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Abstract

Discrepancies between theoretical predictions and experimental measurements of physical quantities allow
for searches of physics beyond the Standard Model. Several hints of New Physics have been found in the
B-meson system. These include several deviations in processes based on the b → sℓℓ transition and hints
of lepton flavour universality violation in the branching fraction ratio between B → Kµµ and B → Kee.
Several extensions of the Standard Model which try to explain these anomalies predict strong New Physics
couplings to third-generation fermions. We study the possibility of unique probes of New Physics through
the rare semileptonic and leptonic B decays to τ leptons in an effective field theory approach. We implement
for the first time a model to account for hadronic long-distance effects in B → Kττ decays and show that
this can increase the branching fraction by one order of magnitude in the Standard Model. Furthermore, we
investigate several CP violation and angular observables to identify how τ leptons can allow us to constrain
New Physics models. We use the leptonic decay B0

s → ττ and the lifting of the helicity suppression in this
decay caused by the large τ mass to try to further constrain New Physics. Moreover, we calculate the impact
of a specific New Physics model based on the U1 vector leptoquark and show that including long-distance
effects and New Physics can significantly reduce the gap between the current experimental upper bounds on
the B → Kττ branching fraction and theoretical predictions.
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1 | Introduction

Our current understanding of the fundamental building blocks of the universe is described by the Standard
Model (SM) of particle physics. It describes the fundamental particles that constitute matter as excitations
of quantum fields that permeate the entirety of spacetime. The theory contains a plethora of different funda-
mental particles, each with unique properties. The nature of the fundamental building blocks of the universe
has been one of the questions at the heart of physics since ancient times. The Greek philosopher Leucip-
pus [1] postulated the existence of indivisible building blocks of matter which he called atoms. This name
was adopted by Dalton in the 1800s [2] when he introduced the atomic theory and discovered that molecules
were composed of atoms. However, Thomson’s, Rutherford’s, and Chadwick’s respective discoveries of the
electron [3], proton [4], and neutron [5] showed that atoms were not the fundamental building blocks of the
universe. The story did not end here, since the discovery of quarks at SLAC [6–8] showed that the proton
and neutron were not fundamental particles. The list of fundamental particles kept growing from this point
on with the discoveries of the muon [9], i.e. the heavier brother of the electron; the positron [10], i.e. the
antimatter counterpart of the electron; and the neutrino [11], i.e. the extremely light and uncharged partner
of the electron. Currently, the SM matter particles consist of six types of quarks, three types of ‘electrons’,
three types of neutrinos, and the antimatter counterparts of all these particles. The interactions between
these particles are described by the three fundamental forces: the electromagnetic force, the strong force,
and the weak force. The interactions arise from symmetries in the SM and are mediated by force particles
called gauge bosons. The last particle included in the SM, i.e. the Higgs particle needed to provide all other
particles with mass, was discovered in 2012 at the ATLAS [12] and CMS [13] experiment at CERN. At this
historic moment, all the particles of the SM were finally measured.

Despite the remarkable accuracy of many predictions of the SM, it has multiple shortcomings. Firstly,
the SM does not include a description of the fourth fundamental force: gravity. Gravitational effects become
relevant for particle interactions at very high energy scales. The SM does not include a description of grav-
ity and is widely seen as incompatible with general relativity, the current theory used to describe gravity.
Furthermore, the SM does not describe dark matter or dark energy. Originally introduced to explain the
anomalous velocity dispersion of stars orbiting around the centre of galaxies [14], current theories predict
that dark matter constitutes ∼ 23% of the universe as opposed to the ∼ 4% that regular matter described
by the SM accounts for [15]. The SM also does not explain dark energy, which accounts for the remaining
∼ 73% [15], which acts as the source of the accelerated expansion of the universe [16]. The SM also contains
several theoretical problems, like the hierarchy problem [17] and the strong CP problem [18]. Moreover, the
SM does not explain why the universe is predominantly made up of matter and almost no antimatter, while
it is predicted that the Big Bang produced equal amounts of both matter and antimatter [19]. In 1967,
Sakharov [20] identified three conditions required to explain this matter-antimatter asymmetry: baryon
number violation, interactions out of thermal equilibrium, and CP violation.

Even though the SM fulfills all three Sakharov conditions [21, 22], the matter-antimatter asymmetry re-
mains unsolved. Namely, the amount of CP violation in the SM is too small to explain the asymmetry [22].
CP violation is the breaking of the combined symmetry of C (charge conjugation) and P (parity transforma-
tion). The presence of CP violation in the SM was experimentally confirmed by Cronin and Fitch et al. in
1964 through the study of kaon decays [23], originating from the complex phase in the CKM matrix which
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2 CHAPTER 1. INTRODUCTION

describes the mixing between quarks. CP violation can be studied by looking at the difference between a
particle decaying to a final state f and the corresponding antiparticle decaying to the CP-conjugate final
state f̄ where all particles have been switched for their antimatter counterparts.

In order to find new sources of CP violation and to explain the problems within the SM, many differ-
ent theories have been proposed, which are referred to as Beyond the Standard Model physics. These include
the introduction of axions [24], leptoquarks [25], grand unified theories (GUTs) [26], and supersymmetry
(SUSY) [27], which all provide a way of explaining one or more of the problems within the SM. The search
for New Physics (NP) is conducted in two different manners. At the high-energy frontier, we try to produce
heavy NP particles and measure them directly in experiments. NP can also be studied indirectly at the
high-precision frontier, where NP might leave hints in low-energy processes. NP particles can contribute
to low-energy processes like particle decays as virtual particles mediating the process. These high-precision
indirect searches require on the one hand very precise measurements of observables by experimentalists and
on the other hand accurate (SM) predictions for these observables by theorists. Any discrepancies between
these two are referred to as anomalies and are smoking-gun signals of NP.

