijFiFj) + c.c.− U, (3.27)

here i/j are summed over for repeated indices, and i/j run over the different fields that correspond with a
particle and its linked sparticle from table 3.1. Further, W ij ,W i, xij and U are polynomials of the (complex)
scalar fields with degrees 1, 2, 0 and 4 respectively.

The first important thing to note is that all terms within δLfree sum to zero by themselves. Therefore
Lint needs to be invariant under SUSY on its own as well. This has as a first consequence that both U
and xij are zero, since the corresponding terms that arise within δLint after a SUSY transformation contain
specific combinations of spinors and scalar fields that cannot be compensated by the other terms within
equation 3.27 [11]. Thus we are left with the following, general, interaction Lagrangian:

Lint = (−1

2
W ijψiψj +W iFi) + c.c.. (3.28)

Now it is good to note that W ij and W i currently are not related, but will later turn out to be and therefore
follow a very similar notation.

It is now easiest to separate δLint into several parts, which must all cancel separately. The first part is
the part that contains 4 spinors in each term.11

δLint|4 spinors = (−1

2

δW ij

δφk
(εψk)(ψiψj)−

1

2

δW ij

δφ∗k
(ε†ψ†

k)(ψiψj)) + c.c.. (3.29)

By imposing that this expression needs to be zero we get two characteristics of W ij

1. δW ij

δφk
is totally symmetric under the interchange of i, j and k.

2. W ij is holomorphic in the complex field φ.

The first characteristic follows from the first term in 3.29. This term can become zero through the Fierz
identity.12 Therefore the first term cancels if and only if δW ij

δφk
is symmetric under any interchange of the its

superscripts.
11For the ones that are counting along: ε is, of course, also a spinor.
12To be a little more detailed, we have: (εψi)(ψjψk) + (εψj)(ψkψi) + (εψk)(ψiψj) = 0.
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For the second term, there is no other way to become zero than for δW ij

δφ∗
k

to be zero. We can not use
the fierz identity due to ε†ψ† being conjugated and ψiψj not. In other words, W ij is not allowed to contain
terms with φ∗k. This is the same as saying that W ij is holomorphic in the complex field φ. It is, however,
essential to note that this does not constrain our choice for which field is this complex conjugated field, it is
merely a relative choice.13 There only needs to be a consistent choice, either we use φ or φ∗ for a specific
particle withinW , but not both. This property in itself is a reason for the existence of another Higgs doublet
within SUSY. As will be explained later.

The found properties of W ij give us the possibility to write:

W ij =
δ2

δφiδφj
W =

δ2

δφiδφj
(
1

2
Mklφkφl +

1

6
yklmφkφlφm). (3.30)

Here we introduced the object W , which is called the superpotential: a scalar potential that is a holomorphic
function of the complex variable φk14 We note that according to the above ‘definition’ it is possible to add
a linear term to the superpotential. Such a term would require the existence of a full gauge invariant chiral
supermultiplet within the theory. Given the minimal particle content of the MSSM (see table 3.1) this is
not the case. Thus the term is omitted from the superpotential.

The focus then shifts to the rest of δLint. All other terms are terms containing 2 spinors or, equivalently, a
space-time derivative. For brevity, the corresponding terms are not written here, but can be found in [11].
This part of the Lagrangian becomes a total derivative if:

W i =
δW

δφi
=

δ

δφi
(
1

2
Mklφkφl +

1

6
yklmφkφlφm), (3.31)

thus motivating that all non-gauge interactions are determined by one scalar, holomorphic potential: the
superpotential.

The last step is to eliminate the auxiliary field F . Due to the introduction of the second term in equa-
tion 3.28 its equation of motion has become:

Fi = −W ∗
i F i∗ = −W i (3.32)

This leads to the following Lagrangian, containing both the ‘free’ and the interaction part:

L = −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi −
1

2
(W ijψiψj +W ∗

ijψ
†iψ†j)−W iW ∗

i (3.33)

= −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi − V (φ, φ∗)

− 1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j − 1

2
yijkφiψjψk − 1

2
y∗ijkφ

∗iψ†jψ†k.
(3.34)

Here in the second step we wrote out the superpotential in general terms (equation 3.30) and introduced the
scalar potential. The scalar potential is:

V (φ, φ∗) =W iW ∗
i = (3.35)

M∗
ijM

ikφ∗jφk +
1

2
Mnky∗jinφkφ

∗jφ∗i +
1

2
M∗

nky
jinφ∗kφjφi +

1

4
ykjny∗ilnφkφjφ

∗iφ∗l. (3.36)

With these equations one can look at, and compare, the Klein-Gordon equation for the fermions and the
scalars:

∂µ∂µφi =M∗
kiM

kjφj + .... (3.37)
∂µ∂µψi =M∗

kiM
kjψj + .... ∂µ∂µψ

†i = ψ†jM∗
kjM

ki + .... (3.38)
13Because (φ∗)∗ = φ.
14As we will see within the MSSM, the actual object should be only scalars. However it introduces all interactions, also SM

interactions. Therefore it is often denoted using superfields as that directly shows these interactions as well, instead of first
needing derivatives.
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Thus the fermions and the scalars have the exact same squared mass matrix:

(M2)ji =M∗
kiM

kj (3.39)

After diagonalization through a unitary matrix, and combining our φ and ψ into a chiral supermultiplet we
arrive at a similar conclusion as for superfields, with all multiplets containing a mass-degenerate complex
scalar and a Weyl spinor.

This section does not contain the introduction to gauge interactions, as this description is deemed slightly
outside the scope of this theory block. However, a full description can be found in [11] and [15]. In appendix
A.1 all diagrams of both the gauge interactions as well as the non-gauge interactions can be found.

Now the only thing left to do is to specify the superpotential in the case of the MSSM.15

WMSSM = ūyuQ ·Hu − d̄ydQ ·Hd − ēyeL ·Hd + µHu ·Hd. (3.40)

Before we go into the consequences of this potential, we need to resolve a possible misunderstanding that
could emerge at this point. Equation 3.40 uses a superfield notation, which is given in table 3.2. As a conse-
quence, the above terms also include non-scalar, and SM terms. Within the definition of the superpotential
especially the former are not present. However, after following the full procedure in section 3.3.2 to get to
Lint we would, of course, also get interactions involving fermions and a scalar Higgs boson. Therefore, they
are already included here, skipping the full procedure. Further through this notation the superpotential is
responsible for all non-gauge interactions within the MSSM, not just the SUSY interactions. Lastly, the
superfield notation is the less cluttered option.

Beyond notation, the main point this potential postulates is that within the MSSM there is a need for
two Higgs doublets. This has to do with the fact that W needs to be holomorphic. For example, for the sec-
ond term ˜̄dydQ ·HC

u , with HC
u = iσ2H

∗
u, is an option, but the first term already contains a non-conjugated

Hu. Similarly, ˜̄uyuQ · HC
d , with HC

d = iσ2H
∗
d , is not an option for the first, as Hd is already included

in the first term. Therefore the first three terms, often called Yukawa terms, need two different doublets
to have terms that have a zero net charge, as is required for U(1)Q gauge invariance.16 For completeness’
sake, the last term, called the µ term, is the supersymmetric version of the Higgs boson mass term in the SM.

Secondly, we note that there could have been more terms within this potential, without using new su-
perfields:

W∆L=1 =
1

2
λijkLi · Lj ēk + λ

′ijkLi ·Qj d̄k + µ′Li ·Hu (3.41)

W∆B=1 =
1

2
λ′′ijkūid̄j d̄k. (3.42)

However, as seen from the notation, these terms either break lepton or baryon number conservation. Exper-
iments17 tell us that these should be conserved, as is accidentally the case in the SM. To make sure this is
also the case within the MSSM, we explicitly require the conservation of R-parity:

R = (−1)2s+3B+L. (3.43)

Here B is the baryon number, L is the lepton number and s is the spin of the (s)particle. This definition
ensures that all conventional SM particles and all Higgs bosons have R = 1, and all superpartners have R =
-1. R-parity conservation has very important consequences. It ensures that all interactions involve an even
number of SUSY particles, therefore the lightest supersymmetric particle (LSP) cannot decay, which will be
important in 4.2. If the LSP also has no charge and colour, it becomes a dark matter candidate.

15It is possible to also write down this superpotential in the corresponding scalar fields as well. However, then we would need
to go through the procedure of derivatives to see the SM interactions as well.

16To see that using Hu in place of Hd and vice versa leads to non-zero net charge terms within the Lagrangian, one needs to
write out the multiplets included in equation 3.40 using the inner product rule of 3.26.

17Such as proton-decay experiments.
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3.3.3 Breaking Mechanism
As mentioned in the previous section, particles and their corresponding sparticles have the same mass under
supersymmetry. However, it is clear from experiments they cannot have the same mass. Otherwise, we
would already have observed sparticles. Therefore, we need a mechanism that breaks supersymmetry spon-
taneously, like in the case of electroweak symmetry breaking through the Higgs mechanism. We need the
Lagrangian to be invariant under supersymmetry, but to not respect this in the ground state by specifically
selecting one from a set of degenerate ground states. Furthermore, it is good to note that breaking SUSY
always will result in also breaking the electroweak symmetry and vice versa. We will get back to this in the
discussion of the Higgs sector in 3.3.4.

A lot of breaking mechanisms have been proposed. All of them with their reasoning for where and how
the breaking is introduced. The MSSM takes a different approach. Instead of claiming one idea and there-
fore using only some of the possible terms, all possible mass-breaking terms are used and parameterized.
The idea is that if SUSY is observed or discovered one can then try to determine the correct parameters for
the MSSM at that point in time.

There is, however, one main point of consideration for all terms that can be included. The terms are not
allowed to re-introduce the hierarchy problem (3.2.3). In other words, if the term re-introduces a quadratic
divergence within the mass corrections of the Higgs boson, the term is not allowed. In practice this results
in the mass dimension of the coupling of the added term having to be positive. We can see this by looking
back at section 3.2.3. In that section we see that the four-point SUSY vertex (that has a dimensionless
coupling) resolves the problem perfectly. However, this does require that no new four-point interactions
are introduced, because these new interactions would reintroduce a quadratic divergence that is no longer
cancelled anywhere. On the other hand, we see that three-point interactions only introduce logarithmic
divergences. Therefore, adding the corresponding terms with a positive mass dimension coupling does not
re-introduce the problem. Also, as explained in section 3.2.3, introducing a mass difference between fermions
and sfermions does not spoil the cancellation of quadratic divergences (see equation 3.24). So terms with a
positive mass dimension coupling are also acceptable in that regard. All terms that adhere to this condition,
while still spontaneously breaking supersymmetry, are called soft-breaking terms.

After careful consideration [15, 11, 18] this leads to the following terms to be added to the Lagrangian:

LMSSM
soft =− 1

2
(M3g̃ · g̃ +M2W̃ · W̃ +M1B̃ · B̃ + c.c.)

− (˜̄uAuQ̃ ·HS
u − ˜̄dAdQ̃ ·HS

d − ˜̄eAeL̃ ·HS
d + c.c.)

− Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄um2
ū
˜̄u† − ˜̄dm2

d̄
˜̄d† − ˜̄em2

ē
˜̄e†

−m2
Hu

|HS
u |2 −m2

Hd
|HS

d |2 − (bHS
u ·HS

d + c.c.).

(3.44)

A slightly different than usual notation is used within this equation. The first three lines do seem to contain
superfields, but the tilde refers to only the sparticle part of those superfields. In addition, the superscript S
above the Higgs doublets explicitly notes that these terms only refer to the scalar fields and not the fermionic
superpartner. To be a little more explicit, the second line is written out in terms of sparticles and Higgs
particles:

+ ũ∗RAuũLH
0
u − ũ∗RAud̃LH

+
u − d̃∗RAdũLH

−
d

+ d̃∗RAdd̃LH
0
d − ẽ∗RAeν̃eH

−
d + ẽ∗RAeẽLH

0
d + c.c..

(3.45)

If we look back at equation 3.44 we see that the first line represents the mass terms for the gauginos. The
second line contains trilinear (scalar)3 terms. These resemble the scalar sparticles part of the Yukawa terms
within the superpotential 3.40. As such it is sometimes the case that the trilinear couplings: Au,Ad andAe

are written as proportional to those Yukawa couplings. In equation 3.44 this has not been done. The third
line contains 3×3 mass terms for the squarks and sleptons. Note that tildes are required on the subscripts of
the squared mass matrices, but these are omitted for readability. The last line contains the supersymmetry
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breaking terms of the Higgs, which involves the Higgs doublets only. These terms will contribute to the
MSSM Higgs potential additional to µHu ·Hd generated terms present in the (unbroken) superpotential. An
important remark that stems from how LMSSM

soft is determined is the following expectation:

M1,M2,M3,Au,Ad,Ae ∼ msoft, (3.46)
m2

Q,m
2
L,m

2
ū,m

2
d̄,m

2
ē,m

2
Hu
,m2

Hd
, b ∼ m2

soft, (3.47)

where msoft is a characteristic scale expected to not be (much) larger than 103 GeV [11]. This expectation
kind of proposes a hierarchy of parameters within the MSSM soft-breaking mechanism.

The main downside of the soft-breaking mechanism is the introduction of an enormous number of param-
eters. After rotating away all dependent parameters we are left with 105 additional parameters relative to
the SM. This leaves a small blemish on the MSSM, as the sheer amount of parameters is phenomenologically
challenging.

We now have discussed all parts of the MSSM. For some overview, it is good to explicitly see which parts
are contained within the full Lagrangian of the MSSM.

LMSSM = LMSSM
free + LMSSM

chiral + LMSSM
gauge + LMSSM

soft , (3.48)

here LMSSM
free is the Lagrangian as explained in section 3.2, generalized over all fields as mentioned in section

3.3.1. LMSSM
chiral is the interaction Lagrangian for the chiral supermultiplets using the superpotential as discussed

in section 3.3.2. LMSSM
gauge contains the gauge interactions in the MSSM. This part is not discussed in this thesis

but is explored in [11]. The last part, LMSSM
soft denotes the soft breaking terms introduced in the MSSM, as

described in this section.

3.3.4 Particle Sectors
At this point, we have discussed the important building blocks of the MSSM: particle content, interactions
and the mechanism to separate the masses of sparticles and particles. Now we can have a look into some
sectors of the MSSM in more detail, where the focus will be on those sectors that will play an important role
for the research in this thesis.

Higgs Sector

The first sector we will have a look at is that of the two Higgs doublets and the electroweak symmetry-
breaking mechanism of the MSSM. Within the MSSM the Higgs doublets are defined as follows:

Hu = eiη
(
H+

u

H0
u

)
Hd =

(
H0

d

H−
d

)
. (3.49)

This definition pulls out a relative phase between the doublets: η. As a consequence, the vacuum expectation
values, which will be introduced later, are allowed to both be real. Given that we now have two doublets
this leads to a different potential, compared to the potential of the symmetry breaking mechanism of the
SM [15].

V (Hu,Hd) = (|µ2|+m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ2|+m2
Hd

)(|H0
d |2 + |H−

d |2)
+ (beiη(H+

u H
−
d −H0

uH
0
d) + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2.

(3.50)

The next step is to note that, like the SM breaking mechanism, we have the opportunity to use a SU(2)L
gauge rotation. This freedom is used to demand 〈H+

u 〉 = 0. In other words, its vacuum expectation value is
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zero. The linked minimisation requirement of ∂V (Hu,Hd)

∂H+
u

= 0 means that we also get 〈H−
d 〉 = 0. Ultimately,

this leads to a simplified potential:

V (Hu,Hd) = (|µ2|+m2
Hu

)|H0
u|2 + (|µ2|+m2

Hd
)|H0

d |2

− (beiηH0
uH

0
d + c.c.) +

1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2.

(3.51)

Just as in the SM, by setting vacuum expectation values (vevs) for the left-over, neutral, scalar fields we
introduce spontaneous electroweak symmetry breaking. In contrast to the SM, we now have two values to
set, therefore we need some labelling and notation:18

〈H0
u〉 = vu/

√
2, 〈H0

d〉 = vd/
√
2, tanβ =

vu
vd
. (3.52)

A nice remark to make here is the fact that the electroweak symmetry breaking laid out at this point is
intrinsically connected with the breaking of supersymmetry itself. For the electroweak symmetry breaking
to work, we need the potential (equation 3.51) to be bounded from below and its minimum to be stable,
away from the origin. Due to these two requirements it is no longer possible to have both m2

Hu
and m2

Hd

being zero [17]. As these parameters are SUSY breaking parameters introduced in section 3.3.3, we explicitly
introduce SUSY breaking through electroweak symmetry breaking.

The SM vev (v) is related to the masses of the electroweak bosons: MZ and MW . As we want the MSSM
to be an extension of the SM, and thus keep the same observed masses for these bosons, we require the
following relation between the vev’s:

v2 = v2u + v2d =
4m2

Z

g2 + g′2
, (3.53)

where the last equation only holds at tree level.19 With all of the above definitions and relations we can
expand the Higgs doublets around the vevs:

eiη
(
H+

u

H0
u

)
=
eiη√
2

(
0

vu + φu + iσu

)
,

(
H0

d

H−
d

)
=

1√
2

(
vd + φd + iσd

0

)
(3.54)

Subsequently, we then minimize the potential, in such a way that vu,d stay the corresponding vacuum
expectation value:20

0 =
∂V (Hu,Hd)

∂φu,d
|σu,d=φu,d=0, 0 =

∂V (Hu,Hd)

∂σu,d
|σu,d=φu,d=0. (3.55)

This leads to four equations, of which three are independent:

|µ|2 +m2
Hu

− |b| cotβ cos (φb + η)− 1

2
m2

Z cos 2β +
1

vu

∂V (Hu,Hd)corr

∂φu
= 0

|µ|2 +m2
Hd

− |b| tanβ cos (φb + η) +
1

2
m2

Z cos 2β +
1

vd

∂V (Hu,Hd)corr

∂φd
= 0

sin (φb + η)|b|+ 1

vd

∂V (Hu,Hd)corr

∂φu
= sin (φb + η)|b|+ 1

vu

∂V (Hu,Hd)corr

∂φd
= 0,

(3.56)

where b = |b|eiφb . The above equations are what are called the tadpole equations. Any valid MSSM model has
to satisfy these equations. As a result, we are left with three fewer free parameters within all those possible
parameter configurations for the MSSM. To make sure that the used parameter configurations follow these
equations, phenomenological calculation software takes N - 3 parameters as input and calculates the other
3. The problem is that not all software has made the same choice of ’independent parameters’, resulting in
convention problems [17]. Possible choices for the free parameters are given in section 3.4.1.

18Again, given the explicit phase within equation 3.49 these are real-valued numbers.
19Equations given are conventionally at tree-level, if not specified otherwise.
20The mixing of φ and σ seen here is due to the introduction of eiη .
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Due to the two doublets we have eight fields associated with the Higgs mechanism. Three of those are
absorbed by the longitudinal polarisation of the W and Z bosons through Goldstone bosons. The other five
contribute to five mass eigenstates: the charged scalars H+ and H− and three neutral ones. Our interest
lies with the three neutral bosons.