The B-meson system is popular for the indirect searches of NP. B-mesons are bound states consisting
of a quark and antiquark whereof one is a bottom quark. These mesons are heavy and can decay to many
different final states, providing a rich phenomenology to study. They are mainly studied at experiments like
Belle, BaBar, and LHCb. The B-meson system allows us to study the CKM matrix which describes the tran-
sitions of quarks between different generations and provides a source of CP violation in the SM. Additionally,
rare decays of B mesons, which are suppressed through several mechanisms in the SM, provide very sensitive
probes for NP through the study of anomalies. Several anomalies have been identified in the B meson system
including discrepancies between theory and experiment in B → K(∗)µ+µ− [28–37], Bs → ϕµ+µ− [38], and
B0
s → µ+µ− [39–42] decays. Hints of lepton flavour universality (LFU) violation have also been found by

the LHCb collaboration by comparing B → K(∗)µ+µ− to B → K(∗)e+e− decays [28, 43–46]. Moreover, the
BaBar, Belle and LHCb collaborations also found hints of LFU violation b → cℓν̄ℓ transitions, specifically
τ/µ and τ/e universality violation [47–49]. Notably, the SM predicts that the only difference between the
three leptons ℓ = e, µ, τ only arises through their difference in mass. The LHCb results imply that this might
not be true. Studying this LFU violation in the B-meson system provides therefore an exciting window into
NP and possible new sources of CP violation.

Many theories trying to explain the measured µ/e LFU violation in B → K(∗)ℓ+ℓ− predict large couplings
to third-generation particles [50–57], which includes the τ lepton. The τ lepton, discovered by Perl in the
1970s [58,59], is the third-generation equivalent of the electron. Interestingly, while the muon is ∼ 200 times
heavier than the electron, the τ lepton is ∼ 3500 times heavier than the electron. Unfortunately, analyses of
B decays with τ leptons are challenging. Experimental difficulties in measuring τ leptons precisely arise from
its short lifetime, its many decay modes, and the difficulties in distinguishing between signals originating
from τ leptons and other sources [60]. In this thesis, we will study b→ sτ+τ− transitions which may receive
large NP enhancements from the models trying to explain the µ/e LFU violation in B → K(∗)ℓ+ℓ−. On
the theoretical side, the precision of predictions is limited by non-perturbative QCD effects, which make the
study of decays where ℓ = τ even more challenging. In this thesis, we will investigate the impact of hadronic
physics on B → Kτ+τ− decays. Furthermore, we will look at several observables in order to investigate
if B-meson decays with τ leptons in the final state can provide unique probes of NP which are harder to
investigate in decays with muons or electrons in the final state.

This thesis is organised as follows. In Chapter 2, we introduce quantum field theory and the Standard
Model, where we will discuss how the fundamental interactions arise from symmetry principles, how the
Higgs mechanism provides mass for the SM particles, and which particles are contained in the SM. In Chap-
ter 3, we will introduce flavour physics, focusing on the CKM matrix, CP violation, and the B-meson system.
We will also look at the phenomena of B0

s -B̄0
s mixing and LFU violation. Chapter 4 covers the topic of ef-

fective field theory (EFT), which is the theoretical framework used to describe the b → sℓ+ℓ− transitions.
In Chapter 5, we derive expressions for the decay widths of B → Kℓ+ℓ− and B0

s → ℓ+ℓ− including NP
effects in a model-independent manner using EFT. We will also closely look at the hadronic long-distance
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contributions in B → Kℓ+ℓ− decays, which together with the hadronic matrix elements, provide the main
source of uncertainties in theory predictions. In Chapter 6, we will focus our discussion on the b → sτ+τ−

transitions by investigating SM predictions, comparing different NP contributions, and analysing several
different observables. We also study for the first time the effects of the inclusion of hadronic long-distance
effects in B → Kτ+τ− observables and compare them to current experimental bounds. Furthermore, we
investigate a specific U1 vector leptoquark model originally proposed to explain the B-anomalies and which
predicts strong couplings to τ leptons. Finally, we conclude in Chapter 7.

A paper is being written about this work at the moment. A reference to the paper will be added once available.

1.1 Conventions

Throughout this thesis, we will use the following conventions:

• We use natural units where ℏ = c = 1.

• We denote spacetime coordinates by x ≡ (t, x⃗) where t denotes the temporal coordinate and x⃗ denotes
the spatial coordinates.

• We use the mostly minuses signature for the Minkowski metric:

gµν = diag(+1,−1,−1,−1) .

• We use the shorthand ∂µ ≡ ∂
∂xµ for partial derivatives.

• We use the Dirac gamma matrices according to the Dirac-Pauli representation:

γ0 ≡
(
I2 0
0 I2

)
; γi ≡

(
0 σi

−σi 0

)
, i = 1, 2, 3 ; γ5 ≡ γ0γ1γ2γ3 =

(
0 I2

−I2 0

)
,

where I2 is the 2x2 identity matrix and σi are the Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

• The adjoint Dirac spinor is defined as ψ̄ ≡ ψ†γ0 where ψ† indicates the hermitian conjugate of ψ.

• The projection operators which decompose the Dirac spinors in their chiral components by

ψ = PLψ + PRψ = ψL + ψR ,

are defined as

PL(R) =
1

2
(1∓ γ5) .

• We use the Feynman slash notation for four-vectors: /a ≡ γµa
µ.

• A comma in a subscript or superscript is used to group indices, that is they are not used as a shorthand
for derivatives, i.e. fa,µ ̸= ∂fa

∂xµ .
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2 | Quantum field theory and the
Standard Model

The fundamental building blocks of the universe are particles. The behaviour of these particles is described
in the framework of quantum field theory (QFT). This theory combines the small-scale physics of quantum
mechanics with the principles of special relativity. In QFT, particles are treated as excitations of quantum
fields which permeate spacetime, thus being functions of the spacetime coordinate x. The complete theory
describing all fundamental particles and the three fundamental forces that govern their behaviour is called
the Standard Model (SM).