To discuss the three neutral bosons, we first look at the case in which no extra CP violation is allowed
in SUSY.21 In this case, we have two Higgs bosons (denoted by the h0 and H0 mass eigenstates) that are
CP even, and one CP-odd, pseudo-scalar boson (denoted by the A0 mass eigenstate). If there is no added
CP violation, these do not mix, and we find the following relation between gauge eigenstates and mass
eigenstates [17, 15]: (

H0
u

H0
d

)
=

1√
2

(
vu
vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
. (3.57)

Here G0 is one of the Goldstone bosons that has been introduced. The rotation matrices are defined as
follows:

Rα =

(
cosα sinα
− sinα cosα

)
, Rβ0 =

(
sinβ0 cosβ0

− cosβ0 sinβ0

)
, (3.58)

where in practice β0 coincides with β as introduced in equation 3.52.

However, if extra CP violation is introduced the three neutral states start to mix. In that case, we need to
make a constraining remark on the possibilities. CP violation would introduce rare decays from the lightest
neutral Higgs boson to W and Z bosons [19]. These decays are experimentally limited [20], resulting in a
limit on the mixing of the pseudo-scalar component (A0) and the SM-like Higgs (h0) of about 10%.

In the case that extra CP violation relative to the SM is allowed we define the gauge eigenstates slightly
differently:

φ0 = (
√
2(<{H0

d − vd√
2
},<{H0

u − vu√
2
},=(H0

d),=(H0
u))

T ). (3.59)

This definition does still include the neutral Goldstone boson. As in the case without extra CP violation,
we have to define a mixing matrix. This mixing matrix defines the physical mass eigenstates in terms of φ0,
in other words [21]:

− φ0TM2
φ0φ0 = −φ0TSTS∗M2

φ0S†Sφ0, (3.60)
where the mass eigenstates in this case will be mass ordered: (H1,H2,H3). This mixing matrix S should
be defined in such a way that the neutral Goldstone boson is explicitly projected out as that Goldstone
boson should not be represented within the mass eigenstates but within the longitudinal polarization of the
electroweak bosons. There are multiple conventions [17], one of which is written out below:

H1

H2

H3

 = Sφ0 =

O3×3

0
0
0



√
2(<{H0

d − vd√
2
}√

2(<{H0
u − vu√

2
}

A0

G0

 =

O3×3

0
0
0



1 0 0 0
0 1 0 0
0 0 sinβ cosβ
0 0 − cosβ sinβ

φ0. (3.61)

Within this convention, O3×3 defines the decomposition of the physical mass eigenstates in an intermediate
basis of states. This intermediate basis of states is shown in the explicitly given column vector in 3.61. We
recognize the second rotation matrix of equation 3.58 in the lower right corner of the explicit 4 × 4 matrix
in the last step of 3.61, as it mixes the same states as the imaginary part of 3.57. Since the third and
fourth components of φ0 are defined as the imaginary part of H0

d and H0
u we do not see explicit imaginary

contributions in 3.61. There is no explicit form ofO3×3 given because it is computed through loop corrections,
as there is no extra CP violation present (within the Higgs potential) at tree level.
There are two last remarks. It can be estimated [22] that the mass of the lightest, neutral Higgs boson is
bounded by

mh0 . 135 GeV. (3.62)
21Relative to the CP violation present within the SM.
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This bound is very important as it is the only currently falsifiable prediction of the MSSM, which has been
found consistent with experiment. Therefore keeping the MSSM alive as a viable theory beyond the SM.

Furthermore, given its closeness to the observed SM Higgs-boson mass, the lightest Higgs boson within
the MSSM is often called the SM-like Higgs. If we compare its properties with that of the SM Higgs, they
also act similar unless the two CP-even Higgs bosons are particularly close in mass. However, that scenario is
mostly ruled out by experiments [20]. The opposite scenario, where the two CP-even Higgs bosons are very
far apart in mass, is also possible and not yet ruled out by experimental data. In this scenario, the SM-like
Higgs decouples from the other bosons. As a result, the couplings and vertices of the SM Higgs bosons all
coincide with the couplings of the h0 boson. All new physics then becomes related to the H0 boson. This
decoupling limit is found when α (of equation 3.57) goes towards the limit of β − π/2. For more details the
reader is referred to [17, 15].

Neutralino Sector

The next sector to have a look at is that of the neutral electroweak gauginos, the superpartners of the neutral
gauge bosons of the SM. Beforehand it is important to note that all expressions in the next two sections are
at tree level. Beyond tree level, masses become sensitive to loop corrections. This makes general expressions
very difficult as these corrections are dependent on the chosen particle spectrum as well. Therefore, in prac-
tice, non-tree level terms are always calculated using software.

It is possible to combine the neutral electroweak gauginos and the neutral higgsinos into mass eigen-
states. The combination of these four mass eigenstates is called neutralinos. In the gauge eigenstates,
ψ0 = (B̃, W̃ 0, H̃0

d , H̃
0
u), the mass term is given as follows:22

L = −1

2
(ψ0)TMχ̃0ψ0 + c.c., (3.63)

where the mass matrix is23

Mχ̃0 =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

 . (3.64)

In this matrix M1, M2 are the parameters introduced in LSOFT
MSSM and µ is introduced in the superpotential.

The other off-diagonal terms arise due to the result of couplings between Higgs bosons and other gauginos,
where the Higgs fields are replaced by their respective vevs. Note that these last terms can also be written
in terms of β, defined via tanβ = vu

vd
, and Weinberg angles [11].

To obtain the mass eigenstates that we would call neutralinos, we diagonalize the matrix in equation 3.64
via a unitary matrix N :

χ̃0
i = Nijψ

0
j . (3.65)

such that:

N∗Mχ̃0N−1 =


mχ̃0

1
0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4

 . (3.66)

Due to the symmetry of the complex mass matrix, there is only the need for one unitary matrix for diago-
nalization. Normally we would need two, to both diagonalize MM† and M†M .

22Small note: If we were to be working in a 4-component (Dirac) notation there would be a h.c. instead of c.c.. In that case
we would first find the 2-spinor component of a Majorana field with the hermitian conjugate term providing the other 2-spinor
component for the full Dirac spinor.

23We omit the relative Higgs doublet phase eiη within the lowest row and right-most column whenever vu is also present.
This choice is made for clarity and the fact that within the research of this thesis we choose η = 0 through phase rotations.
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On the diagonal of 3.66 we then find the mass terms of the neutralinos, which are the absolute values
of the eigenvalues of 3.64. The convention is to use a mass hierarchy for the neutralinos. Therefore we
have: m

χ̃0
1
< m

χ̃0
2
< m

χ̃0
3
< m

χ̃0
4
. It is possible to determine these masses in closed form, in terms of

M1, M2, µ, tanβ, g, g′ and the Higgs vevs. However, these expressions are not that illuminating as they
are very complicated. In the literature, it is not uncommon to choose N as real and orthogonal when there
is no extra CP violation. But note that this does allow for negative mass terms for the neutralinos. These
can be rotated away using chiral rotations, thus negative mass terms do not equal negative physical masses
[17]. In this thesis this convention is adopted, as it is also adopted within the calculation software used.

If the lightest of the neutralinos is the lightest of all sparticles it is a very good dark matter candidate.
It would be stable since it can only decay into SM particles, which violates R-parity, while also having no
electromagnetic charge and strong-force colour. Naturally, if the lightest neutralino is the LSP, research
into its composition and the important couplings that can be derived from that becomes very relevant. Its
composition is determined by the first row of N , where the amount of bino, wino and higgsino mixing of the
lightest neutralino is given by |N11|, |N12|and

√
|N13|2 + |N14|2 respectively. In general, if |µ| >> |M1,2| we

expect the LSP to be dominated by the gauginos, thus being wino or bino-like. If the situation is reversed,
the LSP is more higgsino-like. Note that this requires these parameters to be much larger thanMZ while still
having a clear hierarchy among themselves, as otherwise the other off-diagonal terms within 3.64 introduce
more mixing.

Chargino Sector

We now have discussed the neutral sector. Naturally, the next point of attention is then given to the charged
electroweak gauginos and the charged higgsinos. These are called charginos and can be denoted by χ̃±

i within
their mass eigenstates. Again, these are mass ordered, thus χ̃±

1 is the lightest chargino.

If we use ψ± = (W̃+, H̃+
u , W̃

−, H̃−
d ) we get the following mass term for the charginos:24

L = −1

2
(ψ±)TMC̃ψ

± + c.c.. (3.67)

Here the mentioned mass matrix can be written in 2× 2 block form as:

MC̃ =

(
0 MT

χ̃±

Mχ̃± 0

)
, (3.68)

where the 2× 2 mass matrix of charginos reads:25

Mχ̃± =

(
M2

gvu√
2

gvd√
2

µ

)
. (3.69)

The next step is, of course, analogous to the neutralino sector: introduce a way to diagonalize this matrix
towards mass terms for the individual charginos. However, in this case we need two unitary matrices to do
so: U and V , due to the mass matrix not being symmetric. In this case, we design the unitary matrices
such that:

U∗Mχ̃±V −1 =

(
mχ̃±

1
0

0 mχ̃±
2

)
. (3.70)

This in turn means that we can define the relation between gauge eigenstates and physical mass eigenstates
as: (

χ̃+
1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
χ̃−
1

χ̃−
2

)
= U

(
W̃−

H̃−
d

)
. (3.71)

24The same note as for neutralinos regarding 4-component vs 2-component notation and h.c. instead of c.c. can be made
here. However in this case we do not work with a Majorana field due to the charges present.

25Just as in 3.64 we have omitted the phase factor eiη in the vu term as we will fix η = 0 through phase rotations.
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We get four eigenvalues of the 4× 4 matrix of 3.68, but due to its block form and the usage of two unitary
matrices these four values are doubly degenerate. Thus, the lightest negatively charged chargino has the
same mass term as the positively charged one.

It is now possible to again have a look at the possible compositions of the charginos, where a chargino
can be wino-like or higgsino-like. For a good overview of the possible compositions of the charginos and
neutralinos table 3.3 is presented.

Table 3.3: The dominant contribution within the composition of the neutralinos and charginos. Note that for
the charginos the ± sign is omitted for clarity. Furthermore, we assume all three parameters: µ,M1andM2 to
be much larger thanMZ while still having a clear hierarchy among themselves, as otherwise more complicated
mixing is present. [17]

Parameter Hierarchy Chargino Composition
χ̃±
1 , χ̃

±
2

Neutralino Composition
χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

|M1| < |M2| < |µ| W̃ , H̃ B̃, W̃ , H̃, H̃

|M2| < |M1| < |µ| W̃ , H̃ W̃ , B̃, H̃, H̃

|M2| < |µ| < |M1| W̃ , H̃ W̃ , H̃, H̃, B̃

|M1| < |µ| < |M2| H̃, W̃ B̃, H̃, H̃, W̃

|µ| < |M1| < |M2| H̃, W̃ H̃, H̃, B̃, W̃

|µ| < |M2| < |M1| H̃, W̃ H̃, H̃, W̃ , B̃

3.4 pMSSM
All of the above sections denote particle sectors of the MSSM. However, as already mentioned before, the
MSSM has a phenomenological downside: its enormous parameter space. Therefore, the focus of this thesis
is on two more restricted versions of the MSSM: the pMSSM and the cpMSSM. In this section the focus will
be on the first, explaining its assumptions and their consequences.

To reduce the number of parameters, the pMSSM imposes four requirements on the theory:

1. No new sources of CP violation, relative to the SM.

2. The first and second generation sfermions are mass-degenerate.

3. The sfermion mass matrices are diagonal, i.e. no sfermion mixing.

4. The trilinear couplings within equation 3.44 for the first and second generation sfermions are set to
zero.

The first and third requirements follow from strict experimental bounds. For the first this is of course
the amount of CP violation, whereas the third is based on the upper bound of flavour violation [23]. The
other two constraints limit the enhancement of rare decays and meson mixing. Examples of rare decays are:
µ− → e−γ,Bs → µ+µ− and τ− → µ−γ. The fourth constraint also has a further justification in the fact
that, as explained, the trilinear couplings are linked with the Yukawa couplings. As we know, the Yukawa
couplings are related to the mass of the corresponding fermion, therefore we can use that relative to the top,
bottom and τ mass the other Yukawa couplings are approximately zero. Then, given the mentioned link,
we can somewhat justifiably assume the trilinear couplings to also be zero, except for the heaviest (third)
generations. Lastly, the Higgs sector is now as described without CP violation, as demanded by the first
requirement,
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3.4.1 Parameters
Through the usage of these requirements the parameter space of the MSSM has been reduced to 19 param-
eters. All these parameters are shown and briefly explained in table 3.4.

Table 3.4: The 19 (soft) SUSY breaking parameters of the pMSSM and a small description [17].

Symbol Description
mQ̃1

Mass of the left-handed squarks of the first and second generation.
mQ̃3

Mass of the left-handed squarks of the third generations.
mũR

Mass of right-handed up-type squarks of the first and second generation.
md̃R

Mass of right-handed down-type squarks of the first and second generation.
mt̃R

Mass of right-handed top squark.
mb̃R

Mass of right-handed bottom squark.
mL̃1

Mass of the left-handed sleptons of the first and second generation.
mL̃3

Mass of the left-handed slepton of the third generation.
mẽR Mass of right-handed sleptons of the first and second generation.
mτ̃R Mass of right-handed stau.

M1,M2,M3 Masses of the bino, wino and gluino.
At,Ab,Aτ Trilinear couplings of the third generation: stop, sbottom and stau.

tanβ Ratio of the vacuum expectation values of the two Higgs doublets.
m2

Hu
,m2

Hd
The squared Higgs masses within LMSSM

SOFT .

At this point two model parameters are left: |µ| and b. These can be calculated using the tadpole equations
(3.56). However, this choice of dependent and free parameters is no more than a choice. It is possible to
have |µ| and/or b as a free parameter as well. To be more precise, we can choose four free parameters from
the set of m2

Hu
,m2

Hd
, tanβ, b, |µ| andMZ ,26 where the remaining two are then determined by the tadpole

equations.27

3.5 cpMSSM
The pMSSM is studied quite a lot, however we are also looking slightly beyond. One of the possibilities is
to have a look at CP-violating observables with SUSY. For these observables, the pMSSM is not a suitable
model, as the pMSSM explicitly does not introduce extra CP violation. Therefore we will look at another
model for these observables called the cpMSSM. Within the cpMSSM the first requirement of the pMSSM
(as listed in section 3.4) is lifted, resulting in extra CP violation being allowed compared to the SM. All
other requirements mentioned remain intact.

Aside from research into interesting CP-violating observables within SUSY, lifting the removal of CP-
violation has more benefits. One of such benefits is related to the antimatter-matter asymmetry within
the universe, the so-called baryon asymmetry. This asymmetry describes the fact that within the observable
universe there is a clear imbalance between the amount of matter and anti-matter. Currently, we do not
know how this imbalance came to be, as the SM itself cannot fully explain it. In 1967, Andrei Sakharov
proposed three requirements for an interaction that could generate this imbalance [7], one of which is the
existence of enough CP violation. Therefore by allowing extra CP violation within SUSY, we might also
solve another problem.

As a result of re-introducing CP-violation, nine parameters can, in principle, obtain a phase. These are
listed in table 3.6. However, only six of those are independent. Firstly, it should be noted that there are two

26Here note that even though MZ is an experimentally measured parameter, there is no inherent reason in the context of the
theory for this parameter/value to not depend on other parameters.

27The sign of µ cannot be determined from the tadpole equations, and should always be specified as input for any calculation
software.
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accidental global U(1) symmetries present within the MSSM Lagrangian. These are:

φ→ eiQaωaφ, φ→ eiQbωbφ, (3.72)

where φ represents an arbitrary field. Further Qa and Qb are the U(1) charges and ωa and ωb the generators
[24, 25, 26, 17]. These rotations leave the Lagrangian invariant if we use the correct charges (table 3.5) and
transform the parameters according to:

µ→ e2i(ωa+ωb)µ

b→ e4iωab

Mj → e2i(ωa−ωb)Mj

Ak → e2i(ωa−ωb)Ak

(3.73)

Table 3.5: Charges associated with the U(1)a and U(1)b symmetries that can still be introduced, while
keeping the Lagrangian invariant. Note that for the first row, the charges are for the left-handed fields. The
non-conjugated right-handed fields would have had opposite charges.

Sparticles Qa Qb Particles Qa Qb

sfermions 0 1 fermions 1 0
higgsinos -1 -1 Higgs bosons -2 0
gauginos -1 1 gauge bosons 0 0

The above transformations present us with the possibility to rotate away two phases that can be introduced
for these parameters. These would be introduced through a eiφ factor that can now be absorbed by the
transformation of 3.73 by setting ωa and ωb appropriately. Typical choices in this case are to set the phase of
b and M3 to zero, which is also the case within this thesis. Secondly, we, again, have the tadpole equations
(3.56), which on top of two parameters also fix one phase. In the case of this thesis this is used to set η = 0.

As was the case within the pMSSM we still can use the tadpole equations to set our free parameters.
Table 3.6 lists all parameters of the cpMSSM and the possible CP-violating phases that can be introduced,
of which 25 are free.

Table 3.6: All cpMSSM parameters and the possible phases, of which 25 (19 real parameters and 6 phases)
are independent [17].

Real Parameters Phases
mQ̃1

mQ̃3
mL̃1

mL̃3
tanβ |M1| |At| φM1

φAt
η

mũR
mt̃R

mẽR mτ̃R |b| |M2| |Ab| φM2
φAb

φb
md̃R

mb̃R
m2

H̃d
m2

H̃u
|µ| |M3| |Aτ | φM3

φAτ
φµ
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Chapter 4

Observables

As mentioned in chapter 1 this thesis will have a look at the effect of CP-violating phases within the cpMSSM
on the dark matter relic density. As mentioned in section 3.5 the introduction of those phases is very limited
by experimental observations. This chapter will present and explain the observables in the context of the
(c)pMSSM that are important for this thesis.

4.1 Electron Electric Dipole Moment
We first will have a look at the electric dipole moment and magnetic moment of leptons. These two ob-
servables are very closely related and are both very sensitive to physics beyond the SM. In the case of the
electric dipole moment of the electron the SM itself predicts a value that is orders of magnitudes below the
current limits. Depending on the SUSY parameters, SUSY can give rise to large measurable contributions,
making these observables prime objects to study SUSY itself.

In this thesis we will mostly focus on the electric dipole moment of the electron. The electron Electric
Dipole Moment (eEDM) is one of the most stringent observables for the added phases of the cpMSSM. A
smaller focus within this thesis will also be on the magnetic moment of the muon. This observable partially
constrained the training data used within this thesis, cf. chapter 5. Also, the magnetic moment of the muon
is of further interest due to a long-standing, possible 4σ discrepancy of its experimental value and the SM
prediction [27, 28, 29].1 However, there is much discussion about this discrepancy. This discussion mostly
focuses on the value that is predicted by the SM. Two different ways to determine that value (data-driven
and lattice QCD) report quite different results [30, 28, 29, 31, 32, 33]. With enough difference between them
to either have agreement between SM and experiment or fully falsify the SM prediction.

Both observables represent an interaction of the lepton’s spin with the electromagnetic field. In the classical
Hamiltonian this is represented as:

H = −~µ · ~B − ~d · ~E, (4.1)

where we define the moments for the lepton l as

~dl = dl~σ = 2dl~S, (4.2)

~µl = gl
−e
2ml

~S, (4.3)

with ~S = ~σ/2 the spin of the lepton. Here gµ is called the ‘g-factor’, and at tree level is calculated to be 2
for all leptons. Actually, the interest goes to the anomalous magnetic moment:

al =
gl − 2

2
, (4.4)

1Note that officially the discrepancy is with the anomalous magnetic moment (aµ), which is defined in this section.
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which defines the difference of that g-factor with respect to its tree-level value.