The SM is encoded in a Lagrangian density L, hereafter referred to as Lagrangians. These are constructed
from the quantum fields of the different particles that constitute the SM. The three fundamental interactions
- the electromagnetic, weak, and strong force - are also encoded in these Lagrangians. In QFT, these
interactions are mediated by gauge bosons which are spin-1 particles. The exchanged particles are virtual
particles, that is particles that do not obey the energy-momentum relation E2 = m2 + |p⃗|2.

The interactions can be visualised in momentum space as Feynman diagrams like in Fig. 2.1. We employ the
convention that time runs from left to right in these diagrams. Wavy lines and helices are used to represent
the gauge bosons. Solid lines with arrows going from left to right represent particles, while lines with arrows
going from right to left represent antiparticles. The relation between these two groups of particles will be
explained in this section. Feynman diagrams can be converted into mathematical expressions and therefore
serve as computational tools for transition amplitudes, which give the probability of the interaction.

In this section, we will see how the SM is constructed and how the interactions between different particles
arise from symmetry principles. We will also investigate how the Higgs mechanism generates masses for the
SM particles. Finally, an overview of the known particles in the SM is presented.

2.1 Quantum electrodynamics

In the SM, interactions are described by continuous quantum fields and local gauge invariance. The latter
states that the Lagrangian which describes the fields of the SM particles should be invariant under specific
local symmetry group transformations. We will illustrate this principle by constructing the Lagrangian of
quantum electrodynamics (QED)1, the theory describing the electromagnetic (EM) force, using the gauge
principle. We start with the free Dirac Lagrangian for a spin-1/2 particle with mass m:

LDirac = ψ̄(x)(i/∂ −m)ψ(x) , (2.1)

where ψ(x) is the field describing the fermion. To transform this Lagrangian into the QED Lagrangian, we
require it to be invariant under transformations of the fermion field under U(1) gauge transformations. U(1)

1S. Tomonaga, J. Schwinger, and R. Feynman were awarded the Nobel Prize in physics in 1965 for their fundamental work
in QED.
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6 CHAPTER 2. QUANTUM FIELD THEORY AND THE STANDARD MODEL

denotes the group of all unitary 1x1 matrices. Firstly, we will look at global U(1) transformations which are
independent of spacetime coordinates and are described by

ψ(x) → eiQαψ(x) ,

ψ̄(x) → e−iQαψ̄(x) , (2.2)

where Q and α are real constants and Q is the generator of the group U(1). It is clear that the Lagrangian in
Eq. 2.1 is invariant under this transformation. In relativistic quantum field theory, we require that these gauge
symmetries must hold locally, i.e. must be dependent on the spacetime coordinate x. The transformations
then take the following form:

ψ(x) → eiQα(x)ψ(x) ,

ψ̄(x) → e−iQα(x)ψ̄(x) , (2.3)

where α(x) is a real-valued function. The Lagrangian in Eq. 2.1 is not invariant under these transformations
and an extra term appears after applying these transformations:

LDirac → L′
Dirac = LDirac −Qψ̄(x)(/∂α(x))ψ(x) . (2.4)

To remedy this, we introduce the covariant derivative Dµ and use it to replace the partial derivative in Eq.
2.1:

∂µ → Dµ = ∂µ + igQAµ(x) , (2.5)

where g is the coupling constant and Aµ(x) is the gauge field. This new field Aµ(x) transforms under local
U(1) transformations as

Aµ(x) → Aµ(x)−
1

g
∂µα(x) . (2.6)

By replacing the partial derivative by the covariant derivative, the Lagrangian in Eq. 2.1 becomes invariant
under local U(1) gauge transformations. The introduced gauge field Aµ(x) can be identified as the electro-
magnetic four-potential. It is the field describing photons (γ) which mediate the electromagnetic interaction2.
The transformation in Eq. 2.6 is reminiscent to the gauge freedom of the electromagnetic four-potential in
electrodynamics:

Aµ(x) → Aµ(x) + ∂µχ(x) , (2.7)

where χ(x) is a sufficiently smooth real-valued scalar function.

To complete the Lagrangian for QED, a kinetic term is added which leads to the Maxwell equations in
vacuum after applying the Euler-Lagrange equations. For this, we introduce the electromagnetic field tensor
Fµν(x) which is defined as

igQFµν(x) = [Dµ, Dν ] = igQ(∂µAν(x)− ∂νAµ(x)) . (2.8)

By adding the kinetic term for the photon field − 1
4Fµν(x)F

µν(x) to the Lagrangian, we arrive at the complete
QED Lagrangian:

LQED = ψ̄(x)(i /D −m)ψ(x)− 1

4
Fµν(x)F

µν(x) ,

= ψ̄(x)(i/∂ −m)ψ(x)− gQψ̄(x)γµAµ(x)ψ(x)−
1

4
Fµν(x)F

µν(x) . (2.9)

We see that the QED Lagrangian consists of three parts: the free Dirac Lagrangian, an interaction term
proportional to gQ, and the kinetic term for the gauge field. If we set g = |e| (the unit charge) and
q = |e|Q (the charge of the fermion), we can clearly see that the electromagnetic interaction is described
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Figure 2.1: The interaction vertex of QED, coupling a photon (γ) with any electrically charged
particle X.

by the interaction term in Eq. 2.9 and is mediated the photon field Aµ(x). The Feynman diagram of the
electromagnetic interaction is shown in Fig. 2.1.