The CP violation of the EDM term is understood classically in equation 4.1. A T transformation will
flip the spin and the magnetic field. Because the magnetic field is present in the first term, this does not flip
the sign of the first term. However, for the second term we do get a flip in sign: −d(~S · ~E) → +d(~S · ~E).
By the CPT invariance of the full model we then directly get that CP must also be violated by the EDM term.

To determine the exact expressions for the eEDM we start at the general structure of the electromagnetic
interaction of an electron:

p1

e−

q

γ

p2

e−

The corresponding matrix element is given by:

iM = −ieū(p2)Γµu(p1)εµ(q), (4.5)

where Γµ denotes the correct vertex structure and εµ(q) the polarization vector of the photon. For intuition,
at tree level this would reduce to:

iM = −ieū(p2)γµu(p1)εµ(q). (4.6)

The next step is to determine which part of that general diagram corresponds to an observable associated
with it. This procedure first requires us to know which loop diagrams we should consider. SM diagrams
only start to contribute to the eEDM at four-loop order. The only source of CP violation within the SM is
the CKM matrix,2 which will not emerge in matrix elements at one-loop order. At second loop order the
non-absorbed phases of the CKM matrices will cancel each other, and thus no CP violation is present. At
three-loop level the diagrams, unexpectedly, add up to zero [34]. Finally, at 4-loop order there is an SM
contribution towards the eEDM [35]:

de ≤ 10−38e cm, (4.7)

denoted in the conventional unit for an EDM: [e cm], which corresponds with 1/1.973269788 ·10−14 e GeV−1

[36]. Within the calculation software the baseline eEDM value of the SM is actually set to 10−37.

Given this extremely low SM value, for the main contribution to the prediction of the eEDM by the cpMSSM
we only have to look at SUSY diagrams. At first order the contributing SUSY diagrams are:

e− e−

γ

ν̃e

χ̃−
q

2As mentioned before we assume only left-handed neutrinos to exist, if right-handed neutrinos were present the PMNS matrix
would introduce another source of CP violation.
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e− e−

γ

χ̃0

ẽ−
q

.

It is possible to single out the contribution of those diagrams to the eEDM [17].3 The 1-loop contribution
of the cpMSSM becomes:(

de
e

)χ̃±

=
1

16π2

2∑
k=1

mχ̃±
k

m2
ν̃e

=(−gVk1yeUk2)A(m
2
χ̃±
k

/m2
ν̃e
),

(
de
e

)χ̃0

=
−1

16π2

4∑
i=4

2∑
m=1

mχ̃0
i

m2
ẽm

=((GR
im)∗GL

im)B(m2
χ̃0
i
/m2

ẽm).

(4.8)

All coupling terms in equation 4.8 are expressed in Appendix A.2 and all loop functions (A and B) in Ap-
pendix A.3. V and U are the mixing matrices of the charginos. Further, the m = 1, 2 subscript for the
selectron denotes the left or right-handed field and i = 1, 2, 3, 4 denotes the possible choices of neutralino
eigenstate used as propagator, with k = 1, 2 denoting the chargino mass eigenstate.

The calculation software that will be used in this thesis calculates the contributions of the eEDM up to
dominant 2-loop diagrams.4 Therefore the expression for these dominant 2-loop diagrams will also be given.
Note that the 2-loop corrections might be of the same order of magnitude as the 1-loop corrections, as the
SUSY parameters that determine these corrections can be different from those that determine the 1-loop
corrections.

3This is done through the usage of projection operators. For more clarification/explanation see [17].
4For more details regarding the calculation software see C.
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For 2-loop corrections we have to look at the following SUSY diagrams:

e− e−

γ

Hi γ

τ̃ , b̃, t̃

e− e−

γ

Hi

γ

τ̃ , b̃, t̃

e− e−

γ

Hi γ

τ, b, t

e− e−

γ

Hi γ

χ̃±

Within these diagrams Hi denotes all three neutral Higgs bosons. The four diagrams above are called the
Barr-Zee diagrams [37].

Again, by using projection operators we can determine the exact expression for 2-loop contribution to the
eEDM within the cpMSSM [17]. In most circumstances this is predominantly induced by the CP-violating
phases of the charginos and the third generation fermions and sfermions [38]:(

de
e

)BZ

=
∑
q=t,b

{
3αemQ

2
qme

32π3

3∑
i=1

gPHie+e−

m2
Hi

∑
j=1,2

gHiq̃∗j q̃j
F (τq̃ji)

+
3αem2Q2

qme

8π2s2Wm2
W

3∑
i=1

[
gPHie+e−g

S
Hiq̄q f(τqi) + gSHie+e−g

P
Hiq̄q g(τqi)

]}

+
αemme

32π3

3∑
i=1

gPHie+e−

m2
Hi

∑
j=1,2

gHiτ̃∗
j τ̃j

F (ττ̃ji)

+
α2

emme

8π2s2Wm2
W

3∑
i=1

[
gPHie+e−g

S
Hiτ+τ− f(ττi) + gSHie+e−g

P
Hiτ+τ− g(ττi)

]

+
α2

emme

4
√
2π2s2WmW

3∑
i=1

2∑
j=1,2

1

mχ̃±
j

[
gPHie+e−g

S
Hiχ̃

+
j χ̃−

j

f(τχ̃±
j i) + gSHie+e−g

P
Hiχ̃

+
j χ̃−

j

g(τχ̃±
j i)

]
.

(4.9)

Again, all couplings and loop functions are given in Appendix A.2 and A.3. Futhermore, we use τxi =

m2
x/m

2
Hi
, αem = e2

4π , cW = cos (θW ) = mW /mZ , sW = sin (θW ) =
√

1− c2W and Qq as the charge of the
quark q in units of e.

Currently, the most precise measurement of the eEDM is that of [39]. In this experiment the eEDM was
determined to have an upper limit of:

de ≤ 4.1 · 10−30 e cm. (4.10)
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However, this thesis is meant as an extension of (and a comparison with) a previous study [17]. This previous
study was published around the same time as this new limit, obstructing it from actually using the new limit.
Therefore, to make any comparison between this work and the important works that came before, we opted
to use an older eEDM constraint. This upper limit is [40]:

de ≤ 1.1 · 10−29 e cm, (4.11)

where this limit has a 90 % confidence level. However, the newer limit should always be kept in mind for
future research and/or the future outlook of this thesis.

4.2 Relic Density
This thesis will try to study the effects that CP-violating phases of the cpMSSM have on the relic density.
How we will aim to do so, and what type of machine learning will be used is to be discussed within chapters
5 and 7. However, before we can do so we need to understand what the relic density is. This section aims
to fill that gap.

The dark matter relic density is exactly as its name states: the relative amount of Dark Matter (DM)
particles left in a stable state, i.e. a relic from previous times. In the early universe the temperature was
high enough for the (pairwise) creation of DM particles or particles that could become DM. In this hot, early
universe the number density n of DM particles follows the Boltzmann equation [41]

dn

dt
= −3Hn− 〈σannv〉(n2 − n2eq), (4.12)

where H is the Hubble parameter, expressing the time-dependent expansion rate of the universe, and 〈σannv〉
is the velocity-weighted cross-section of the annihilation process of the DM candidate into SM particles in
the early universe. Usually the Hubble parameter is expressed as H = 100h km s−1 Mpc−1 [36].5 Thus,
once the number density reaches an equilibrium (neq) the number density only goes down due to this ex-
pansion. After a certain amount of time the universe cools down due to this expansion, and the DM density
has dropped to such a level that there will not be enough DM particles around anymore for annihilation
or creation processes to occur at all. For annihilation the density of particles around has literally become
too low. Moreover, for creation the temperature has become too low, resulting in the process becoming
kinematically impossible. Thus, at that point, only decay would still be a possibility. However, our LSP DM
candidate can neither decay into only SM particles due to R-parity,6 nor into SUSY particles since it is the
lightest particle of that type. Thus, eventually, a stable number of DM particles is reached. The total mass
density left is called the relic density and is thus determined by the number of DM particles left at the point
that the universe is sufficiently cooled down. The above-described process is called thermal freeze-out.

Currently, experimental observations of the Planck satellite put the present-time relic density, ΩPlanckh
2,

at 0.120± 0.001 [42]. For practical purposes it is okay to accept models that predict relic densities between
0.09 and 0.15. This range is deemed okay as on top of an experimental uncertainty there also is a larger
theoretical uncertainty. Especially, the lower values are considered viable. The idea in that case is that the
SUSY DM candidate could only be a part of the total dark matter. The relic density ‘leftover’ by SUSY
could thus be explained by another type of DM.

The amount of DM left is influenced by the parameter configuration of the pMSSM or cpMSSM model.
First of all, the parameters determine which particle is the lightest SUSY particle. For this particle to be a
suitable DM particle, it needs to have no charge and no colour. Thus we need the lightest SUSY particle to
be the lightest neutralino or sneutrino. However, the sneutrino as DM candidate is experimentally excluded
[43]. If the LSP is a neutralino, the parameters still influence the value of the relic density in other manners

5Strictly speaking we have no evidence from this time. The cosmic microwave background is the earliest evidence we have,
which originates after the end of the early universe.

6There are MSSM models that do not impose R-Parity, in which case the DM particle would be allowed to decay. R-parity
violating models are not considered within this thesis.
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too. This happens through 〈σannv〉. In other words, the parameters influence how efficiently the DM particle
annihilates within the early universe. The more efficient, the fewer DM particles left after freeze-out, the
lower the relic density. A good example is that of annihilation using a scalar Higgs boson as s-channel
propagator:

χ̃0
1

χ̃0
1

f

f̄

H1

Of course, this process becomes more efficient if the numerator within the propagator becomes closer to zero.
This resonance happens when: mχ̃0

1
≈ mh0/2. Note that we are assuming a low enough temperature of the

universe for this non-relativistic resonance.7 As this resonance is determined by the mass of the LSP, the
efficiency of the process is governed by the associated parameters, which are: M1,M2, µ and tanβ. Three of
these parameters are free parameters of the model. However, it could also be that other parameters play a
strong role. Examples would be parameters included in the trilinear soft SUSY breaking terms.

It is good to note that there is another option besides (self-)annihilation: co-annihilation. This means that
another particle, or other particles, annihilate(s) with the DM particle into only SM particles: χ̃0

1 + X →
SM + SM . In that case we get, for co-annihilation partners i and j:

dn

dt
= −3Hn− 〈σco-annv〉(n2 − n2eq), (4.13)

〈σco-annv〉 =
N∑

i,j=1

〈σijvij〉
neq
i

neq

neq
j

neq . (4.14)

To clarify: N is the number of particles that participate in co-annihilation and i and j are labelling those
particles. One of the N particles has to be the DM particle for which neq

DM = neq. Further vij and σij are the
relative velocity and co-annihilation cross-section respectively for particles i and j. However, co-annihilation
is suppressed by the temperature within the early universe T and the mass of the non-DM particle:

neq
j

neq ∝ exp

(
− mj −mDM

T

)
. (4.15)

Therefore, for co-annihilation to provide a significant contribution to the value of the relic density we need
the mass of the co-annihilation partner to be close to the mass of the DM candidate.

In this thesis we will categorize pMSSM points according to the following dominant processes for the relic
density:

• H1/H2-funnel: Annihilation with a H1/H2 scalar boson featuring as propagator in the s-channel.

• Z-funnel: Annihilation with a Z boson featuring as propagator in the s-channel.

• Chargino Co-annihilation: Co-Annihilation with the lightest chargino.

• Neutralino Co-annihilation: Co-Annihilation with the second lightest neutralino.

• Sbottom Co-annihilation: Co-Annihilation with the lightest sbottom.

• Stau Co-annihilation: Co-Annihilation with the lightest stau.
7This process is dominant in the phase before freeze-out, where only DM DM → SM SM is realistically possible due to the

ever cooling down temperature of the universe.
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• Slepton Co-annihilation: Co-Annihilation with the lightest slepton eigenstate of the first two genera-
tions.

• Stop Co-annihilation: Co-Annihilation with the lightest stop.

• Squark Co-annihilation: Co-annihilation with the lightest squark eigenstate of the first two generations.

• Gluino Co-annihilation: Co-annihilation with the gluino.

• Bulk: a (c)pMSSM model in which none of the above processes is dominant.

For most of these categories we will determine the effect of CP-violating phases on the dark matter relic
density. Only for the categories of stop, squark and gluino co-annihilation the pMSSM points needed are not
phenomenologically interesting, as these points would require TeV masses for the lightest neutralino. These
types of points are not close to being probed by current experiments. Therefore, we will not study these
categories in chapter 7.
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Chapter 5

Machine Learning Methodology

One of the aims of this thesis is to create a new sampling method to get cpMSSM points from a given pMSSM
point more efficiently and effectively. After formalising this goal, this chapter will introduce and explain the
machine learning model that ultimately was used as sampler. In addition, the dataset creation, learning
of the model and inference of the model are introduced in this chapter. This chapter does not include the
performance of the model. How the performance is determined and the corresponding results will be presented
in the next chapter.

5.1 Context
Research into the cpMSSM is currently limited by the amount of (correct) parameter configurations (points)
that are easily available. The aim would be to replace the very ‘handcrafted‘ Gaussian Particle Filters
(GPF). GPFs work in essence through Gaussian sampling. Samples are generated using a Gaussian distribu-
tion centred around an already available (c)pMSSM point. This method has two main downsides: firstly, the
need for an already available point. Through using such a point a bias could be introduced, as this seems to
define a ‘starting point’ for exploration of the available parameter space. Such a ‘starting point’ cannot be
motivated by physics. Physics-wise a point is correct or not correct according to experimentally found limits
on observables. There is no natural predilection within that judgement, and thus no ‘starting point’. By
then introducing an artificial point to start your exploration, the sampling might get stuck at points similar
to the first, and might never be able to exhaustively explore the parameter space. In other words, it might
be biased towards one region of the parameter space. Secondly, GPFs are very reliant on fine-tuning by the
user. To combat the first downside, the user could set the Gaussian distribution to have extreme variances.
However, that would make the sampling rather naive and most likely rather inaccurate. It is exactly this bal-
ance of accuracy versus broadness of exploration/sampling that makes the usage of GPFs very nonautomated.

A replacement sampler would therefore have to work automated: given a pMSSM point, it directly out-
puts a set of phases that would create the required amount of cpMSSM samples based on the original
pMSSM point. Ideally, the sampler would be able to do this with a sufficient amount of accuracy, while also
exhaustively sampling the explorable phase-space. For a model to have such capabilities it would need to
understand the conditional distribution of those cpMSSM phases and be able to sample from it. Ideally, this
means that the model seemingly understands the physics behind the distribution. However, as long as the
performance is somewhat sufficient, this is not required: it just needs to work.

This thesis will aim to find this replacement sampler within the field of Machine Learning (ML). ML mod-
els naturally have the required inference procedure: give it an input and it outputs the desired output for
that input if learned correctly. Furthermore, ML models are still very efficient during inference, improving
overall efficiency as well. We formalize the goal of the machine learning model within the following ‘research
question’:
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Can we use a machine learning model to effectively and efficiently sample cpMSSM points conditioned on a
pMSSM point?

The methodology used to answer this question is described in this chapter.

5.2 Normalizing Flow
5.2.1 Motivation
The first sub-question that comes to mind after posing this question is what type of ML model to use.
Naturally, more than one answer is possible. However, the choice for a sampler becomes slightly easier if we
take into account the background of the goal. Most sampling methods learn to sample via the replication
of training data. Examples of these methods are: Variational AutoEncoders and Generative Adversarial
Networks [44, 45]. In essence, this is contrary to our goal: if we already had a representative set of data,
why need a new sampler? We need to, as best as possible, understand the distribution of points allowed.
Such an understanding hopefully enables the model to sample new cpMSSM points as well, not just more of
the same. There is currently only one conventional (conditional) sampler that had such a motivation at its
core when it was introduced: Normalizing Flows [46].

In contrast to the other methods, this model learns via directly optimizing the likelihood of the training
data given. Thus, instead of replicating the data it learns an underlying distribution (likelihood) that should
fit the training data. This could lead to the model outputting samples that do not really resemble the points
of the training data but do follow the same distribution. The idea is that this should correspond with correct
samples according to the experimental limits used for the training data.

5.2.2 Explanation
A normalizing flow consists of two core elements:

• A base distribution that is both easy to sample and has an easily calculated likelihood

• A set of ‘bijectors’: these are bijective, parameterized transformations with a known Jacobian.

The Jacobian is defined as:
Ji,j = det( ∂y

i

∂xj
), (5.1)

for y(x) a general transformation, and i, j labelling the dimensions of the domain and range of that transfor-
mation. The idea behind these elements is that a complicated distribution can be sampled by sampling from
the base distribution and transforming the sample through the bijectors. The parameters of the bijectors
are then learned such that the ultimate distribution resembles that of the training data distribution. We
denote the base distribution by p0 and the distribution after i transformations/bijectors as pi. Furthermore,
the likelihood of point z0 sampled from p0 is denoted by: p0(z0). Lastly, by indicating the bijectors by f we
have:

z1 = f(z0; θ) and z0 = f−1(z1; θ), (5.2)

where θ denotes the learnable parameters of that specific bijector. Because the Jacobian of the bijector is
known, according to the second requirement, we find for the (reversed) transformation of p1 tot p0:

p1(z1; θ) = p0(z0)

∣∣∣∣det∂z0(θ)∂z1

∣∣∣∣ (5.3)

= p0(z0)

∣∣∣∣det( ∂z1
∂z0(θ)

)−1∣∣∣∣ (5.4)

= p0(z0)

∣∣∣∣det ∂z1
∂z0(θ)

∣∣∣∣−1

, (5.5)
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where z0(θ) = f−1(z1, θ) and we are allowed to pull out the inverse, as the transformations, and thus their
Jacobians, are injective. The equation can be rewritten as:

log p1(z1; θ) = log p0(z0)− log

∣∣∣∣det ∂z1
∂z0(θ)

∣∣∣∣. (5.6)

Equation 5.6 is then generalized for K bijectors to:1

log pK(zK ; θ) = log p0(z0)−
K∑
i=1

log

∣∣∣∣det ∂zi
∂zi−1(θ)

∣∣∣∣. (5.7)

Equation 5.7 shows the original motivation of normalizing flows. To be able to sample from the target
distribution we need the parameters (θ) on the LHS to optimally represent the (underlying) distribution of
the training data. However, we do not analytically understand the target distribution itself. But now we
have an exact equality for that target distribution with understandable and easily calculable terms. This
gives us three possibilities. Firstly, we can now directly optimise towards the target likelihood, by optimising
the model through the RHS of equation 5.7 for the available training data. In practice, such an optimisation
means that we use gradient descent. Gradient descent is a procedure in which the gradient of a function,
with respect to the learnable parameters of that function, is calculated for the available data. This gradient
is then used to update these parameters by taking small steps in the direction of that gradient. In theory,
this should push the parameters towards the optimum of that function according to the training data. In the
case of normalizing flows, we want to find the optimum of θ for the RHS of equation 5.7. Secondly, we can
sample from the target distribution, by sampling from the base distribution and transforming that sample
through the usage of the bijectors.2 Lastly, we can calculate the likelihood of samples, simply by calculating
equation 5.7 for a specific sample.

5.2.3 Rational Quadratic Spline
Bijectors have been proposed in a lot of variations, for this thesis the choice of bijectors fell on Rational
Quadratic Splines (RQS) [47]. The transformation of this bijector can be summarised as follows, and a
visualization of this concept is given in figure 5.1. First a part of the input of the transformation is split off
and used as input for a small neural network.3 The output of this neural network is used for two things.
A part is used as a bin value; at each of these values we need to set a gradient and function value for the
ultimate transformation. The gradients and function values are provided by the other part of the output
from the neural network. By setting the gradients of the transformation on each bin edge, the gradient
itself is made to be a piecewise linear function by connecting the dots. This results in a transformation,
calculated by piecewise integration, that is a piecewise quadratic function. Further, as we also set the value
of the transformation itself we get some more freedom, enabling us to let the transformation be a ratio of
two quadratic functions, which has double the expressive power. As the transformation is a combination
of polynomial features everywhere, the Jacobian is calculable. In addition, the transformation values are
restricted to be increasing over the bins, which makes it a bijective transformation. The second part of the
original input is then transformed via the now specified transformation from the small neural network. By
making this split of original input random over different RQSs the whole base input is ultimately transformed
at some point.

The concept behind RQSs can be changed into a conditional setting. The vector that represents the condi-
tion is appended or prepended to the input of the small neural network within each bijector. In this way,
the transformation becomes dependent on the condition given, and the model should also be able to learn
conditional target distributions, as required for our problem setting.

1Note that this equation in no way limits the type of bijectors used any further than the two posed requirements. As such,
a lot of freedom to choose a type of bijector is still present and one could even use different ones together.

2The usage of bijectors means that we transform the samples as in equation 5.2
3The small neural network used here mostly is a Multi-Layer-Perceptron (MLP) [48]
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Figure 5.1: A visualization of the concept behind rational quadratic splines. The visualization is from the
PhD thesis of Dr. Bob Stienen [49], which was also used as a guide for this section.

5.3 Dataset: The Creation Pipeline
This section introduces the pipeline/procedure for the creation of the necessary training and validation data.
The full pipeline is depicted within figure 5.2. All steps are explained in detail in the subsections. The

Figure 5.2: Visualization of the full pipeline for learning the normalizing flow.
Step 1: pMSSM selection (section 5.3.1), step 2: Naive sampling of phases (section 5.3.2), step 3: Calculating
observables (section 5.3.3). Step 4: Augmentation of correct data points (section 5.3.4)

pipeline starts with an original dataset containing pMSSM data points. This dataset was readily available
from previous research at the HEP department and consists of approximately 800.000 pMSSM points. Before
the points could be used within this pipeline they needed to be checked on correctness according to multiple
experimental limits.4 Of the original 800.000 points approximately 300.000 were within limits, and thus
suitable for future training data.

4Which are listed in appendix C.3
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The readily available dataset was influenced by the anomalous magnetic moment of the muon (4.1). The set
of pMSSM points used in this thesis originates from a bigger dataset, which was created keeping in mind
the anomalous magnetic moment value measurement [28, 29, 27]:

∆aµ = (aexp
µ − aSM

µ ) ∈ [133 · 10−11, 369 · 10−11] (5.8)

This bigger dataset was created by [50], and in that paper a subsequent full selection on the upper and
lower limit of 5.8 is made, resulting in a reduced number of pMSSM points. For this thesis, we let go
of the lower limit of 5.8, as there is discussion among the theoretical community whether the magnitude
of aµ should actually be lower (see section 4.1). Therefore, we used the bigger original dataset, but now
only selected on using the upper limit of 5.8. This selection resulted in the aforementioned 800.000 non-
checked pMSSM points, of which more than 300.000 remained after checking other experimental limits (C.3).

Important is that the ultimate dataset thus is not fully aµ-independent, and even though removing the
lower limits allows for larger masses, there will not be many points that have all sparticle masses in the
multiple TeV range, as the original big dataset was still created with the aµ lower range in mind.

5.3.1 pMSSM points
The first step of the pipeline aims to slim down the original dataset. We need to know the correctness of the
to-be-created cpMSSM points. Therefore, these points will need to be put through the calculation software,
as will be explained in section 5.3.3. To calculate, among others, the eEDM prediction of the cpMSSM point
this software needs approximately five seconds. This time bottleneck makes it impossible to use 300.000
pMSSM points for this dataset, as for each pMSSM point we need a representative set of cpMSSM points
checked, which we deemed to be about 1000 cpMSSM points per pMSSM point. Thus the 300.000 pMSSM
points need to be slimmed down to about 50.000 to keep the calculation step within a practical time frame.

The selection of those pMSSM points can not be done naively: randomly selecting a number of points
will not lead to the most representative set of points for the pMSSM parameter space, which could lead to
detrimental performance of the ML model. There is no perfect metric to determine which set of points would
be most representative, however, the sum of (euclidean) distances should be an indicator. The distance is
calculated for the 6 parameters that receive phases within the cpMSSM as well as the aµ prediction of the
pMSSM point. This last parameter is included because it should partially represent the ranges of sparticle
masses of the pMSSM points. Unfortunately, creating a subset of N points with the biggest sum of distances
is not a trivial task. Therefore a greedy algorithm proposed by [51] is used. This algorithm consists of a
random, initial set of points. From this set of points randomly one point is removed and replaced, storing
which point is tested as replacement and removal. If the new group has a bigger sum of distances, keep the
new configuration, otherwise the old. Repeat this procedure, with new replacements and removals each time,
for at least k ·N times, and afterwards stop if no improvement is found. The algorithm (with k=2) resulted
in a 50 % increase of the sum of euclidean distances for a set of 47.500 points, compared with random selection.

The ultimate pMSSM dataset consists of 50.000 points: the above-mentioned 47.500 ‘representative’ correct
points, and 2.500 randomly chosen incorrect pMSSM points. We choose to use those incorrect points for two
reasons. Firstly, preliminary research showed that it is possible to use phases to get ‘out’ of experimental
limits. Phases can have (small) effects on the masses or composition of mass eigenstates of sparticles. This
will especially be shown for φAt in chapter 7 through its influence on the neutralino-composition parameter
|µ|. Through these small effects the cpMSSM point could just about adhere to experimental limits, espe-
cially if the pMSSM point was deemed incorrect by a small margin. In other words, the experimental limits
become fuzzy due to the introduction of CP-violatingCP-violating phases. Secondly, it is also good to show
the normalizing flow that incorrect pMSSM points exist, with the idea that the model will hopefully learn
to handle these incorrect pMSSM points as well.
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5.3.2 Naive Sampling
The second step in the creation pipeline is to create cpMSSM points for each of the 50.000 pMSSM points
from the previous selection. Sampling is done through a naive, but fast, process. We know that larger phases
result in larger eEDM contributions. Therefore, the phases are sampled with a logarithmic distribution in
the interval [−π

2 ,
π
2 ] even around zero. Thus, in practice the phases are logarithmically sampled between 0

and π
2 , and a random 50 % of the phases is given a minus sign. This procedure is done independently for

each phase. This convention of phase interval works as long as the sign of the original pMSSM parameter is
explicitly stored.

For each of the 50.000 pMSSM points, 1000 phase combinations are sampled. The full procedure is performed
twice, thus resulting in 100 million data points. During the second round of sampling, the phases for M2

and µ are limited to values up to 10−1, as these phases are expected to be heavily contributing towards the
cpMSSM prediction for the eEDM.

5.3.3 Calculation Software
The next step (3a/b) of the pipeline prior to training the model is determining the correct points within the
100 million cpMSSM points created. The (configuration of the) calculation software used is mentioned/ex-
plained in C. Afterwards the checked data is split into correct data points and incorrect data points. This
split is made based on both the prediction of the eEDM for that parameter configuration, as well as other
experimental limits on sparticle masses. Both the correct and the incorrect data points are saved to be used
to train the ML model.

At this point some conventions in representation start to play a role. As mentioned in section 5.3.2 we
sample phases for each parameter that acquires one in the cpMSSM. However, the calculation software needs
the real and imaginary parts as input, and outputs the real and imaginary parts as well, whereas we want the
ML model to learn to output phases based on the original, absolute pMSSM parameter. The transformations
are made as follows, to keep in line with the interval of the phases:

<(P ) = Sign(P ) · |P | · cosφP , (5.9)
=(P ) = Sign(P ) · |P | · sinφP , (5.10)

P = Sign(<(P ))
√
<(P )2 + =(p)2 (= Sign(P )|P |), (5.11)

φP = arcsin(
=(P )

Sign(<(P ))
√
<(P )2 + =(p)2

), (5.12)

where P denotes one of the parameters of the pMSSM that acquires a phase within the cpMSSM. With
regards to the pipeline visualization of figure 5.2, in step 2 we transform P and φP to <(P ) and =(P ) and
directly go back to P and φP in 3a/3b.

After the calculation software has determined the correct points, the correct data points will be used to
learn the ML model. Together with 1 % of the correct phases, the incorrect phase vectors will be used to
validate the ML model during and after learning. How the models are validated is described in chapter 6.

5.3.4 Augmentation Possibilities
The last step in the pipeline is the augmentation procedure on the correct cpMSSM points. Augmentation
means changing data in such a way that it remains valid. In our case it turns out to be possible to flip all
signs of the phases without changing the eEDM prediction. Therefore, we directly double the number of
correct data points. This doubling of the dataset is very time-efficient, as we do not need the time-consuming
calculation software and instantly double the number of available points.

We also tried to only flip the ‘one-loop parameters’: M1,M2 and µ. These are the phases that we know
should contribute the most towards one-loop eEDM diagrams, and thus logically should be the most influen-
tial with regards to the eEDM. Flipping the sign of these phases resulted in 90% of the extra created points
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remaining valid. This accuracy was deemed slightly too low, for now, to proceed with these extra points as
well. However, for future research this possibility should be kept in mind. Especially as this augmentation
multiplies the dataset by four, as we can use the original full augmentation on these points as well, without
extra usage of the calculation software. Thus circumventing the time bottleneck of the calculation software.
Results of the small study regarding these possible augmentation strategies can be found in table A.2. Due
to this study, a precision problem of the calculation software was also brought to light.

5.3.5 The Result
After working through the full pipeline twice, as described in the above sections, a dataset as laid out in
table 5.1 is created. Thus after the two creation phases, we have approximately 1.8 million correct data

Table 5.1: Table showing relevant statistics of the dataset and its creation. From left to right: the size of
the dataset after sampling, the number of correct points within the samples and the amount of time it took
for the calculation software to check the points for correctness.

Creation Phase Dataset Size Correct Points Time
1 50.000.000 719.567 (1.43%) ± 2.5 weeks
2 50.000.000 1.100.652 (2.20%) ± 3.5 weeks

points for the ML model to learn. The difference between the two creation phases lies in the restriction of
the phases for M2 and µ, as explained above. This resulted in a slightly higher acceptance percentage for
that creation phase. Important to note is that, by using augmentation, practically we have 3.6 million data
points to work with.

5.4 Learning
The next step within the process of creating an ML model to sample cpMSSM points is to start learning the ML
model. This section presents the used configuration of a normalizing flow, as well as the configuration of the
learning process. For more details regarding how models are validated during and after learning, see chapter 6.

As mentioned we learn a normalizing flow model consisting of Rational Quadratic Splines as bijectors.
To be more specific, the model consists of seven of those bijectors. In each of those blocks, we used a Multi-
Layer-Perceptron (MLP) containing 2 layers and 512 intermediate features as the ‘small neural network’. The
base distribution was a 7-dimensional Gaussian distribution, which makes the model also output 7 phases.
The cpMSSM has 6 independent phases, as explained in 3.5. However, originally we opted to have the model
output 7 phases, including a phase for M3. But due to an error in handling this phase in the calculation
software, we opted to set this phase to zero afterwards. To be exact, Spheno-CPV (see table C.1) set the
gluino mass to be the real part of M3 instead of the absolute value. Therefore, φM3

directly influenced the
gluino mass, which should not be the case. This change should only have a negligible effect on the correctness
of the model, as it is just a choice for the rotations mentioned in 3.5. While keeping the overall sum of phases
lower should result in lower eEDM predictions, experience tells us. Lastly the condition prepended to the
input of the small neural network is a vector representing the 19 free parameters of the pMSSM.

The learning configuration of the ML model consisted of the usage of an ADAM optimizer [52], which
is a ‘fancy’ version of gradient descent. We set an initial learning rate, the step size towards the gradient of
the target likelihood, of 5 ·10−4. This value is relatively high for learning rates within ML. However, experts
[53]5 and preliminary studies show a higher than usual learning rate to be beneficial. Further, we use a
scheduler to drop this learning rate down over time in the learning process. The type of scheduler used was
that of a plateau scheduler. This scheduler uses a metric, in our case the likelihood of the target distribution,
to determine when to lower the learning rate. In our case, the scheduler checks if for 15 iterations over the
data the likelihood has improved more than 0.001, if not the learning rate would be lowered by a factor of

5The code used to learn the model is also inspired by the code of Alex Kolmus for other types of normalizing flows.
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0.1. The number of iterations over the data was set to 500.

The hardware used to learn the flow model consisted of one NVIDIA GeForce RTX 2080 Ti GPU and
12 Xeon 4214 CPUs provided by the Data Science department of the Radboud University.

5.4.1 The effect of the naive sampling method
As mentioned in section 5.3.2, the phases are sampled with a logarithmic prior. This bias within the dataset
could potentially introduce a bias into the sampling distribution of the normalizing flow model, reducing its
possible performance. This leaves us with two options. We first note that the introduced bias could have
beneficial effects. As long as the model still outputs a substantial range of phases, having a biased dataset
towards smaller phases might result in a higher percentage of accepted and relevant sampled points since
smaller CP-violating phases will introduce a smaller CP-violating eEDM contribution. Therefore, one option
is to just learn normally and ignore the bias. The second option is to try to counter the prior in the learning
process. We know that smaller phases have an exponentially higher probability of being sampled. In other
words, the biased prior could be described as for a general phase φ:

p(φ) ∝ e−φ. (5.13)

If we want to counter this biased prior, we have to take this prior into account for the likelihood of the
target distribution, i.e. the loss. As the loss is a likelihood, we can use the ratio of the unbiased and the
biased prior, to ‘re-balance’ the logarithmic distribution to a more unbiased prior, where an unbiased prior
is a uniform distribution. The same prior is, independently, present for each sampled phase. This results in
the following factor that needs to be added to the target distribution likelihood while learning, taking into
account that we used this prior for each phase:

punbiased(φ1, φ2, ...φ7)

pbiased(φ1, φ2, ...φ7)
=

7∏
i=1

punbiased(φi)

pbiased(φi)
=

7∏
i=1

1

e−φi
=

7∏
i=1

eφi = e
∑7

i=1 φi . (5.14)

Both options have been tested using the validation methods reported in chapter 6. The results indicated
that it is beneficial to ignore this introduced bias within the dataset. However, it remains something to keep
in mind during possible future research or optimisation of the ML model and is therefore explained in the
methodology.
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5.5 The Inference Pipeline
Now the full pipeline of creating the dataset and learning the flow model has been introduced it is good to
have an overview of the target usage of the model after it has been learned.

The idea is that the model replaces the currently used Gaussian Particle Filters in a more automated
and efficient manner. Thus the model receives as input correct pMSSM points, containing 19 parameters
as a condition. For this conditional the model then outputs a specified amount of six-dimensional phase
combinations. Combining these six-dimensional phase vectors with the conditional(s) gives the required
amount of cpMSSM points. These cpMSSM points are then fed to the calculation software, which reports
a lot of predictions for observables originating from the given cpMSSM point. The predictions can then be
used to either exclude parameter configurations or explore possible parameter effects.

Figure 5.3: Visualization of the inference Pipeline using a learned conditional normalizing flow model.
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Chapter 6

Model Validation

The previous chapter introduced the ML model that will be used to study the CP-violating effects of the dark
matter relic density. In this chapter we will introduce and explain the methods used to validate the ML model,
both during the learning phase and afterwards.

In a more conventional ML context the validation methods would consist of the validation loss and the
validation accuracy. In other words, we would determine the value of the loss function and the accuracy on
a separate part of the data not seen before by the model. However, in this case both of these metrics are not
useful, as the loss function used in the case of a normalizing flow is the likelihood of the target distribution.
This likelihood is not normalized, as a consequence we cannot compare the relative performance of different
models using this metric. Furthermore, to determine the validation accuracy we require the calculation
software, as this validation accuracy requires the eEDM prediction of the sampled cpMSSM points. The
usage of the calculation software would be too time consuming. This section will discuss the used solutions
to this problem.

6.1 Likelihood Ratio
First of all we have the most natural solution: the likelihood ratio (LR). As mentioned, the problem with
the validation loss was that the used loss function is not normalized. However, this problem is solved by
using a ratio of two likelihoods: a likelihood of the correct points over the likelihood of the incorrect points.
These likelihoods share the same would-be normalization constant, the effect of which will drop out in the
ratio. Explicitly, the used likelihood ratio is here defined as follows:

LR =
1

NC

∑NC

i=1 Li

1
NI

∑NI

i=1 Li

, (6.1)

where NC and NI stand for the number of correct and incorrect data points respectively. Furthermore, Li

denotes the likelihood (5.7) of a specific data point i. This likelihood can be determined by going backwards
through the bijectors of the model, which is, in general terms, shown in 5.2.

Interpretation of this metric is not as straightforward as it seems. We cannot directly say that an LR
of X means that the model is X times more likely to output eEDM adhering samples than not. However,
we now can compare the found LR values over different models. Thus, models with a higher LR value can
be considered better at all times during the learning process.

However, preliminary studies showed a hard-to-spot obstacle. Even though the LR values reported for
preliminary models were extremely high (500+), when the samples were tested only 0.1% resulted in cor-
rect cpMSSM points. To understand why this happened two observations need to be made. The LR was
calculated for a validation set consisting of 40.000 incorrect cpMSSM points and 50.000 correct ones, both
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sampled randomly from the created dataset. Furthermore, we know that large phases, especially combina-
tions of large phases, often result in a higher eEDM prediction, as the larger the non-absorbable phase(s),
the bigger the CP violation. Thus, when plotting the correct phase vectors in a 2d scatter plot for two of the
six phases, we would expect most of the correct samples to form a ‘cross’. In other words for most samples
either one of the plotted phases is high, but not both at the same time. On the other hand, incorrect points
can be much farther away from the axes in such a plot. Given that we randomly sample the incorrect points,
we will get a lot of incorrect data points far away from the axes. Especially, since we only sample 40.000
incorrect points from a total of about 99 million. The preliminary models had learned that smaller phases
were better, but seemed to have a preference for samples in a small circle around the origin within those 2d
plots. The preliminary models most likely learned this because it is the easiest way to both optimise the
target likelihood as well as get a high LR. The latter metric was used to select a learning configuration for
these preliminary models, thus its value also (indirectly) influenced what the models learned. Because the
large phases of the incorrect validation cpMSSM points are outside of this circle, while the correct validation
points are in it, this does result in a high LR. However, if we then use this model for sampling, we still get
a lot of points outside of the ‘cross’. Most of these samples are therefore still rejected by the calculation
software. The situation described above is visualized in an aggravated and simplified manner in figure 6.1a.

(a)
(b) (c)

Figure 6.1: Simplified and aggravated visualizations of the LR obstacle encountered within preliminary
studies. Red crosses represent incorrect phase combinations within the validation set, whereas black crosses
represent the correct validation phase combinations. Note that the crosses are not the full validation set, in
reality there might be incorrect points closer to the green area as well, this aggravation just shows the obstacle
of the old LR better. Furthermore, the green area is the high-likelihood area of the target distribution, and
the blue area is the high-likelihood area according to the ML model. (a): old LR calculation, preliminary
model. (b): new LR calculation, preliminary model. (c): new LR calculation, final model.