By looking at the transformation properties of the gauge field in Eq. 2.6, we see that a mass term for the
gauge field, 1

2m
2
AAµ(x)A

µ(x), is not invariant under local U(1) gauge transformations. Therefore, we require
that the gauge field is massless which agrees with our knowledge that photons should have no mass. Multiple
experiments have put bounds on the photon mass to test this assumption. By studying the magnetic fields
of solar winds, a bound of mγ ≲ 10−18 eV has been put on the photon mass [61]. Furthermore, by measuring
the frequency-dependent dispersion in arrival times of photons of fast radio burst, bounds of mγ ≲ 2 · 10−14

eV have been found [62–64]. A more elaborate review of experiments putting limits on the photon mass can
be found in [65].

QED is an example of an Abelian gauge theory. Namely, the group elements of U(1) and its generators
commute, i.e. U(1) is an Abelian group. As we will see in the following sections, the other forces in the
SM will be described by non-Abelian gauge theories. The non-Abelian nature of these theories will lead to
self-interactions of the gauge bosons.

2.2 Generalised gauge principle

The gauge invariance formalism can be extended to a general group SU(N). SU(N) is the special unitary
group of degree N which consists of unitary N ×N matrices with determinant 1. The elements in SU(N)
can be written as

U = eiα
aTa ∈ SU(N) , (2.10)

where αa are real constants, T a are the generators of SU(N), and index a ranges from 1 to N2 − 1. The
generators satisfy the following commutation relation:

[T a, T b] = ifabcT c , (2.11)

where the constants fabc are defined by the group. To construct a locally gauge invariant theory with gauge
group SU(N), we start with the Lagrangian in Eq. 2.1 where the fermion fields ψ(x) are now N -component
multiplets:

ψ(x) =

ψ1(x)
...

ψN (x)

 . (2.12)

2In Section 2.5, we will show that the actual photon field in the SM is linear combination of two other gauge fields.
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By replacing αa with spacetime coordinate dependent functions αa(x) in Eq. 2.10, we can define the following
gauge transformations:

ψ(x) → U(x)ψ(x) ,

ψ̄(x) → ψ̄(x)U†(x) . (2.13)

Similarly to the construction of the QED Lagrangian, we introduce the covariant derivative:

Dµ = ∂µ + igW a
µ (x)T

a ≡ ∂µ + igWµ(x) , (2.14)

and require the gauge field Wµ(x) to transform under SU(N) as

Wµ(x) → U(x)Wµ(x)U
−1(x)− i

g
U(x)(∂µU

−1(x)) . (2.15)

In order to add a kinetic term to the Lagrangian for the gauge field, we define the SU(N) field tensor
Wµν(x):

igWµν(x) ≡ [Dµ, Dν ] = igW a
νµ(x)T

a ,

= ig(∂µW
a
ν (x)− ∂νW

a
µ (x)− gfabcW b

µ(x)W
c
ν (x))T

a , (2.16)

where the first equality is called the Ricci identity. This field tensor transforms under SU(N) as

Wµν(x) → U(x)Wµν(x)U
−1(x) . (2.17)

We can now write down the Yang-Mills Lagrangian, which consists of the kinetic term for the gauge field:

LYM = −1

2
Tr [Wµν(x)W

µν(x)] = −1

4
W a
µνW

a,µν . (2.18)

The complete Lagrangian for a local SU(N) gauge group is therefore given by

LSU(N) = ψ̄(x)(i /D −m)ψ(x)− 1

2
Tr [Wµν(x)W

µν(x)] . (2.19)

This Lagrangian is locally gauge invariant under the transformations defined in Eqs. 2.13 and 2.15. Similar
to QED, the covariant derivative containing the N2−1 gauge fields W a

µ (x) gives rise to interactions between
the gauge fields and the fermions in the N -plet ψ(x). If all fabc are zero, the theory is Abelian. Otherwise,
the theory is non-Abelian and the Yang-Mills Lagrangian will contain self-couplings with three and four
gauge fields. This will be the case for both the weak and strong forces.

2.3 Electroweak theory

The weak interaction plays a central role in the decay of particles and it is described by electroweak the-
ory [66–68] which unifies the electromagnetic and weak interaction, using gauge group SU(2)L ⊗ U(1)Y . In
1979, A. Salam, S. Glashow, and S. Weinberg were awarded the Nobel Prize in physics for their contribu-
tions to the theory of the unified electroweak theory and the prediction of the weak neutral current. Their
predictions included that the weak interaction is mediated by heavy vector bosons, corresponding to the
short-range nature of the weak interaction.

In order to discuss the weak interaction, we will first introduce the concept of discrete symmetries. The
discrete symmetries of interest are charge conjugation (C), parity transformation (P), and time reversal (T).
Charge conjugation is the operation that switches particles with their antiparticles. Parity transformation
is the operation that flips the sign of all three spatial coordinates, i.e. changing (t, x⃗) to (t,−x⃗). Finally,
time reversal flips the sign of the time coordinate, i.e. changing (t, x⃗) to (−t, x⃗). These symmetries can also
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be combined into for example CP and CPT. The CPT theorem states any Lorentz invariant quantum field
theory involving point-like particles must preserve the combined CPT symmetry.

Two other important concepts are helicity and chirality. Helicity is the projection of a particle’s spin onto
its momentum. Particles with negative helicity are called left-handed and particles with positive helicity
are called right-handed. In the case of massive particles, one could perform a Lorentz transformation to flip
the sign of the particle’s helicity. Chirality is an intrinsic property of a particle that denotes the particle’s
‘preferred helicity’. So, chirality equals helicity for massless particles. Parity transformations change the
chirality (and helicity) of a particle.