This obstacle can be overcome by not using a random selection of incorrect cpMSSM points in the val-
idation set. Instead of random sampling we opted to use a greedy algorithm aiming to select a set of
incorrect points with the following condition:

1

NI

NI∑
i=1

6∑
j=i

|Pi,j | < 0.01, (6.2)

where j = 1, 2, .., 6 and Pi = (φM1
, φM2

, φAt
, φAb

, φAτ
, φµ) represents the phases of point i within the in-

correct set of validation points. Further, the limit of 0.01 was found through trial and error by checking at
which limit the preliminary, badly-sampling, models started to get a lower LR. Due to this different choice
of incorrect validation points, we get a situation as visualized in figure 6.1b. In this situation a lot more of
the incorrect validation points are close to the ‘cross’ of correct points, and therefore also within the high
likelihood area of the preliminary model. Thus, the calculated LR in this scenario will be much lower, which
better represents the fact that this model does not sample enough correct points.
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For the model to start learning to also have a preference for this ‘cross’, and thus sample more correct
points, the usage of augmentation (5.3.4) was beneficial. Through augmentation the black crosses in figure
6.1 are mirrored in both axes. Thus, the black crosses themselves in figure 6.1c show the ‘cross’ of the
target distribution better. This leads to the learned model having a preference for the ‘cross’ as well for
new samples. Also, as can be seen in figure 6.1c, this leads to a higher LR, as the correct points are in the
blue area, where most of the incorrect points are not. Therefore, by using this new validation set a high LR
better reflects what it was introduced for: a well-working model.

6.2 Other Methods: Model Characteristics
We now have a metric that implicitly tells us how well the model has learned, both during the learning
process as well as afterwards. However, there are more characteristics of the model’s performance that we
are interested in that are not covered by the LR. These characteristics come from the following remarks:

• To perform research on the cpMSSM we need a representative set of samples, i.e. we want unique
samples following the target distribution, not copies.

• The MSSM itself does not present a preference for a certain parameter configuration; a point is either
correct according to experimental observations/limits, or it is not.1

6.2.1 Scatter Plots
To check how representative the samples are we make scatter plots of the sampled phases. For every com-
bination of the six phases we make a 2d scatter plot of 500.000 samples for one, randomly chosen, pMSSM
point. To complete the full figure for each individual phase a histogram is made.

Ideally, for the eEDM-dominant phases the crosses mentioned in the previous section would become vis-
ible. The eEDM-dominant phases are the phases that we assume contribute most to the one-loop eEDM
diagrams: φM1

, φM2
and φµ. Furthermore, for all phases we can check if there are ‘islands of points’. This

refers to samples being present in non-connecting patches. We want to make sure that this is not the case,
as it can be assumed that this is not representative of the set of all correct phase combinations.

6.2.2 Volume Approximation
Scatter plots are nice to see how representative the set of samples of the model are. However, we would
also like to quantify the representativeness. To do so we opted to go with an approximation of the volume
sampled by the model. Naturally, the larger the volume that is sampled, the more representative that set of
samples is assumed to be. It is good to remark that such an approximation does not take into account the
possibility of ‘islands of points’. Therefore, it is good to combine this approximation with the scatter plots
to both see and quantify the representativeness of the samples. In practice, the volume approximation and
scatter plots thus also use the same 500.000 generated samples.

To approximate the volume of the samples we use a direct Monte Carlo method [54]. We create 25.000
6-dimensional probing spheres with a randomly chosen radius smaller than π

2 . For these probing spheres the
volume is easily calculated. Subsequently, we determine the ratio of samples inside and outside this probing
sphere. We denote the probing volume Vp and the to-be-approximated volume of samples as Vs and use:

Vp
Vs

=
Nin

Nout +Nin
, (6.3)

to determine Vs according to that probing sphere. Here Nin and Nout are the number of samples inside
and outside the probing sphere respectively. To stabilise the approximation we take the mean of the 25.000
approximations calculated.

1Some physicists would argue that points with lower finetuning would be preferred. However, not all agree and this thesis
steers clear of that discussion.
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6.2.3 Uniformity Plots
As a last newly-defined validation method we want to check if the model has a preference for certain samples.
Such a check is needed, because, as mentioned, physics does not have a preference for one correct parameter
configuration over another correct one. Physics-wise, a point is either correct according to experimental
limits/observables, or incorrect. There is no in-between gradient of correctness. To check if the model
follows a same reasoning or does have a ‘preference of correctness’, we introduce uniformity plots. These
plots again consist of 2d plots for all combinations of the six phases. Each of these 2d plots is then filled
with a grid of points, which are colour-coded corresponding with the likelihood according to the normalizing
flow. Of course, the model needs a six-dimensional point and not a two-dimensional one, therefore, the
phase combination is completed by all zeros for the non-included phases of that plot. Furthermore, the
colour represents a value that is normalized over all present values in the figure, to take into account that
the likelihood itself is not normalized. If the model is perfect these plots would show evenly-coloured shapes,
representing the correct phase-space areas according to the eEDM limit.

6.3 Acceptance Percentage
Of course, despite its time consumption, we still check the percentage of correct samples using the calculation
software. This method is not feasible to be used for each data iteration during the learning process, however
for a learned model this is not the case. Therefore, this validation accuracy metric will be used as the
ultimate performance metric of the model, and can also be used to compare its effectiveness with previous
methods like the Gaussian particle filter.

6.4 Results
This section presents the validation results of the ML model, both for a model corrected for the introduced
bias (5.4.1) as well as a ‘conventionally’ learned model. The configuration of both models is given in 5.4.
These results will show that the model has an acceptable level of performance and is a sufficient model for
the study of CP-violating effects on the dark matter relic density in chapter 7.

6.4.1 Likelihood Ratio

(a) (b)

Figure 6.2: Plots of the (non-normalized) loss value and likelihood ratio of the uncorrected model (a) and
the bias-corrected model (b) over the data iterations.
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Figure 6.2b shows the (non-normalized) loss values during the learning process, as well as the likelihood
ratio. The loss is determined on the training data, where the likelihood ratio is determined on a valida-
tion set as explained in section 6.1. First of all, we can notice that in general both models seem to have
converged towards some optimum. Furthermore, both models seem to follow quite similar stages: first the
model makes big but wrong decisions, as can be seen by the loss value climbing, where we want it to de-
cline.2 Afterwards both models improve quite radically in their loss value. However the likelihood ratio does
not show corresponding behaviour. After about 40 iterations until about 200 the models seem to progress
with more fine-grained improvements, as shown by the instability of the loss value. These improvements
have a very big effect on the likelihood ratio. This seems to suggest that, after the initial big mistakes,
the models first learn the limits of the phases due to the eEDM. These models would then report findings
similar to those explained for the preliminary models in section 6.1, i.e. a circle of samples around the
origin. It is after this stage that the models seem to learn the crosses, i.e. the complex relations between
the phases present in the training data. Due to the way the LR is determined, only these improvements
are reflected in the LR value, as desired. The last stage, after about 200 iterations, shows almost perfect
convergence, i.e. the optimum reached at this point is no longer improved, at least according to these metrics.

If we compare the relative performance of the two models we see that the uncorrected model reaches both a
lower value for the training loss and a higher likelihood ratio. Given that the loss value is non-normalized, it
is more fair to compare the difference between the end and start values than the absolute values. However,
the starting values (± 20) in this comparison are quite similar and thus this difference is also substantially
higher for the uncorrected model. This preference of these metrics for the uncorrected model is not sur-
prising: the uncorrected model does not get penalized for preferring smaller phases. We know that smaller
phases result in smaller eEDM contributions, as the non-absorbable phases are what introduce CP violations
and thus eEDM contributions. As such, the dataset will also contain a lot of smaller phase combinations. By
making it easier to prefer smaller phases for the uncorrected model it is easier to get a smaller loss, as that
does reflect the training data. The likelihood ratio has been modified to somewhat counter the possibility
of only outputting very small phases, and not incorporating the relationships between the phases, i.e. to
not learn the ‘crosses’. However, we had to set a limit on how selective we are for the validation set (6.2),
thus if the model goes even smaller than the set limit, the LR will still go up without learning the complex
relationships. Although the observed stages of learning mentioned above do not imply this to happen, it is
always a possibility.

6.4.2 Scatter Plots
To determine whether any of the models have converged towards an optimum that reflects something of a
relationship between the phases, we can have a look at our visual validations. In figure 6.3 the scatter plot
of the uncorrected model is given. The scatter plots of the bias-corrected models are given in the appendix
(figure B.1).

2Note that the loss function used is actually the negative of the likelihood of the target distribution. This is the case because
we use a procedure called gradient descent, not ascent. Of course, this minimises, not maximises, a function.
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Figure 6.3: Scatter plots for each 2-dimensional combination of phases sampled by the uncorrected normal-
izing flow. On the ‘diagonal’ are logarithmically scaled histograms of the range of each phase. The model
used for this figure was learned for 501 data iterations.
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Firstly, in figure 6.3 it is clear that the model has learned to output more than only copies of cpMSSM points.
Secondly, we do not see the emergence of ‘islands of points’, which were explained in section 6.2.1. There
are no multiple, fully-disconnected, patches present within the scatter plots. The model does, of course,
still have regions of preference. However, these regions do not seem ‘over-fitted’ towards some combination,
as most phases are sampled all over within the allowed range and shapes. Further, we note the emergence
of ‘crosses’ for some of the phase combinations, especially for those containing φµ. This seems to suggest
that the rising LR values reported are actually because of learned relationships, and not just because of the
model preferring smaller phases. In addition, we see that the model seems to have made a distinction, based
on limiting the range of phases, for dominant and non-dominant phases. The 3× 3 grid of the phases of the
trilinear couplings are observed to reach much higher values than the phases of the gauginos mass terms and
µ. This corresponds with the distinction between one-loop and two-loop contributing parameters in section
4.2. In figure 6.3 we can also see that the model does seem to have a preference for positive values of φM2 ,
we will get back to this in section 6.4.3.

Additionally, it should be noted that the model does not seem to generate very different samples for different
conditions. This cannot be seen in this plot, but is seen in the comparison with figure B.3, which shows the
scatter plots for the uncorrected model generated for a different correct pMSSM point. Of course, there are
some small differences present, however in general the same structures are seen for the generated samples.
These same structures are also seen for most other pMSSM points. This potentially shows that the model
could be optimised more, to introduce a more conditionalized sampler.

Further, we note that the bias-corrected model (figure B.1) has a clearly larger range of sampled points.
This is especially notable for φM1

where the possible range of phase values doubles compared to the uncor-
rected model. In addition, we see that the ‘3 × 3’ grid of the trilinear couplings becomes much more filled.
All of this is not surprising, as the bias-corrected model is pushed to output larger phases, and this validation
method thus shows this to happen as desired.

A small remark regarding the limits on the phases of the trilinear couplings needs to be made. A small
number of phases sampled by the normalizing flow goes beyond the range of |π2 |. This is due to the imple-
mentation of the normalizing flow. The limits in a normalizing flow are set slightly non-rigid,3 meaning that
due to small floating point errors, that accumulate over the seven bijectors, a small number of samples have
values outside of the set limit. Of course, this practically only happens when the samples are not restricted
in range by the data, as is the case for the non-trilinear phases, shown in figure 6.3. We opted to set these
anomalous values to the limit of the range, being ±π

2 , as that is what the normalizing flow ‘wanted’ to
output.

6.4.3 Uniformity Plots
The next thing to validate is whether the model seems to have a preference within the set of correct points.
As explained in section 6.2.3, the cpMSSM itself does not have such a preference. Thus, if a model is learned
to perfection, the model should also not have such a preference.

3i.e. smaller than needed to cover floating-point errors. However this is done to preserve the numeric differentiability on the
limits.
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Figure 6.4: Uniformity plots for each 2-dimensional combination of phases, where the colour represents the
relative likelihood (pink means higher, blue means lower) for each phase combination using the two non-zero
values depicted within the grid. On the ‘diagonal’ there is only one non-zero value for the associated phase.
The model used to determine the likelihood values was learned for 501 iterations over the data. The pMSSM
point used to calculate these likelihoods is the same as the pMSSM point used for the scatter plots.
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Figure 6.4 shows the uniformity plots for the uncorrected model. For the first remarks we ignore all com-
binations that include φM2

, as all combinations with that phase have clearly different behaviour. For all
other combinations there seem to be three regions in terms of preference. Almost all combinations have the
‘cross’ as the highest preference region. Within this cross no significant preference is given to different points.
Additionally, there is a background region, mostly forming a grid, therefore this region will be called the grid
for clarity. This grid is less preferred compared to the ‘cross’, but also within the grid in general no internal
preference is seen. This is, however, not the case for φµ, which does seem to have a higher preference for
positive values compared to negative phase values. Why this is the case is not directly clear, but most likely
it has something to do with the biases of the dataset. These biases could be the logarithmic bias introduced
in the sampling procedure. However, it could also be a small mishap in the dataset creation that led to
only positive µ parameters being present. For more on the latter, the reader is referred to the outlook of
this thesis in chapter 8. The cause of the φµ preference being the µ bias in the dataset is supported by the
results of the bias-corrected model. This model shows a bigger preference for positive φµ values compared
to the uncorrected model, as seen in figure B.2. This could correspond with the implementation of the bias
correction, which should urge the model to disregard the sampling bias, and thus also show other (accidental)
biases more clearly. In addition, we note that the shape and brightness of the grid are quite different for
different combinations. The last region seen in figure 6.4 is the region filling the inside of the grid, which
we call the filling. Given the shading observed in the filling, some preference is present here. Outside of the
regions everything seems to be low-likelihood.

Overall, this indicates that the model is not perfect. However, the model is not bad either as within
the three regions the likelihood is quite stable. The relative preference difference between the three regions
might also be due to the dataset presented to the model, which we cannot assume to be perfect as due to the
usage of logarithmic sampling more lower-valued phases are present. Thus the model will learn that there is
a higher likelihood for phases within the ‘cross’, resulting in this region becoming more bright in figure 6.4.
In fact a point with higher values for the phases, as long as it is correct, should have the same likelihood. If
we compare this to figure B.2, which shows these plots for the model that is corrected for this bias, we do
indeed see that the brightness of the cross and the grid becomes more equal. This is especially the case for
combinations of the phases of the trilinear couplings.

Why the grid itself emerges is somewhat of an open question. It might be due to how the plots are made.
The model has learned to work with combinations of all phases, not with combinations of only two, thus the
model might have learned that only certain specific ranges can work together. However, it could also be due
to the representativeness of the dataset. Since fewer data points are present in the high-value phase regions
it might be that there are actually more correct points in what we now call the filling, but these number
of points are not present in the dataset. This results in the model assuming a low-likelihood for the filling,
even if it should contain correct points according to physics. Lastly, however unlikely, the forming of a grid
of points could also be true-to-nature.

For all plots that represent φM2
we see truly different behaviour. This points to any effect of φM2

being
dominant over all other phase-effects. Apparently, if φM2 is considered the model has an extreme preference
for points that have that phase as either zero, or points in a band around a small positive value. This last
band is easier seen in figure 6.3, however it is also present in figure 6.4. There seems to be no preference
for either the zero or positive band, as seen by the even colour of those bands. Outside of the bands the
negative side has a slightly higher preference, with a quite smooth gradient. However, the relative colour
of this region seems to indicate that not many, if any, points from this region are considered correct by the
model. Why this different behaviour of φM2 emerges is again hard to explain, and most likely (again) stems
from a possible bias in the dataset.

6.4.4 Volume Approximation
To try to quantify the representativeness of the generated samples we turn to the volume approximations of
the samples, as introduced in 6.2.2.
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Table 6.1: Table of volume approximations for the uncorrected model at different points within the learning
process, for four different pMSSM points as given input of the normalizing flow. Note that these volumes are
determined based on the original seven phases (including φM3

), thus we compare this volume with a total
volume of around 111.5: a 7-dimensional sphere with radius π

2

Data Iteration Point 1 Point 2 Point 3 Point 4
1 75.931 73.867 77.995 67.008

251 49.271 52.695 47.005 44.342
501 47.967 50.368 50.778 45.484

Table 6.2: Table of volume approximations for the bias-corrected model at different points within the learning
process, for four different pMSSM points as given given input of the normalizing flow. Note that these volumes
are determined based on the original seven phases (including φM3

), thus we compare this volume with a
total volume of around 111.5: a 7-dimensional sphere with radius π

2

Data Iteration Point 1 Point 2 Point 3 Point 4
1 64.755 74.755 64.409 72.751

251 47.219 40.777 53.966 50.137
501 50.359 45.310 54.965 47.235

Table 6.1 and 6.2 show the volumes of the sample space for four pMSSM points that are not within the
training data. The general pattern seems to be a starting volume around high 60 to high 70, and stabilizing
around high 40 to low 50 after less than 250 data iterations. We have to compare these values with the
total possible space of the samples. These approximations were made before we decided to rotate away
φM3 (using the U(1)A and U(1)B rotations of section 3.5) due to mistakes in the not-to-be-touched, open
domain Spheno-CPV package in the calculation software (see C). Therefore we compare these values with
the volume of a 7-dimensional sphere with radius π

2 , which is approximately 111.5. Thus, these results show
that a substantial part of the phase space is sampled. This is even more the case when considering the
curse of dimensionality: most of the volume in higher dimensional spaces is in the edge of that volume. The
phases in those edges would be the large phases, and we know that these mostly result in too high eEDM
predictions. Thus, correct points are naturally located in a smaller volume, especially in a high-dimensional
space. We cannot directly conclude that the sampled volume also consists of correct points, as for that the
acceptance percentage would be needed. But it does at least suggest that points are sampled in quite a large
and representative volume.

6.4.5 Acceptance Percentages
The last and best validation method is that of the acceptance percentage. During the learning process, the
model is saved after one data iteration and every 250 iterations after. Further, the model that reports the
highest likelihood ratio during the whole learning process is also saved. The percentages of correct points
of 10.000 samples are tested for these models, and presented in table 6.3 for both the uncorrected and
bias-corrected model.

Table 6.3: Percentage of correct cpMSSM samples, out of 10.000, at three points during the learning process:
after 1, 251 and 501 data iterations for both the uncorrected and bias-corrected model. The acceptance
percentage is also shown for the model that reported the highest likelihood ratio during the learning process.
The samples were generated for correct pMSSM points not included within the training or the validation
set.

Model Acceptance Percentage (uncorrected) Acceptance Percentage (bias-corrected)
1 iteration 0.2 % 0.9 %

251 iterations 55.5 % 28.6 %
501 iterations 67.2 % 39.4 %
Highest LR 50.3 % 38.9 %
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The table shows that early on in the learning process the models unsurprisingly sample a large number of
incorrect samples. After 250 data iterations both models have been able to learn to sample more correct
samples. Between 250 and 500 iterations the training loss and likelihood ratios in figure 6.2 do not show
progress. In contrast, the acceptance percentage does still rise substantially. This seems to point to the
fact that the ultimate acceptance of samples is very sensitive to small perturbations in the samples. Pertur-
bations that do not really manifest themselves within the metrics of training loss and likelihood ratio. We
further note that for both models the model reporting the highest likelihood ratio does not have the highest
percentage of accepted samples. Together with the discrepancy between progress in the 250-500 iterations
regime, this points to the fact that the likelihood ratio is not a perfect validation method.

When we compare the uncorrected and bias-corrected models we see that the uncorrected model performs
substantially better. Again, given that the bias-corrected model is penalized for small phases, this is not
surprising. Figure 6.5 shows a plot of the acceptance percentage at different eEDM limits of both the
uncorrected and the bias-corrected models.

Figure 6.5: Acceptance percentage (y-axis) if a different eEDM limit was set (x-axis) for both the uncorrected
and bias-corrected model. The vertical dashed line represents the eEDM upper limit (4.11) as used for the
training data in this thesis.

Firstly, figure 6.5 shows that the uncorrected model also has a lot of generated samples near the current
eEDM limit. In other words, this again confirms that the uncorrected model is not outputting only small
phases. This supports a choice to go with the uncorrected model for the study of chapter 7, as the bias
within the training data does not seem to manifest itself in the model’s samples in an undesired manner.
Furthermore, this figure shows that the models should have the capability to also work for the more strict,
current eEDM limit (4.10). Especially if the training data of the model were to be made with the new eEDM
limit in mind.

In general, the acceptance percentages presented in this section are deemed sufficient to use the new sampler
in the next chapter. Note that a perfect performance was never required, as the generated samples still
need to go through the calculation software to determine the associated predictions (see section 5.5). There-
fore, we still have the option to filter out the incorrect samples. By having >50% correct samples from an
automatic process, the usage of the calculation software has become extremely more efficient and effective
already. Given the better performance and the fact that the bias is not fully represented in the model’s
samples according to the defined validation methods, for chapter 7 the choice is made to use the uncorrected
model.
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Chapter 7

Study: CP violation effects on the
Relic Density

This chapter presents a study into the effects of the CP-violating phases of the cpMSSM on the dark matter
relic density. The study will be performed for multiple categories, where the categories are determined by the
dominant process during the freeze-out process. For more background regarding the relic density, the reader
is referred to section 4.2. The categories are presented in section 4.2 as well.

Before going into the categories, we explain the general procedure used to study the CP-violating effects on
the dark matter relic density. On the original, checked, pMSSM dataset we use both quantifiable methods
and visual methods to determine into which categories pMSSM points fall. The quantifiable methods are a
result of the calculation software (see Appendix C). The visual methods rely on plotting output parameter
values in specific ways to recognize the category if possible. Then, for each category five pMSSM points are
randomly sampled,1 if possible in the desired range of relic density values, which is given in section 4.2 as:

0.09 < Ωh2 < 0.15. (7.1)

For these five pMSSM points the normalizing flow model is then used to generate 20.000 cpMSSM samples.
These samples are then fed to the calculation software to determine their relic density prediction. By using
scatter plots, the effects of the phases are then checked for all five points. If a general effect is found, we try
to explain this effect using the relevant (cp)MSSM couplings of that category, or, if necessary, other relevant
theory of the cpMSSM. Furthermore, we also look at what the restriction of the eEDM implies for these
effects.

7.1 H1-funnel
The first category of points to look at is that of the so-called Higgs funnel. Due to the existence of two
Higgs doublets, this funnel (mainly) comes in two forms: either a near-resonant H1 features as the s-channel
propagator, or a near-resonant H2 does.2 This section will look at the first option. We further note that we
describe this funnel using the CP-violating mass eigenstate H1, as we are discussing cpMSSM points within
this study, even though the category is selected for pMSSM points, which uses h0. Given that most pMSSM
points used are within the decoupled regime, the lightest eigenstate will act very similar to the SM Higgs
boson, as would have also been the case for h0.

The pMSSM points considered in this section should have the following process as the dominant annihi-
1If five pMSSM points are present.
2Technically, there could be a third funnel with H3. However, this requires phenomenologically, uninterestingly high sparticle

masses and is thus ignored in this thesis.
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lation process during freeze-out:

χ̃0
1

χ̃0
1

f

f̄

H1

where f denotes an arbitrary fermion.

To select the correct pMSSM points we have two tools at our disposal. Firstly we look at the resonance
point of this diagram: mχ̃0

1
=

mH1

2 ± 5GeV. The bandwidth is taken because if the resonance is too perfect,
the relic density might become too low, as the process becomes too efficient leaving too few DM particles.
However, figure 7.1 shows that this selection is not sufficient. In this figure the relic density of pMSSM points
is plotted against the ratio of the mass of the LSP and the mass of the SM-like Higgs boson.

Figure 7.1: Scatter plot of pMSSM points that are of interest for the selection of H1-funnel points.

The calculation software provides us with the ordered set of three most dominant processes for the relic
density. Figure 7.1 shows us that if we only select on the mass we would also select points that actually have
another most dominant DM (co)-annihilation process.3 On the other hand, if we were to only select on the
process, this would also contain points quite far away from the resonance, possibly limiting any effect that
CP-violating phases could have on the relic density. Therefore the points selected as being in the H1-funnel
are points both within the specified bandwidth of resonance, and reporting the desired dominant DM anni-
hilation process through the calculation software.

The next step is to use the ML sampler to study the effects of the CP-violating phases on the relic density.
The main effect observed is not truly related to the funnel these points are in: the selection on eEDM removes
most CP-violating phase-induced effects.

3In this case most likely a co-annihilation with the lightest chargino.
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(a)

(b)

Figure 7.2: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values were sampled for a pMSSM point originating in the H1-funnel. The colour represents |µ|, which is
not a free parameter of the software but is calculated via the tadpole equations (3.56). (a): with selection
on the eEDM limit. (b): without selection on the eEDM limit.

Figure 7.2 shows (one of) the made scatter plots for the H1-funnel, both with and without imposing the
eEDM limit. In general for all five pMSSM points, effects are seen for the phases of M1, At and Ab. For
φM1 the effect is fully removed when imposing the eEDM limit. The effect of φAt is mostly removed by the
eEDM limit, however the remaining presence of some points at larger φAt indicates that if enough samples
are generated this effect could remain. For now, effects that only emerge for very large amounts of samples
are disregarded, as they only present themselves for very specific combinations of phases, and we are more
interested in ‘general’ effects. Lastly, the effect of φAb

remains after imposing the eEDM limit, however this
is also the smallest effect to begin with.
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The effect of φM1 can be explained by the influence of M1 on the LSP, as M1 changes the composition
of the LSP. Given that the interactions, and their loop corrections, are determined by the gauge eigenstates
and not the mass eigenstates, this composition has a strong effect on the efficiency of the funnel process.
Moreover, the effect of φM1

is seen in the coupling of the neutralino with the SM-like Higgs, which is given
in equation A.16. We note that this coupling is for the CP-conserving state, and because we are discussing
cpMSSM points we should be looking at the CP-violating mass states. However, that coupling would become
unnecessarily complex, while the importance of the coupling can also be seen in the CP-conserving version,
since we can see the coupling directly depends on (complex conjugates) of the entries of the neutralino mix-
ing matrix. Because these expressions do not merely involve absolute values, the phase of M1 has a direct
influence on this coupling, even at tree level. Further, we know that changing from CP conserving to CP
violating states does not introduce extra entries of the neutralino mixing matrix, as these are not present
in the required O matrix for this change. Thus, the entries of the neutralino mixing matrix present in the
coupling, will also not emerge as absolute values in the CP-violating coupling. Therefore, φM1 has a direct
effect on the relic density, as it influences the coupling of the most dominant process.

The effect of φAt
seen in figure 7.2 is one of the more important relic density effects seen in this thesis.

It can be seen that higher values of this phase correspond to higher values of |µ|, and we know |µ| has a
direct effect on the coupling of the Higgs boson to the LSP through the LSP composition, and thus on the
efficiency of the DM annihilation process. Thus a change in φAt affects that efficiency as well. We argue
that φAt

influences |µ| via the tadpole equations (3.56), with this phase coming into play in the explicitly
mentioned loop corrections of those equations. These loop corrections are determined by the higher order
corrections of Higgs interactions with the top quark and the stop squark. The latter coupling is influenced
by At, as shown in A.4, which leads to the influence of φAt

. One could now question why φµ does not have
a similar influence on |µ| through loop corrections. However, this phase is not directly present in the tadpole
equations. Additionally, and more importantly, this phase gets introduced in propagator terms regarding
the Higgs doublets, which are less dominant in the loop corrections as the top and stop quark couplings.
This effect of φAt

on |µ| comes back in most categories and is one of the main CP-violating effects seen on
the relic density.

The question remains as to why the effect of φAt is that large, given that it enters through loop correc-
tions. Usually, loop corrections, and thus their associated effects, are suppressed. We argue that the larger
effect in the case of φAt

possibly might be due to the order of magnitudes in the tadpole equations. Our
calculation software uses the following relation, which represents the tadpole equations, to set |µ|:

MZ

2
=
m2

Hd
+Σd

d − (m2
Hu

+Σu
u) tan

2 β

tan2 β − 1
− |µ|2. (7.2)

In this equation Σd
d and Σu

u represent the loop corrections of up- and down-type respectively. The latter of
those is where φAt

plays a role. The idea is that we know Mz is of the order of magnitude of 100 GeV as
is tan2 β. Where m2

Hd
and m2

Hu
are mostly of a much higher order of magnitudes. The calculation software

sets |µ| such that the RHS of equation 7.2 becomes equal to the known value of the LHS. Given that |µ| is,
usually, also of a lower order of magnitude than m2

Hd
and m2

Hu
, we need the loop corrections (Σd

d and Σu
u)

to predominantly cancel m2
Hd

and m2
Hu

. In other words, the loop corrections need to be of the same (high)
order of magnitude as m2

Hd
and m2

Hu
. Then, even if φAt

only manages to realise a relatively small change
of the loop correction, this will lead to the much smaller |µ| having to change substantially more, relative
to its original value, to cancel that change. The exact difference needed for |µ| is of course dependent on
the specifics of (the parameters of) the pMSSM point. Therefore the change needed of |µ| can differ over
different pMSSM points, as will be seen in the scatter plots of this chapter. Further, this thesis has not
performed much exploration to confirm this idea. Therefore, we encourage future research to better look
into the size of the effect of φAt

.

The last effect of the H1-funnel is that of φAb
. We argue that this effect might come from loop correc-

tions at the ‘SM-end’ of the dominant process. Most of the cpMSSM points in this category have a most
dominant DM annihilation process with two gluons as end product. This is not surprising as the indirect
coupling of the SM-like Higgs boson with two gluons is strong, shown by the fact that exactly this process
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was the backbone of the first Higgs observation [2]. The following diagram contributes to that most dominant
DM annihilation process.

χ̃0
1

χ̃0
1

g

g

H1

b̃

b̃∗

b̃

This diagram is enhanced by the coupling of H1 − b̃− b̃∗, as given in A.4.4 This enhancement relates to the
1

cos β in yb = gmb√
2MW cos β

present in this coupling, where 1
cos β is large for our pMSSM points. Most pMSSM

points are in the decoupling limit, in other words tanβ is large.5 In this coupling also Ab is present, thus
leading to the observed effects from φAb

, which is not as big as the other two effects as it emerges in a loop
correction of the most dominant DM annihilation process.

This explanation does require a further explanation as to why we do not contribute a similar effect to
φAt

, as one could question why a similar diagram using a stop loop is not discussed. First of all, the
H1 − t̃− t̃∗ does not involve At terms. Therefore, such a diagram does not introduce φAt

effects. However,
that coupling does depend on µ, but any effects on µ are suppressed by two characteristics of the pMSSM
point. Firstly, we have the 1

sin β in yt = gmt√
2MW sin β

that is present in this coupling. Secondly, µ itself is much
smaller than At or Ab. These characteristics combined with this being a one-loop order diagram to begin
with, suppresses any φµ effect.

Even though the effect of φAb
is the smallest of three phase effects, it is the only effect to really survive

the eEDM limit. Most likely φAb
is allowed to have higher values because the up and down squarks feature

in the Barr-Zee diagrams through a coupling with (all) the Higgs bosons. As mentioned, these couplings
are determined strongly by Yukawa terms, and are the highest for the third generation up-type (s)quarks,
resulting in a smaller eEDM contribution from the (phases of the) down-type squarks. Thus, although the
effect of φAb

is the smallest, it is the only effect present in the most ‘true-to-experiment’ situation.

7.2 H2-funnel
The next category of points to look at is very similar to the previous one, only in this case the near-resonant
Higgs particle featuring in an s-channel propagator is the second heaviest neutral Higgs boson H2. Thus, we
have the following, very similar process:

χ̃0
1

χ̃0
1

f

f̄

H2

where again f denotes an arbitrary fermion.

The problem for this category is that we do not have any pMSSM points within the original dataset
that have this process as the most dominant DM annihilation process, or fall within the mass range of
Mχ̃0

1
=

mH2

2 ± 5 GeV. Therefore, instead of selecting these pMSSM points, we created them. For this we
first select pMSSM points with M1 � M2 � µ, in this way we select points with a very bino-like LSP (see
table 3.3). The mass of the LSP for these points is mostly determined by the M1 parameter. If we then

4Where, for simplicity we associate the matrix with φ1 as mostly contributing to H1 etc.. .
5All points have a tanβ higher than 10.
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also filter these points such that µ� mH2 this gives us the possibility to set M1 around mH2

2 , while keeping
intact the hierarchy of parameters, such that phenomenologically the pMSSM point does not change too
much with regards to neutralino/chargino composition. In other words, we create points that should be
close to the required resonance. In addition, by only creating higher mass points we should not get closer to
experimental limits for the sparticles, as these are mostly lower limits (C.3). We succeeded in creating 47
points that both had a correct relic density range, as well as had the H2-funnel process as their dominant
process. However, these points had LSP masses in the range of mH2

2 ± 20 GeV.

Figure 7.3 shows the most clear general effects seen within this category. First of all we again see the
restrictive effects of the eEDM selection. However, in this case the effect of φAb

is the strongest, thus the
strongest effect remains after eEDM selection. This differs from the H1-funnel, where the strongest effects
were from φAt and thus were removed by imposing the eEDM limit.

The second thing to note is that all effects present in the H1-funnel are also present in the H2-funnel.
Given their similarity, this is not surprising. However, there is a clear difference in the strength of these
effects. Therefore, for the effects of φM1

and φAt
we only give the argued reasons for the strength-difference

but not for the existence of the effect, as these are assumed to be same as for the H1-funnel.

Firstly we note that the effects of φAt and φM1 are much weaker. The reason for these weaker effects
most likely lies within the pMSSM points used. As mentioned, the masses of the LSP are in a much broader
range around the perfect resonance point of mH2

2 than they were within the H1-funnel: around 20 GeV
compared to 5 GeV. If we then look at figure 7.1, we see that the closer to this resonance point one gets the
lower the Ωh2 value. In other words, the DM annihilation process happens more during freeze-out. The more
such a process happens, the bigger the effect of the phases, as these phases now determine the efficiency of a
more-occurring process. Therefore the pMSSM points created for the H2-funnel, with a broader bandwidth
around the resonance, result in the weakening of the observed phase effects. The creation of H − 2-funnel
pMSSM points was forced to use this bigger bandwidth because points closer to the resonance resulted in too
low Ωh2 predictions. Thus, irrespective of this creation process, due to selection on a correct relic density
prediction, we would always be left with these weakened effects of φAt

and φM1
.

In contrast, the relative effect of φAb
has become much stronger. Again, we attribute this effect to loop-

corrections on the ‘SM-end’ of the most dominant process. In this case, the most dominant process had two
bottoms as end product. The bottoms as end product stems from the coupling of the cpMSSM Higgs bosons
to quarks, and especially the distinction in this coupling between up- and down-type quarks (table A.1) In
this table we see that the coupling of the H2-boson to down-type quarks is enhanced by 1

cos β , which is large
for our decoupled pMSSM points. For this dominant DM annihilation process, the following diagram is one
of the loop corrections.

χ̃0
1

χ̃0
1

b

b̄

H2

b̃

b̃∗

χ̃0
1

This loop correction is most likely one of the more dominant contributions of the loop corrections. This
fact originates in the H2 − b̃ − b̃∗ coupling, which is given in A.4.6 First of all this coupling will have
the highest efficiency for two bottoms as end product, as otherwise generational mixing would have been
needed to get two bottoms as the end product. Furthermore, this coupling is again enhanced by the 1

cos β

in yb = gmb√
2MW cos β

. However, this coupling is not dependent on Ab, thus does not explain the observed φAb

effect. To explain the φAb
effect of this diagram we turn to the χ̃0

1 − b̃− b coupling, which is given in A.18.
This coupling is dependent on the sfermion mixing matrices, which for a sbottom-bottom coupling depend

6Again for simplicity we associate the φ2 matrix as mostly contributing to H2 etc.. .
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on Ab. Therefore, the χ̃0
1 − b̃− b coupling introduces the observed φAb

effect.

We do, however, note that the observed φAb
effect also really depends on the value of Ab itself. The

pMSSM point used for figure 7.3 has >8000 GeV as Ab value, and thus a large φAb
effect. In contrast,

almost no effect of φAb
is seen for another H2-funnel point with Ab around 260 GeV. The other points have

an Ab in between these two extremes, and thus also show a ‘medium’ φAb
effect.

(a)

(b)

Figure 7.3: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values were sampled for a pMSSM point in the H2-funnel. The colour represents |µ|, which is not a free
parameter of the software but is calculated via the tadpole equations (3.56). (a): with selection on the eEDM
limit. (b): without selection on the eEDM limit.
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7.3 Z-funnel
The last funnel category to look at is the funnel that uses a Z boson featuring in a s-channel propagator. This
funnel is categorized by the pMSSM points for which the following process is dominant during freeze-out.

χ̃0
1

χ̃0
1

f

f̄

Z

where f denotes an arbitrary fermion.

To select points for this funnel we can once again look at a mass resonance, as well as at the dominant
process from the calculation. In this case the mass resonance is given by: mχ̃0

1
= MZ

2 ± 5 GeV. Figure 7.4
again shows the need for both these selection requirements, as within both the relic density range (7.1) and
the mass resonance range there exist points with a non Z-funnel dominant DM annihilation process.

Figure 7.4: Scatter plot of pMSSM points that are of interest for the selection of Z-funnel points.

Figure 7.5 shows the scatter plots of the Z-funnel study. These plots again show the general phase effects
also seen in the plots of the other pMSSM Z-funnel points in the best manner.
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(a)

(b)

Figure 7.5: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values were sampled for a pMSSM point in the Z-funnel. The colour represents |µ|. (a): with selection on
the eEDM limit. (b): without selection on the eEDM limit.

The first thing to note is the clear restriction that the eEDM limit has on the possible phase effects. In
this case the restrictive effect is even more present than in the other funnels. However, this can also be
due to the phase effects in the Z-funnel being weaker to begin with, since looking at figure 7.5, we observe,
by the smaller range on the y-axes of the plots, that the effects are substantially less pronounced to begin with.

This absence of strong effects most likely has multiple reasons. First of all, |µ| is a much less influen-
tial parameter in this category. In general this is because we are no longer considering Higgs bosons, for
which µ naturally is the main parameter as it is the parameter of the Higgs term within the superpotential.
Therefore, φAt

, which influences |µ| through the tadpole equations, will have a much smaller effect on the
Z-funnel process. Additionally, the tree-level coupling is no longer directly dependent on the phases of pa-
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rameters that govern the neutralino composition, as was the case for the Higgs funnels. The absence of a
direct dependence can be seen by the presence of only absolute values for the neutralino mixing matrix in
equation A.17. Therefore, the phase effects of the parameters associated with N will only come into play
through higher-order loop corrections. These types of effects are typically much weaker than the tree-level
effects seen in the Higgs funnels.