The weak interaction violates C and P symmetry maximally, while the other two fundamental forces of
the SM respect these symmetries. The weak force couples particles of different charges, e.g. an electron
neutrino and an electron, violating the C symmetry. In 1957, Wu et al. showed experimentally that the weak
force also violates the P symmetry [69]. Namely, the weak force only couples to particles (antiparticles)
with left-handed (right-handed) chirality and not to particles (antiparticles) with right-handed (left-handed)
chirality. In 1964, Cronin and Fitch et al. showed by their measurement of kaon decays that the combined
CP symmetry is also violated, winning Cronin and Fitch the Nobel Prize in 1980 [23]. We will elaborate
more upon CP violation in Section 3.2.

In the modern framework, the weak force is mediated by the massive W± and Z0 bosons. These were
predicted by the electroweak theory of A. Salam, S. Glashow, and S. Weinberg and were discovered in
1983 [70–73], resulting in the Nobel Prize in physics for C. Rubbia and S. van der Meer for the discovery of
these vector bosons mediating the weak interaction. The Feynman diagrams showing the interaction vertices
of the weak force involving the W± and Z0 bosons are shown in Fig. 2.2

Figure 2.2: The interaction vertices of the weak interaction. ℓ represents any charged lepton and
νℓ its corresponding neutrino. u and d represent any up-type and down-type quark respectively.
f represents any fermion of the SM. X and Y represent any electroweak bosons such that the
vertex conserves electrical charge.

The group corresponding with the weak interaction is SU(2)L where the subscript L denotes that it only
couples with left-handed fields. All right-handed fermions are grouped into SU(2) singlets (uR, dR, eR),
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meaning they do not interact through the weak force. The left-handed fermions are grouped into doublets3:

QL =

(
uL
dL

)
, LL =

(
νL
eL

)
. (2.20)

The doublet structure of the leptons was experimentally confirmed in the 1960s, resulting in the Nobel Prize
in physics being awarded to L. Lederman, M. Schwartz, and J. Steinberger in 1988.

The weak and electromagnetic force can be unified as the electroweak force, with SU(2)L⊗U(1)Y as its gauge
group. The subscript Y denotes the hypercharge, a new quantum number corresponding to the new U(1)Y
gauge group. This gauge group is not the same U(1) group describing QED. These are related through the
Gell-Mann-Nishijima relation:

Q = I3 +
1

2
Y , (2.21)

where Q is the electromagnetic charge of U(1)QED, and I3 is the quantum number of SU(2)L: the third
component of the weak isospin.

Since the gauge group U(1)Y is not the same as the gauge group of QED, the corresponding gauge field of
U(1)Y, called Bµ, is not the field of the photon. In Section 2.5, we will see how this field mixes with the
gauge fields W a

µ (a = 1, 2, 3) of SU(2)L to form the fields for the photon of the EM force, and the W± and Z0

bosons of the weak interaction. This is realised through a phenomenon called electroweak symmetry breaking
(EWSB), which is also required to introduce masses for the W± and Z0 bosons. Namely, these bosons were
predicted to have mass because the observation of slow decays mediated by the weak force indicated that
the weak interaction is actually weak compared to the electromagnetic and strong forces. Since the weak
and electromagnetic interaction were theorised to originate from the same unified theory, it was theorised
that the bosons of the weak force were massive to account for the difference in interaction strength [74].
Moreover, the weak bosons being massive also explained the observed short range of the weak interaction,
compared to the infinite range of the electromagnetic interaction.

The electroweak Lagrangian is given by

LEW = ψ̄Li /DLψL + ψ̄Ri /DRψR − 1

4
W a
µνW

a,µν − 1

4
BµνB

µν . (2.22)

where the subscripts denote the chirality of the fields. The covariant derivatives are given by

DL,µ = ∂µ +
i

2
gσ⃗ · W⃗µ +

i

2
g′YψL

Bµ ,

DR,µ = ∂µ + ig′YψR
Bµ . (2.23)

with g and g′ the coupling constants of the electroweak interaction, σ⃗ the Pauli matrices, and YψH the
hypercharge of the corresponding field ψH . The electroweak field tensors are given by

W a
µν = ∂µW

a
µ − ∂νW

a
µ − gϵabcW b

µW
c
ν ,

Bµν = ∂µBν − ∂νBµ , (2.24)

where ϵabc is the Levi-Cevita symbol.

2.4 Quantum chromodynamics

The strong force is described by quantum chromodynamics which is a SU(3)C gauge theory. This force is
mediated by gluons (g) between particles that carry the colour charge (denoted by the subscript C), which

3The particle content of these fields will be presented in Section 2.6.
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are labelled red, green, and blue (and their anticolour counterparts: antired, antigreen, and antiblue). The
only particles in the SM that carry this charge are the quarks and the gluons. The strong force binds quarks
into colourless states called hadrons through the exchange of virtual gluons. Hadrons consisting of a quark
and an antiquark, one carrying a colour charge and the other the corresponding anticolour, are called mesons.
Hadrons consisting of three (anti)quarks of three different (anti)colours are called (anti)baryons.

At most energy scales, quarks are bound in hadronic states and do not exist as free particles. When
the distance between quarks increases, so does the strong force that binds them together. This is known as
confinement. However, at high energy scales (i.e. small distance scales), the behaviour of quarks resembles
that of free particles. This phenomenon is known as asymptotic freedom [75–78]. The discovery of this aspect
of the strong force resulted in the Nobel Prize in physics being awarded to D. Gross, H. Politzer, and F.
Wilczek in 2004.

The strong force in the SM is described by a SU(3)C gauge theory. The quark fields are grouped in colour
triplets:

ψ(x) =

ψR(x)ψG(x)
ψB(x)

 , (2.25)

and the gluons into octets: Gaµ (a = 1 . . . 8). The subscripts in Eq. 2.25 denote the different colour charges.
The covariant derivative for QCD is given by

Dµ = ∂µ + igs
λa

2
Gaµ , (2.26)

where gs is the coupling constant of the strong force and λa are the Gell-Mann matrices. The SU(3)C field
tensor is given by

Gaµν(x) = ∂µG
a
ν(x)− ∂νG

a
µ(x)− gsf

abcGbµ(x)G
c
ν(x) . (2.27)

The real constants fabc are the structure constants defined by the commutation relations of the generators
T a = λa

2 . Since these are non-zero, they give rise to the three-point and four-point self-interactions of the
gluons. The Feynman diagrams for QCD are shown in Fig. 2.3.

Figure 2.3: The interaction vertices of QCD, where q represents any quark.

2.5 The Higgs mechanism

As seen in Section 2.1, one cannot introduce masses for gauge fields without breaking the local gauge symme-
try. This poses a problem since the W± and Z0 bosons were predicted to be massive [66–68], which accounts
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for the short-range nature and the ‘weakness’ of the weak interaction. This prediction was confirmed when
these bosons were discovered in 1983 [70–73] and their masses were measured to be mW ∼ 80 GeV and
mZ ∼ 95 GeV.

Besides the gauge boson mass problem, mass terms for the fermions also do not conserve the gauge symmetry
of the SM, since the weak force only couples to left-handed fermion fields. To see why this is, we split the
fermion field into its chiral components using the projection operators PL/R:

ψ = PLψ + PRψ = ψL + ψR . (2.28)

We use this decomposition to write a mass term for fermions as

−mψψ̄ψ = −mψ(ψ̄L + ψ̄R)(ψL + ψR) ,

= −mψ(ψ̄RψL + ψ̄LψR) . (2.29)

The terms ψ̄L(R)ψL(R) vanish, since ψ̄L(R)ψL(R) = ψ†PL(R)γ
0PL(R)ψ = ψ†γ0PR(L)PL(R)ψ =

ψ†γ0 1
4 (1− (γ5)2)ψ = 0. Since right-handed fields transform as singlets under SU(2)L and left-handed fields

as SU(2)L doublets, a mass term for a fermion as in Eq. 2.29 is not gauge invariant.

In order to include masses in a gauge-invariant way, the Brout-Englert-Higgs-Guralnik-Hagen-Kibble mecha-
nism was introduced. This mechanism was introduced almost simultaneously by three independent groups,
after whom the mechanism is named [79–81]. Hereafter, we will refer to it by its shortened name: the Higgs
mechanism.

Firstly, we will show how the Higgs mechanism causes electroweak symmetry breaking and generates masses
for the W± and Z0 bosons. The Lagrangian of the Higgs field is given by

LHiggs = (DL,µϕ)
†(Dµ

Lϕ)− V (ϕ) , (2.30)

with potential:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 , µ2 < 0, λ > 0 , (2.31)

where ϕ is a complex scalar field, written as

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2
ϕ3 + iϕ3

)
. (2.32)

This complex scalar field transforms as a SU(3)C singlet, SU(2)L doublet and has hypercharge +1. The
potential V (ϕ) has a local maximum at |ϕ| = 0. Moreover, it has a ring of minima at |ϕ|2 = v2

2 = −µ2

2λ . At
|ϕ| = 0, the SU(2)L ⊗ U(1)Y symmetry is unbroken, but at the minima, this symmetry is broken and the
Higgs doublet obtains a vacuum expectation value (VEV). A simplified version of the Higgs field potential
for a singlet complex field ϕ is shown in Fig. 2.4

We choose the VEV to be

⟨0|ϕ|0⟩ = 1√
2

(
0
v

)
. (2.33)

By employing the U(1) gauge freedom of the ring of local minima (visually represented by the radial arrows
in Fig. 2.4), we can use gauge fixing to the so called unitary gauge to write the Higgs doublet as

ϕ(x) =
1√
2

(
0

v + h(x)

)
, (2.34)
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Figure 2.4: The potential V (ϕ) as a function of a complex scalar field ϕ. At |ϕ| = 0 the
potential has a local maximum and the SU(2)L ⊗U(1)Y symmetry is unbroken. At the ring of
local minima at |ϕ|2 = v2

2 = −µ2

2λ , this symmetry is broken. Adapted from [82].

where h(x) is the neutral Higgs field. By inserting the parameterisation of Eq. 2.34 in the Lagrangian of Eq.
2.30, one obtains the following Lagrangian:

LHiggs =
1

2
(∂µh)

2 + µ2h2 − λvh3 − λ

4
h4 +

1

4
λv4

+
1

8
g2v2(W 1

µ − iW 2
µ)(W

1,µ + iW 2,µ)

+
1

8
g2v2W 3

µW
3,µ − 1

4
gg′v2W 3

µB
µ +

1

8
g′2v2BµB

µ + Lint , (2.35)

where Lint contains all interaction terms between h, W a
µ , and Bµ. In the Lagrangian of Eq. 2.35, we find the

scalar Higgs boson of mass mh =
√
−µ2 > 0 which has a three-point and four-point self-interaction. This

predicted Higgs boson with a mass of mh ≈ 125 GeV has been found by the ATLAS and CMS experiment at
the Large Hadron Collider (LHC) in CERN in 2012, resulting in a Nobel Prize for F. Englert and P. Higgs
in 2013 [12,13].