7.4 Neutralino Co-Annihilation
The previous sections all discussed dominant annihilation processes for the relic density. However there is
also another possibility, that of co-annihilation. In other words, the LSP does not annihilate with itself, but
uses another sparticle, to turn into at least two SM particles. In this section we look at co-annihilation of
the LSP with the second-lightest neutralino. Co-annihilation concerns, in general, more possible forms of
dominant processes, with the same start and end product, than annihilation would. Therefore, to be explicit:
we are interested in pMSSM points with dominant processes during freeze-out that would ‘fall’ under this
general process.

χ̃0
1

χ̃0
2

SM

SM

As mentioned in section 4.2, the efficiency of these kinds of processes is governed by the mass difference
between the two co-annihilation partners. Therefore to select pMSSM points within this category we first
take a look at pMSSM points that have ∆mχ̃0

1
mχ̃0

2
≡ mχ̃0

2
−mχ̃0

1
< 100 GeV.
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(a)

(b)

Figure 7.6: Two scatter plots of pMSSM points within ∆mχ̃0
1
mχ̃0

2
of 100 GeV. (a): the colouring depends on

the first neutralino-co-annihilation dominant process/channel and which rank it has in the order of dominant
processes, as computed by the calculation software. (b): the form of the marker replaces the colouring of (a).
The colouring is now given by the relative contribution of that most dominant neutralino co-annihilation
process.

However, figure 7.6 clearly shows that selecting on the mass difference is not enough to find the correct points.
By looking at figure 7.6a we see that only a small amount of pMSSM points that have as the most dominant
process a neutralino-co-annihilation process remain in the correct relic density range. Therefore, we also
present figure 7.6b, which shows the points with the most dominant neutralino co-annihilation processes
as the second or third most dominant DM (co-)annihilation process. These processes do contribute quite
substantially to the relic density prediction. Thus, to check the effects that will be seen in the three pMSSM
points with neutralino-co-annihilation contributions as most dominant process, we will also select some of
the aforementioned points, where we limit ourselves to the points in which the most dominant neutralino
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co-annihilation process contributes no less than half the contribution of the overall most dominant process.

Figure 7.7 presents the scatter plots associated with cpMSSM samples for a pMSSM point that had a
neutralino-co-annihilation process as the most dominant process during freeze-out. It turned out that the
effects seen for ‘first process’ neutralino co-annihilation points were very similar to those for points that had
the first neutralino co-annihilation process as either the second or third most dominant process.

(a)

(b)

Figure 7.7: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The
phase values were sampled for a pMSSM point with a neutralino co-annihilation as most dominant DM
(co-)annihilation process. The colour represents |µ|. (a): with selection on the eEDM limit. (b): without
selection on the eEDM limit.
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We again see that the eEDM does have a restrictive effect on the possible relic density consequences of
the phases. However, compared to the previous funnels the restriction is weaker. The effect of φAb

mostly
survives imposing the eEDM limit. Moreover, values of φAt

are allowed to become large enough to observe
the start of the ‘full effect’ seen when not imposing the eEDM limit.

The effect of φAt is explained similarly as before through the loop corrections of the tadpole equations (3.56).
In this case this reasoning might even be slightly more extreme due to the presence of two neutralinos, as
such |µ| could have double the influence on the efficiency of the dominant process.7 This is reflected by the
fact that even though |µ| varies less compared to the funnels, the effect it has is stronger, or at least as strong.

For the quite strong effect of φAb
we take a look at one of the contributing tree-level diagrams for neu-

tralino co-annihilation.

χ̃0
1

χ̃0
2

b

b̄

b̃

The coupling of neutralino-bottom-sbottom is given in A.18. First of all this coupling is dependent on
the mixing matrix of the down squarks. These entries are influenced by the trilinear terms. Thus for the
sbottom propagator, φAb

influences the efficiency of this process. However, this diagram can also be made
with top final states and a stop propagator. This stop diagram is less dominant because we are using pMSSM
points with relatively high tanβ values. As can be seen in A.20 this ensures that the coupling for down-type
quarks/squarks becomes stronger compared to the coupling of up-type quarks/squarks.8 Therefore, although
a similar effect for φAt

might be present, it will be smaller than the effect for φAb
. Thus, the effect of φAt

will most likely be dominated by the effects through the tadpole equations of φAt .

7.5 Chargino Co-Annihilation
The next co-annihilation possibility we consider is that of chargino co-annihilation. In other terms, we are
looking at pMSSM points that have dominant contributions towards the relic density of processes described
by

χ̃0
1

χ̃±
1

SM

SM

The selection of these points is much more straightforward than that of neutralino co-annihilation. This can
be seen if we make a replica of figure 7.6a for chargino co-annihilation. This plot is presented in figure 7.8.
In contrast to neutralino co-annihilation, we see a good number of points that both fall in the correct relic
density range and have a chargino co-annihilation process as the most dominant process.

7However, as will be seen in chargino co-annihilation, two particles’ composition possibly governed by the same parameters
might also lead to a negative extreme of the effect.

8This effect does depend on the composition of the two neutralinos.
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Figure 7.8: Scatter plot of pMSSM points within ∆mχ̃0
1
mχ̃±

1
≡ mχ̃±

1
− mχ̃0

1
of 100 GeV. The colouring

depends on the first chargino co-annihilation dominant process/channel and which rank it has in the order
of dominant processes, as reported by the calculation software.

Figure 7.9 shows the studied scatter plots for chargino co-annihilation. The main thing seen in these plots is
that there seems to be (almost) no effect from any of the phases. This absence of effects is also present when
not imposing the eEDM limit. We argue this to be because the composition of the co-annihilating chargino
and neutralino is governed by the same parameter: M2 or µ. If this is the case, the relative composition
between the two particles does not change, even though the value of the governing parameter itself does.
Therefore, the efficiency of a process that contains both these particles is not changed by the introduction
of phases. To understand why the composition of these sparticles is governed by the same parameter, we
look at the mass matrices of charginos and neutralinos defined in section 3.3.4. These matrices consist of
the same parameters, apart from M1. However, for the chargino and neutralino to be close to each other
in mass, the typical case is that M1 is not lighter than M2 and µ, as then the LSP would be lighter than
the lightest chargino. Of course, accidentally it could happen that through combinations of the parameters
the chargino and neutralino reach a similar mass, but this is a quite rare scenario. In such a rare scenario a
lot of mixing of gauge eigenstates would occur, which enhances the possibility that experimental limits are
not satisfied one way or another. Therefore, in most scenarios the chargino and neutralino are of similar
composition, resulting in (close) to no CP-violating effects on the relic density.
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(a)

(b)

Figure 7.9: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The
phase values sampled originate from a pMSSM point with a chargino co-annihilation as most dominant DM
(co-)annihilation process. The colour represents |µ|. (a): with selection on the eEDM limit. (b): without
selection on the eEDM limit.

7.6 Stau Co-Annihilation
The next co-annihilation category to look at is that of co-annihilation between the stau and LSP. The general
process that we are looking for as being dominant during freeze-out is now given by:
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χ̃0
1

τ̃1

SM

SM

Note the 1 subscript for the stau, this subscript indicates that among the stau mass eigenstates we only con-
sider the lightest eigenstate for a co-annihilation process. This is because co-annihilation is most dominant
for sparticles that are close together in mass with the LSP. By definition of mass-ordering and the LSP, the
lowest mass eigenstate of the third-generation sfermion will be closest to the mass of the LSP. Therefore,
the co-annihilation is always most dominant for this lowest-mass eigenstate.

To select pMSSM points in which a stau co-annihilation process is the dominant process for the relic density,
we use the same procedure as in the previous co-annihilation sections. By looking at figure 7.10, we see
that there is a good number of points with the correct dominant process and correct relic density prediction
available. However, we can also see that the effect of stau co-annihilation seems much weaker compared to
the co-annihilation with a chargino or neutralino.

Figure 7.10: Scatter plot of pMSSM points within ∆mχ̃0
1
mτ̃1 ≡ mτ̃1 − mχ̃0

1
of 40 GeV, where τ̃1 denotes

the lightest mass eigenstate of the stau. The colouring depends on the first stau co-annihilation dominant
process/channel and which rank it has in the order of dominant processes, as reported by the calculation
software.

Figure 7.11 shows the scatter plots that best show the CP-violating effects seen for stau co-annihilation on
the prediction of the relic density.
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(a)

(b)

Figure 7.11: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values sampled originate from a pMSSM point with a stau co-annihilation dominant process. The colour
represents |µ|. (a): with selection on the eEDM limit. (b): without selection on the eEDM limit.

Naturally, there is a very strong φAτ
effect showing up. This effect stems from the coupling between the

LSP and the stau, into a tau propagator, in which the trilinear coupling Aτ is present. To be exact, Aτ

is present in the mixing between the left- and right-handed states [15]. However, the main problem with
this effect is that it gets fully removed by imposing the eEDM limit. This happens because, as mentioned
before, for stau co-annihilation to be dominant, we need the masses of the stau and the LSP to be close
together. If we then look at the two-loop diagrams of the eEDM (Barr-Zee) diagrams in section 4.2, we see
diagrams that couple via the Higgs bosons to a stau loop. The smaller the mass of the stau, the higher the
contribution of such a diagram. Thus, if we introduce CP-violating phases for stau co-annihilation pMSSM
points, this easily leads to large eEDM predictions for the generated cpMSSM point. In conclusion, due
to the needed phenomenology of stau co-annihilation pMSSM points, we practically cannot introduce φAτ
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values. However, this phase is the only one to introduce effects on the relic density. Thus, in practice,
no CP-violating effects survive imposing the eEDM limit for stau co-annihilation points after imposing the
eEDM limit.

7.7 Slepton co-annihilation
Another category of co-annihilation is that of LSP co-annihilation with the lightest slepton of the first
two generations, which we denote by ẽ1 in this section. Of course, note that technically we are also con-
sidering smuon-like sleptons. They are just mass-degenerate in the (c)pMSSM. Possible pMSSM points
for this category are slightly more limited by experimental limits (see C.3). To be exact, the limit on
∆mχ̃0

1
mẽ1 ≡ mẽ1 −mχ̃0

1
, the fact that the lightest slepton should be heavier than χ̃0

2 and χ̃±
1 , and the limit

of mẽ1 > 240 GeV. However, as can be seen in figure 7.12 there are some interesting pMSSM points with
just the correct relic density prediction.

Figure 7.12: Scatter plot of pMSSM points with a mass difference between ẽ1 and χ̃1
0 of less than 200 GeV,

where ẽ1 denotes the lightest mass eigenstate of the first two generations sleptons. The colouring depends on
the first slepton co-annihilation dominant process/channel and which rank it has in the order of dominant
processes, as reported by the calculation software.
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(a)

(b)

Figure 7.13: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values sampled originate from a pMSSM point with a slepton co-annihilation dominant process. The colour
represents |µ|. (a): with selection on the eEDM limit. (b): without selection on the eEDM limit.

Figure 7.13 shows the scatter plots for one of the selected pMSSM points with a most dominant slepton co-
annihilation process. We first of all notice the severe restriction of imposing the eEDM limit. This is most
likely because all of the pMSSM points with a dominant slepton co-annihilation process, also have a very low
stau mass. Thus, the phase effects seen are exactly the same for this category as for stau co-annihilation,
including the restriction that the eEDM provides and the only effect being that of φAτ .

In contrast to stau co-annihilation, we do see two bands within these plots. This again stems from the fact
that all of these points have a low stau mass. As a consequence, there are not one but two co-annihilation
processes happening for these points: stau and slepton co-annihilation. Small differences in parameters, in
this case most likely caused by phases, then result in one of the two being slightly more dominant than the
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other. The ultimate relic density prediction is dependent on which of the two is the most dominant, where
there is a slight difference between either case. This results in two bands being present, ‘visualising’ which
process is more dominant during what time of freeze-out.

7.8 Sbottom Co-Annihilation
The next category looks at pMSSM points for which the dominant relic density process is that of sbottom
co-annihilation. As a reminder, we are looking at processes similar to that visualized for stau co-annihilation,
only the τ̃1 is replaced by b̃1.
Sbottom co-annihilation points did not exist enough in the original pMSSM dataset.9 Therefore we opted
to make these points ourselves. This procedure consisted of finding bino-like LSP points with ∆mχ̃0

1
mb̃1

≡
mb̃1

−mχ̃0
1
< 200 GeV. For these points we setM1 close tomb̃, which should result in χ̃0

1 particles with a mass
close to mb̃ as well. Similar to the points created for the H2-funnel, we do this only for very bino-like LSP
points with µ � mb̃1

, as that gives us the possibility to leave the parameter hierarchy intact otherwise. By
making a large number of similar points, only differing in the ‘mass difference’ set between M1 and mb̃, we
created some relevant pMSSM points. However, these were still not clear-cut sbottom co-annihilation. Ap-
parently, sbottom co-annihilation is very dependent on the number of sbottom particles present in the early
universe. For a large number of these points, a process in which sbottom sparticles themselves annihilated
away became the most dominant, as that process heavily influences the number of sbottoms present during
freeze-out. This number influences the sbottom co-annihilation both by efficiency: the more sbottoms, the
more co-annihilation, as well as by decay of sbottom particles into DM once co-annihilation is no longer
possible. To be pure within this study we would like to use points that do not have this process as the most
dominant. Luckily, we did create three pMSSM points with a sbottom co-annihilation as the most dominant
process. Although the prediction of relic density for these points was slightly too high, these pMSSM points
were still used. Figure 7.14 shows the scatter plots for one of these points.

9There existed only two pMSSM points that had a sbottom co-annihilation process as third most dominant process.
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(a)

(b)

Figure 7.14: Scatter plots of phase values versus the dark matter relic density of cpMSSM points. The phase
values sampled originate from a pMSSM point with a sbottom co-annihilation dominant process. The colour
represents |µ|. (a): with selection on the eEDM limit. (b): without selection on the eEDM limit.

The first thing to notice is that most effects in this category survive imposing the eEDM limit, even though
in this case we have a sbottom mass close to the LSP mass, as was also the case for the stau. Why in this
case that does not lead to very restricted phase values for φAb

seems to be connected with the mixing of
the left and right-handed sfermions into mass eigenstates. As can be seen for the Higgs-sfermion-sfermion
couplings (as present in the Barr-Zee diagrams) shown in A.4, these couplings depend on the trilinear cou-
plings through exactly the mixing of left- and right-handed states. Thus, the closer the masses of the two
sfermions are, the higher the influence of the corresponding trilinear coupling on eEDM important diagrams,
as similar mass eigenstates lead to more mixing in left- and right-handed eigenstates. It turns out that the
masses of the two staus are consistently closer together for our stau co-annihilation points than the masses
of the sbottoms for our sbottom co-annihilation points. To be specific, the average mass difference between
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mb̃1
and mb̃2

is 4196.99 GeV for our sbottom co-annihilation points, whereas the average mass difference
between mτ̃1 and mτ̃2 is 170.12 GeV for our stau co-annihilation points.10 Thus any phase contribution to
the eEDM of the corresponding trilinear coupling is much weaker for the sbottom co-annihilation than it
was for stau co-annihilation.

The most expected effect is that of φAb
, as the trilinear Ab term is present in the left- and right-handed

mixing of sbottom states [15]. Furthermore, we also see an effect of φAt , and again this can be attributed
to its relationship with µ through the tadpole equations. If we again look at the neutralino-bottom-sbottom
expression in A.18, we see non-absolute value entries of the neutralino mixing matrix. Therefore, µ, and
thus φAt

, has a strong influence on the strength of a sbottom co-annihilation process.

7.9 Bulk
The last category to look at is the bulk category. In other words, all pMSSM points that do not fall into
any co-annihilation or funnel category. The selection of these points is less interesting, therefore we directly
present figure 7.15 with the most general scatter plots for this category.

Firstly, we notice the strong restrictions on phase values by the eEDM limit in 7.15 This can be explained by
the fact that most bulk points need larger amounts of higgsino or wino contribution to the LSP than other
categories, as otherwise the dark matter relic density does not reach (the lower) desired values. Higgsinos
or winos generally couple stronger than the bino, which results in high contributions to the one-loop eEDM
diagrams. Thus even small CP-violating phase values will contribute strongly to higher eEDM predictions.

However, even if we ignore the strong eEDM restriction, we only see an effect on the relic density con-
cerning φAt . This is again its effect on the neutralino composition through the loop corrections of the
tadpole equations, which surely is one of the main CP-violating effects on the dark matter relic density
shown in this thesis.

10For completeness sake, the mass difference for the stau mass eigenstates did not exceed 300 GeV.
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(a)

(b)

Figure 7.15: Scatter plots of phase values versus the dark matter relic density of cpMSSM points originating
from a pMSSM point in the bulk category. The colour represents |µ|. (a): with selection on the eEDM limit.
(b): without selection on the eEDM limit.
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Chapter 8

Conclusion and Outlook

The study of CP-violating effects on the dark matter relic density using a self-made ML cpMSSM sampler
wraps up the thesis. Firstly, it has been shown that it is possible to sufficiently learn a normalizing flow
model to sample cpMSSM points based on a given pMSSM point. Through the usage of non-conventional
validation methods, like the likelihood ratio, visual validations and volume approximation, we were able to
determine that our model does not sample the cpMSSM phase space in unwanted manners. The introduced
sampler does not only generate copies and does seem to sample a substantial amount of the available phase
space in a reasonably uniform manner. These validation methods, although not extremely complex, were
influential in solving this complex, non-conventional task. The sampler generated >50% correct samples for
a given pMSSM point, where correctness is determined by the limit on the eEDM contribution introduced
by the CP-violating phases.

Although this means that the new sampler was not perfect, it is most definitely a step forward for re-
search into the cpMSSM. In contrast to previously used samplers, the normalizing flow can be used in a
fully automatic process. This enables a more automatic study of cpMSSM points, to determine interesting
observable predictions in this SUSY model. Moreover, because the model generates >50% correct samples,
the calculation software also gets used effectively in this automatic process. Lastly, the new sampler is very
efficient and can generate millions of interesting samples within realistic time frames.

In this thesis the usefulness of the new sampler has been shown through a study into the effects of CP-
violating phases on the dark matter relic density. Two main effects were found in this study. Firstly, the
fact that imposing the eEDM limit is a severe restriction on the possible effects of the introduced phases.
Examples are the φAτ

effect in stau co-annihilation, and the removal of any φM1
effect for all annihilation

categories. Secondly, a strong effect was found for φAt
in most categories, which is caused by its influence

on |µ|. This influence enters through the Yukawa terms in the loop corrections of the tadpole equations
(3.56) of the MSSM. As far as we know, this is a novel and possibly unexpected effect. Of course, other
(co-)annihilation category-specific effects were found. For example the general weakening of CP-violating
effects for the Z-funnel, compared with the H1 and H2 funnels, due to the presence of absolute values in the
dominant couplings. Other examples are the φAb

effects that enter through loop corrections of the H-funnel
and the absence of any effects for chargino co-annihilation points. However, the two main effects mentioned
at the beginning of this paragraph were seen in general over multiple categories.

8.1 Outlook
Naturally, there are also possibilities to extend this work in the future and explore other opportunities. For
the ML sampler there always will be the possibility to expand the dataset that was used, as more data
usually leads to a better model. In this case there might actually be more arguments for new data as well,
not necessarily more. The current dataset does not fully sample the available parameter space of µ. In our
calculation software µ is not given, as it is calculated via the tadpole equations. However, these equations
do not determine the sign of µ. In the used dataset all points were accidentally given a positive µ sign. By
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also using points with a negative µ, the model’s performance might improve.