To identify the physical particle interpretation of the rest of the Lagrangian in Eq. 2.35, we define the
following fields:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.36)

Zµ = cos θWW
3
µ − sin θWBµ , (2.37)

Aµ = sin θWW
3
µ + cos θWBµ , (2.38)

tan θW =
g′

g
, (2.39)

where θW is the weak mixing angle. Using this, the Lagrangian becomes

LHiggs =
1

2
(∂µh)

2 + µ2h2 − λvh3 − λ

4
h4 +

1

4
λv4

+
1

4
g2v2W+

µ W
−,µ +

1

8
v2(g2 + g′2)ZµZ

µ + Lint . (2.40)

In the Lagrangian of Eq. 2.40, we can identify now the mass terms for the W± and Z0 bosons and see that
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the photon (Aµ) and gluons (Gaµ) remain massless:

m2
W =

1

4
v2g2 , m2

Z =
1

4
v2(g2 + g′2) =

m2
W

cos2 θW
, mA = mG = 0 . (2.41)

The same Higgs doublet can also generate masses for the fermions of the SM in a gauge-invariant manner.
To illustrate how this works, we will consider only the up and down quark. Fermion masses are generated
through Yukawa couplings. The gauge-invariant Lagrangian for the Yukawa couplings of the up and down
quark is given by

Lu,dYukawa = −YdQ̄LϕdR − YuQ̄Liσ2ϕ
∗uR + h.c. (2.42)

where h.c. denotes the Hermitian conjugate of the first two terms in the Lagrangian. After EWSB, this
Lagrangian takes the following form:

Lu,dYukawa = −Yd
1√
2
(v + h)d̄LdR − Yu

1√
2
(v + h)ūLuR + h.c.

= −vYd√
2
d̄d− vYu√

2
ūu− Yd√

2
d̄hd− Yu√

2
ūhu . (2.43)

In Eq. 2.43, we can identify the mass terms for the up and down quark with masses mu(d) =
vYu(d)√

2
. Further-

more, it contains two interaction terms with the neutral Higgs field h. In a similar manner, it is possible to
generate masses for the charged leptons. In some versions of the SM, the SM does not include right-handed
neutrino fields and therefore neutrinos cannot obtain mass through this mechanism4. In other versions,
right-handed neutrino fields are included and neutrinos can obtain mass in a similar manner as up-type
quarks.

The full Yukawa sector of the SM Lagrangian (with right-handed neutrino fields) is given by

LYukawa = −Y ijd Q̄LiϕdRj − Y iju Q̄Liiσ2ϕ
∗uRj − Y ije L̄LiϕeRj − Y ijν L̄Liiσ2ϕ

∗νRj + h.c. (2.44)

where the indices i, j label the different generations of fermions. The Yukawa couplings Y ijf need not be
diagonal. This will cause that the fields in Eq. 2.44, the gauge eigenstates, are linear combinations of mass
eigenstates. In order to illustrate how this works, we will focus on the quark masses generated through
EWSB:

Lquark masses
Yukawa = −d̄LiM ij

d dRj − ūLiM
ij
u uRj + h.c. (2.45)

where we have introduced the mass matrices M ij
q = v√

2
Y ijf . To obtain the mass eigenstates, we use the

quark rotation matrices Sq and Tq. By using these 3x3 unitary matrices, we can write

Mdiag
q = S†

qMqTq , (2.46)

where the matrix Mdiag
q is diagonal and only contains non-negative entries. Applying this transformation to

the Lagrangian in Eq. 2.45, we obtain

Lquark masses
Yukawa = −d̄LSdS†

dMdTdT
†
ddR − ūLSuS

†
uMuTuT

†
uuR + h.c.

= −d̄′LMdiag
q d′R − ū′LM

diag
u u′R + h.c. (2.47)

where we have introduced the mass eigenstates (primed) of the quark fields as linear combination of the
gauge eigenstates (unprimed):

d′Ri = (T †
d )ijdRj , u′Ri = (T †

u)ijuRj ,

d′Li = (S†
d)ijdLj , u′Li = (S†

u)ijuLj . (2.48)

These relations between the mass and gauge eigenstates of the quarks will lead to the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, which will be examined in detail in Chapter 3.

4This is one of the shortcomings of this version of the SM. The existence of neutrino oscillations require neutrinos to have
mass. T. Kajita and A. McDonald were awarded the Nobel Prize in physics in 2015 for their discovery of these oscillations [83–85].
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2.6 The Standard Model particles

All together, the SM is a gauge theory with SU(3)C⊗SU(2)L⊗U(1)Y as its gauge group. The SM particles
can be split into two groups: fermions (spin-1/2 particles) and bosons (integer spin particles). The fermions
can again be split into two groups: quarks (fermions carrying the colour charge) and leptons (fermions with-
out the colour charge). These quarks come in six different flavours: up (u), down (d), charm (c), strange
(s), top (t) and bottom (b). The u, c and t quarks are collective called the up-type quarks, having positive
electrical charge. The d, s and b quarks are known as the down-type quarks, having negative electrical
charge. The leptons are grouped into three charged leptons and three neutrinos which have no electrical
charge. The charged leptons have three flavours: electron (e), muon (µ) and tau (τ). The neutrinos also
come in three corresponding flavours: electron neutrino (νe), muon neutrino (νµ) and tau neutrino (ντ ). The
fermion flavours are grouped into three generations which can be identified as the three columns of fermions
in Table 2.1. For every fermion, an antifermion exists with opposite charge quantum numbers. The particle
fields and their corresponding electroweak charges are presented in Table 2.2.

The bosons consist of five gauge bosons (spin-1) mediating the three forces of the SM and the scalar (spin-0)
Higgs boson (h) giving mass to the SM particles. The gauge bosons consist of the photon (γ) for the elec-
tromagnetic interaction, the W± and Z0 bosons for the weak interaction, and the gluon (g) for the strong
interaction. The gluons come in eight independent types, labelled by the index a in the gluon field Gaµ.