Besides that specific expansion of the dataset, it would be interesting to see if more data might lead the
model to become more dependent on the given pMSSM point. The general features found by the model
are, as shown by the reached acceptance percentage, not incorrect and very interesting. However we would
expect to see more difference between different pMSSM points. That the current model does not show this
could point to three things. Firstly, it could be that the data is not representative enough, either we need
more samples per pMSSM point, or we need more different pMSSM points. Both are possibilities for future
research. Secondly, we could also look at further optimising the ML model to reach a more conditionalized
sampler. Possibilities for this could be a longer learning process, or altering the loss function and reward
taking into account the condition more strictly. Lastly, it could point to the fact that we might better learn
the model on a six-dimensional phase vector to begin with. As explained, through a bug in the Spheno-CPV
software we were forced to switch from including φM3 to removing it, made possible by the present U(1)
symmetries of the cpMSSM. By removing φM3

the model might learn more freely, as it is now no longer
bounded by the dependence of one of the dimensions. However, the internal dependence could also be used
as a cross-check, as we can explicitly reward the model for outputting samples that do have a correct depen-
dence on (for example) φM3

. But to do so we would first need to be sure that the model is actually capable
of learning this ‘hyperplane’. However, we should also keep in mind the possibility that the unconditionality
of the sampler is actually correct from a physics standpoint.

A last possibility for the ML sampler could be to tune the bias correction in the model. This bias emerges in
the dataset due to the naive sampling of phases for the dataset using a logarithmic distribution. Currently,
we decided to either fully correct for this bias or fully ignore it (section 5.4.1). However, it would be inter-
esting to see what happens if we tune this bias using a (hyper)parameter of the model. Especially as figure
B.1 and B.2 do show that incorporating this correction does have the intended effect of sampling larger phases.

Another possible avenue for future research lies at the edge of ML and physics. As explained, there is
no theoretical consensus on aµ and the validness of its discrepancy with the SM (4.1). This led us to not
implement the lower limit of aµ. As this allows higher masses, it also could allow for higher phase values,
which we hoped to see within the generated samples by the model. However, the current model has not
learned such a relationship, at least not in a significant manner. It would be interesting to see what would
happen if we, for example, fine-tune a learned model on a dataset consisting of only correct or only incorrect
points according to the theoretical limits of aµ.

For the DM relic density study we could always have a more precise look at some of the observed effects. It
would be very interesting to further explore the loop corrections of the tadpole equations, to confirm and
further explain the effect of φAt on |µ|. Due to the time constraints of this internship, no further exploration
is presented here. However, given that this effect was quite surprising as well as influential, further research
is definitely encouraged. Naturally, other observed phase effects on the dark matter relic density given in
this thesis also warrant further exploration.

Finally, future research should test the limits of the introduced ML sampler by testing it for other phe-
nomenological observables. It is this scenario where the true potential of our sampler lies. Through our
creation of an automatic process for sampling cpMSSM points, it should become more feasible to study
the cpMSSM for any type of experimental limit or theoretical prediction, given enough interesting pMSSM
points, which are more readily available or more easily made. This should help to practically exclude the
(cp)MSSM as BSM model, or to better understand it for future endeavours within SUSY, in our quest to
find the solution to the flaws of the SM.
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Appendix A

Extra Material

A.1 All Generic Interactions within Supersymmetry

Figure A.1: The non-gauge interactions with a dimensionless coupling in supersymmetric theories: (a) scalar-
fermion-fermion Yukawa yijk (b) the complex conjugate of (a): y∗ijk, (c) quartic scalar interaction: yijny∗kln
[11].

Figure A.2: The non-gauge interactions with a dimensionful coupling in supersymmetric theories: (a)
(scalar)3 interaction vertex M∗

iny
jkn (b) the complex conjugate of (a) (c) fermion mass term M ij (d) conju-

gate fermion mass term M∗
ij (e) scalar squared mass term M∗

ikM
kj [11].
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Figure A.3: The gauge interactions of a supersymmetric theory [11]

A.2 Couplings
Higgs-chargino interactions
This interaction is given by the following diagram:

χ̃+
j

χ̃−
k

Hi

The couplings for this diagram are given by a pseudoscalar (P) and a scalar (S) part of the Higgs boson.

gS
Hiχ̃

+
j χ̃−

k

=
1

2

{
[V ∗

j1U
∗
k2G

φ1

i + e−iηV ∗
j2U

∗
k1G

φ2

i ] + [j ↔ k]∗
}
, (A.1)

gP
Hiχ̃

+
j χ̃−

k

=
i

2

{
[V ∗

j1U
∗
k2G

φ1

i + e−iηV ∗
j2U

∗
k1G

φ2

i ] + [j ↔ k]∗
}
, (A.2)

where Gφ1

i = (Oiφ1 − i sinβOia) and Gφ2

i = (Oiφ2 − i cosβOia) Here O denotes the mixing matrix with CP
violation as defined in section 3.3.1 and φ1, φ2 and a denote the three possible intermediate states, without
the Goldstone boson, that O transforms the mass eigenstates into. Furthermore, as defined in section 3.3.1
U and V denote the mixing matrices of the charginos.

Higgs-fermion interactions.
The scalar and pseudoscalar couplings between Higgs bosons and fermions is given by the following feynmann
diagram:

f

f̄

Hi

The corresponding pseudoscalar (P) and scalar (S) terms are given in table A.1 at tree level. For the ex-
pressions at higher order, including the re-summation of tanβ the reader is referred to [17].
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f = u f = d, l
GS

Hiff̄
Oiφ2

/ sinβ Oiφ1
/ cosβ

GP
Hiff̄

−Oia cotβ −Oia tanβ

Table A.1: Couplings between Higgs bosons and fermions. O denotes the mixing matrix with CP violation as
defined in section 3.3.1 and φ1, φ2 and a denote the three (without the Goldstone boson) possible intermediate
states that O transforms the mass eigenstates into.

For intuition, to show the tanβ dependence more clearly and to better see what happens in the decou-
pling limit with this coupling, we also present the couplings for H0 and h0 coupling with quarks:

h0/H0

q

q̄

= −ig mq

2mW
Xh,H (A.3)

where q denotes the quark and Xh,H is given by the below table.

u d
Xh

cosα
sin β − sinα

cos β

XH
sinα
sin β

cosα
cos β

Higgs-sfermion interactions
In general we have:

gHif̃∗
j f̃k

=
Hi

f̃k

f̃∗j

=
1

v

(
Γαf̃∗f̃

)
βγ

OiαX
f̃∗
βjX

f̃
γk (A.4)

The latter two matrices (X) are matrices denoting the sfermion mixing matrices (for explicit expressions, see
[17]) and O is again the CP violating Higgs rotation matrix with v the vacuum expectation value. Lastly:
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α = φ1, φ2, a and β and γ are spinoral indices. The effective couplings present within this thesis are:

Γab̃∗b̃ =
1√
2

(
0 iy∗b (A

∗
b sinβ + eiηµ cosβ)

−iyb(Ab sinβ + e−iηµ∗ cosβ) 0

)
, (A.5)

Γφ1b̃
∗b̃ =

(
−|yb|2v cosβ + 1

4 (g
2 + 1

3g
′2)v cosβ − 1√

2
y∗bA

∗
b

− 1√
2
ybAb −|yb|2v cosβ + 1

6g
′2v cosβ

)
, (A.6)

Γφ2b̃
∗b̃ =

(
− 1

4 (g
2 + 1

3g
′2)v sinβ 1√

2
y∗bµe

iη

1√
2
ybµ

∗e−iη − 1
6g

′2v sinβ

)
, (A.7)

Γat̃∗ t̃ =
1√
2

(
0 iy∗t (e

−iηA∗
t cosβ + µ sinβ)

−iyt(eiηAt cosβ + µ∗ sinβ) 0

)
, (A.8)

Γφ1 t̃
∗ t̃ =

(
− 1

4 (g
2 − 1

3g
′2)v cosβ 1√

2
y∗t µ

1√
2
ytµ

∗ − 1
3g

′2v cosβ

)
, (A.9)

Γφ2 t̃
∗ t̃ =

(
−|yt|2v sinβ + 1

4 (g
2 − 1

3g
′2)v sinβ − 1√

2
y∗tA

∗
t e

−iη

− 1√
2
ytAte

iη −|yt|2v sinβ + 1
3g

′2v sinβ

)
, (A.10)

Γaτ̃∗τ̃ =
1√
2

(
0 iy∗τ (A

∗
τ sinβ + eiηµ cosβ)

−iyτ (Aτ sinβ + e−iηµ∗ cosβ) 0

)
, (A.11)

Γφ1τ̃
∗τ̃ =

(
−|yτ |2v cosβ + 1

4 (g
2 − g′2)v cosβ − 1√

2
y∗τA

∗
τ

− 1√
2
yτAτ −|yτ |2v cosβ + 1

2g
′2v cosβ

)
, (A.12)

Γφ2τ̃
∗τ̃ =

(
− 1

4 (g
2 − g′2)v sinβ 1√

2
y∗τµe

iη

1√
2
yτµ

∗e−iη − 1
2g

′2v sinβ

)
, (A.13)

Γaν̃∗
τ ν̃τ = 0, Γφ1ν̃

∗
τ ν̃τ = −1

4
(g2 + g′2)v cosβ, Γφ2ν̃

∗
τ ν̃τ =

1

4
(g2 + g′2)v sinβ. (A.14)

All1 couplings are given as matrices in the basis (f̃L, f̃R) of the associated sfermion.

All expressions above this point are taken from [17], and changed where needed. All expressions below
this point originate from [15].

h0-χ̃0
1 - χ̃0

1 coupling

χ̃0
1

χ̃0
1

h0 = −ig(−Q∗
11 sinα− S∗

11 cosα), (A.15)

where Q11 and S11 are:

Q11 =
1

2

(
N13(N12 − tan (θW )N11) +N13(N12 − tan (θW )N11)

)
,

S11 =
1

2

(
N14(N12 − tan (θW )N11) +N14(N12 − tan (θW )N11)

)
.

(A.16)

The CP violating version of this coupling (with H1) is not given, as that would become a very complex
and messy coupling. The essence of the coupling that is important for this thesis is also present in the CP

1With the exception of those corresponding with tau sneutrinos as those do not have a right-handed version within the
MSSM.
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conserving case.

Z-χ̃0
1 - χ̃0

1 coupling

χ̃0
1

χ̃0
1

Z = i
g

2cW
γµγ

5

(
|N13|2 − |N14|2

)
(A.17)

χ̃0
1 - quark - squark coupling

q̃

q̄

χ̃0
1 = i

(
(GqR

is )
∗(
1− γ5

2
) + (GqL

is )
∗(
1 + γ5

2
)

)
(A.18)

and
q̃∗

q

χ̃0
1 = i

(
(GqR

is )(
1 + γ5

2
) + (GqL

is )(
1− γ5

2
)

)
(A.19)

q = u, d; i = 1, 2, 3; s = 1, 2, 3, 4, 5, 6. Here we define GqL
is and GqR

is by:

GuL
is = −
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2g
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2
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W ũ∗
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js X

dL
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(A.20)

In these terms W and X denote the sfermion and fermion mixing matrices respectively (for expressions see
[15]). Further, W combines left and right handed mixing, whereas X explicitly is used for either one.

χ̃0
1 - lepton - slepton coupling

The below given expression is only for electron and selectron-like (s)particles, as that is the variant of this
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vertex that is the most interesting for this thesis.

l̃

l̄

χ̃0
1 = i

(
(GlL

is )
∗(
1 + γ5

2
) + (GlR

is )
∗(
1− γ5

2
)

)
(A.21)

and
l̃∗

l

χ̃0
1 = i

(
(GlR

is )(
1 + γ5

2
) + (GlL

is )(
1− γ5

2
)

)
(A.22)

l = e, µ, τ ; i = 1, 2, 3; s = 1, 2, 3, 4, 5, 6. Here we define GlL
is and GlR

is by:

GlL
is =

1√
2
g

(
N∗

12 + tan θWN∗
11

)
W l̃∗

is − g√
2mW cosβ

mliN
∗
13W

l̃∗
(i+3) s,

GlR
is = −

√
2g tan θWN11W

l̃∗
(i+3)s −

g√
2mW cosβ

mliN13W
l̃∗
is .

(A.23)

A.3 Loop Functions
This section provides the expressions for the loop functions used within section 4.1.

A(x) = − 1

2(1− x)3

[
− 3 + 4x− x2 − 2 log (x)

]
, (A.24)

B(x) =
1

2(1− x)3

[
1− x2 + 2x log (x)

]
, (A.25)

F (τ) =

∫ 1

0

dx
x(1− x)

τ − x(1− x)
log [

x(1− x)

τ
], (A.26)

f(τ) =
τ

2

∫ 1

0

dx
1− 2x(1− x)

x(1− x)− τ
log [

x(1− x)

τ
], (A.27)

g(τ) =
τ

2

∫ 1

0

dx
1

x(1− x)− τ
log [

x(1− x)

τ
]. (A.28)

A.4 Augmentation Study
This section presents the numbers regarding the augmentation possibilities, as explained in section 5.3.4. The
numbers are shown in table A.2. Further, it presents a small discussion and explanation with regards to a
found mistake in the open source part of the calculation software.

The clear discussion point of table A.2 is the fact that 414 of the originally correct cpMSSM points, if fed
through the calculation software again, led to incorrect cpMSSM points. We meticulously went through the
pipeline of the calculation software, as visualized in figure C.1, and also the full pipeline as explained in 5.3.
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Table A.2: Number of cpMSSM points that were calculated to have a low enough eEDM value before and
after augmentation. For clarification: we started this test with 1000 correct cpMSSM points. After inputting
these through the calculation software again, we were left with 586 points. The other columns represent the
number of correct points after the calculation software was presented with the 1000 augmented points.

Correct Points Re-Run Full Flip Dominant Flip Non-Dominant Flip
1000 586 586 526 526

Ultimately, no mistake in the pipeline itself was found. However, we did find that the change in the correct-
ness of some points originated from a difference in the output and input precision of the calculation software.
The input precision of Spheno-CPV is 16 digits.2 The output was subsequently given in 10 digits. Given
that a lot of cpMSSM points are very close to the eEDM limit, such a rounding could make the difference
between a correct or incorrect eEDM prediction. It turns out that this difference causes the prediction to
become incorrect in about 50% of the cases.

Two small discussion points emerge from this precision difference. Firstly, this no longer makes the ac-
ceptance percentage a perfect validation method, as the model could have performed better in this regard if
the output precision was set equal to the input precision. However, this mostly means that any acceptance
percentage should be seen as a conservative approximation of the model’s capabilities, since logically the
acceptance percentage will only go up if the output precision, and thus the model’s data, would have been of
higher precision Secondly, this makes replication of the dataset harder, which could be seen as problematic
in a scientific sense. However, we note that replication in science mostly is used to determine if very unusual
results are true. By improving the dataset using a better output precision, our results should only become
better, and thus more unusual in that sense. Thus, we can reasonably ignore this problem for this thesis,
but we do however keep it in mind for future research.

2Note: not decimals, digits.
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Appendix B

Additional Figures
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B.1 Validation Figures Bias-Corrected Model

Figure B.1: Scatter plots for each 2-dimensional combination of phases sampled by the bias-corrected nor-
malizing flow. On the ‘diagonal’ are logarithmically scaled histograms of the range of each phase.
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Figure B.2: Uniformity plots for each 2-dimensional combination of phases, where the colour represents the
relative likelihood (pink means higher, blue means lower) according to the bias-corrected model for each
phase combination using the two non-zero values depicted within the grid. On the ‘diagonal’ there is only
one non-zero value for the associated phase.
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B.2 Scatter plot for a different correct pMSSM point

Figure B.3: Scatter plots for each 2-dimensional combination of phases sampled by the uncorrected normal-
izing flow. On the ‘diagonal’ are logarithmically scaled histograms of the range of each phase. Note that
this plot is made for a different original pMSSM point.
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Appendix C

Calculation Software

This appendix presents the needed details concerning the calculation software used in this thesis. First a list
of the used software packages (including used version) is given in table C.1. Afterwards the pipeline of the
calculation is visualized in figure C.1. Lastly, the experimental limits that are used to filter (c)pMSSM points
are given in section C.3.

C.1 The Software Packages

Table C.1: Software (packages) used in this thesis, including download links to the webpage on which the
used software package can be retrieved. In addition, (*) denotes that LowEnergy.py is not an available
software package, but is an in-house code from the PhD thesis of Dr. Marrit Schutten.

Name and Reference Purpose Version URL
Spheno(-CPV) [55] Generate mass spectrum of (s)particles. 4.0.4 Download
FeynHiggs [56] Calculation of the Higgs mass(es) 2.18.1 Download

MicrOMEGAs [57] Calculation of DM observables 5.2.13 Download
LowEnergy.py (*) [17] Calculation of eEDM and au 1.0 N.A.
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C.2 Visualization of the internal calculation Pipeline

Figure C.1: Visualization of the internal pipeline of the calculation software. This pipeline was set-up by
Dr. Marrit Schutten during her PhD thesis [17]. Note the multiple convention changes between the software
packages. The LowEnergy.py software is an in-house code.

C.3 Experimental Limits
All limits listed below are required to hold for all correct pMSSM points.

• (O13)
2 < 0.1 [58]

• 122 GeV < mH1 < 128 GeV1 [2].

• mχ̃0
2
−mχ̃0

1
< 90GeV if mχ̃0

2
< mẽ1 , LHC (Compressed Search), ẽ1 refers to the lightest first/second

generation non-sneutrino slepton.
1Note that this range takes into account calculational uncertainties.
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• mχ̃±
1
> 200 GeV if mχ̃±

1
< mẽ1 , LHC (Compressed Search).

• |mẽ1 −mχ̃0
1
| > 0.00032477704536642546 ·m2

χ̃0
1
− 0.251232260566112 ·mχ̃0

1
+ 51.7432725862738 GeV if

mẽ1 > 240 GeV, [59] (Compressed Search).

• mũ1 > 1000 GeV if mχ̃0
1
< 400 GeV, LHC, ũ1 is the lightest mass eigenstate of first/second generation

up-squark.

• md̃1
> 1000 GeV if mχ̃0

1
< 400 GeV, LHC, d̃1 is the lightest mass eigenstate of first/second generation

down-squark.

• mg̃ > 1800 GeV if mχ̃0
1
< 800 GeV, LHC

• mg̃ > 1100 GeV if mg̃ −mχ̃0
1
> 100 GeV, LHC.

• mt̃1
> mχ̃0

1
+ 100 GeV, LHC, where t̃1 is the lightest mass eigenstate of the top squark.

• mẽ1 > 95 GeV, LHC

• mχ̃0
1
< mν̃e

and mχ̃0
1
< mν̃τ

, LSP related limits: these make sure that the lightest neutralino becomes
the LSP.

• mH2
> 350 GeV, [15, 60]

• mχ̃±
2
> 103.5 GeV, LEP [61].

The citations for LHC limits are [62, 63, 64, 65, 66]. These specifically link to the ‘SModelS’ software pack-
age, which implements these limits. The package itself was not used in this thesis, however the limits of that
package were used.

We further note for the above limits that these could potentially be outdated by newer limits. However
these limits are used, as they are the most interesting limits for this thesis used within [17]. Thus these
limits give the best comparison with earlier work.
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