SM particles Strong Weak EM
Quarks Up-type u c t ✓ ✓ ✓

Down-type d s b ✓ ✓ ✓
Leptons Charged e µ τ ✓ ✓

Neutrinos νe νµ ντ ✓

Gauge bosons Gluon g ⋆
W boson W± ⋆ ✓
Z0 boson Z0 ⋆
Photon γ ⋆

Higgs boson h ✓

Table 2.1: Overview of the SM particle content. The check marks ✓ in the right three columns
indicate which SM forces act on the different particles. The stars ⋆ indicate which gauge boson
mediates which fundamental force. The Higgs boson interacts with all massive fermions and
the gauge bosons of the weak interaction.

SM fermions Fields I3 Y Q

Quarks QLi =

(
uLi
dLi

)
1/2
−1/2

1/3
1/3

2/3
−1/3

uRi 0 4/3 2/3
dRi 0 −2/3 −1/3

Leptons LLi =

(
νLi
eLi

)
1/2
−1/2

−1
−1

0
−1

νRi 0 0 0
eRi 0 −2 −1

Table 2.2: The fermions of the SM with their corresponding fields and electroweak charges.
The subscript i labels the three different generations of fermions. If one does not include
right-handed neutrino fields in the SM, the neutrinos cannot acquire mass through the Higgs
mechanism and need to be massless.
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3 | Flavour physics

All fermions come in three different flavours. The quarks for example consist of the u, c, and t up-type
quarks, and the d, s, and b down-type quarks. Transitions between these flavours are possible within the
SM and these are described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The transitions are also
able to violate the CP symmetry, the combined symmetry of charge conjugation and parity transformation.
Flavour physics and CP violation are interesting areas for the search of physics beyond the SM since several
extensions of the SM predict new patterns in the flavour sector of the SM [86].

This chapter will discuss the CKM matrix and CP violation before introducing the B-mesons, which will
play an important role in this thesis. We will also introduce the concept of lepton flavour universality (LFU)
violation and B0

q -B̄0
q mixing.

3.1 The CKM matrix

Since the Yukawa coupling matrices Y ijq of the quarks in Eq. 2.44 are non-diagonal, the mass eigenstates
(primed) of the quarks fields are linear combinations of the gauge (flavour) eigenstates (unprimed). Looking
at the weak interaction vertex coupling an up-type quark and down-type quark by a W± boson, this will
allow different generations of quarks to decay into another through this interaction. To illustrate this, let us
write a charged-current interaction term in terms of the mass eigenstates:

− g2√
2
ūLiγ

µdLiW
†
µ = − g2√

2
ū′Liγ

µ(S†
uSd)ijdLjW

†
µ

≡ − g2√
2
ū′Liγ

µ(V̂CKM)ijd
′
LjW

†
µ , (3.1)

where we have introduced the Cabibbo-Kobayashi-Maskawa (CKM) matrix [87, 88]. This unitary matrix
connects the mass eigenstates of the down-type quarks with their flavour eigenstates through the following
transformation [89]: ds

b

 = V̂CKM

d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d′s′
b′

 . (3.2)

The elements of the CKM matrix (VUD) can be interpreted as generic ‘coupling strengths’ of different quark
flavour transitions mediated by the charged-current weak interaction. In Fig. 3.1, the Feynman diagram for
a down- to up-type quark transition is shown with its CP-conjugate transition. The CP-conjugate process
is characterised by the CKM matrix element V ∗

UD. If the CKM matrix contains complex phases, it would
allow for CP violation through the charged-current interaction [88]. In the SM, there are no flavour-changing
neutral currents (FCNC) at the tree-level, due to the unitarity of the Sq and Tq matrices. FCNC can occur
at the loop-level, but are suppressed through the Glashow-Iliopoulos-Maiani (GIM) mechanism [90].

17
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Figure 3.1: The Feynman diagram vertex for a down- to up-type quark transition through the
charged-current interaction with its corresponding CKM matrix element. The CP-conjugate
process is characterised by the complex conjugate of the same CKM element.

To determine the number of degrees of freedom of the CKM matrix, we use the unitarity of the matrix and
the freedom of redefining the up- and down-type quark fields. We assume the SM contains N generations
of quarks. Any complex N ×N matrix has 2N2 real degrees of freedom. The unitarity of the CKM matrix
leads to N unitarity relations and N2−N orthogonality relations, reducing the number of degrees of freedom
to 2N2 −N − (N2 −N) = N2. Furthermore, we can redefine the up- and down-type quark fields as

U → eiξuU ,

D → eiξdD . (3.3)

These transformations imply the following corresponding phase transformation of the CKM matrix elements:

VUD → eiξUVUDe
−iξD . (3.4)

There are 2N quark phases ξq, and thus 2N − 1 phase differences ξU − ξD which can be removed from the
CKM matrix elements. This leads to N2 − (2N − 1) = (N − 1)2 degrees of freedom in the CKM matrix.
Of these, 1

2N(N − 1) are Euler-type angles and 1
2 (N − 1)(N − 2) are complex phases. This implies that

a CP-violating phase can only occur if N ≥ 3. M. Kobayashi and T. Maskawa were awarded the Nobel
Prize in physics in 2008 for the discovery of the CKM matrix [88], which showed the requirement of the
existence of at least three generations of quarks in order to have CP violation in the quark sector. At at
the time only the u, d, and s quarks were discovered. In the SM, there are three generations of fermions,
i.e. N = 3, resulting in three angles and one complex phase for the parametrisation of the CKM matrix,
allowing for CP violation. This framework describing CP violation is referred to as the Kobayashi-Maskawa
(KM) mechanism of CP violation [88].

The four parameters of the CKM matrix are given by the three angles θ12, θ13, and θ23, and the phase
δ13 in the standard parametrisation. The labels i, j = 1, 2, 3 denote the different generations of fermions.
The standard parametrisation of the CKM matrix is then given by [91]

V̂CKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 , (3.5)

where sij ≡ sin θij and cij ≡ cos θij . An advantage of this parametrisation is that if the mixing angle θij is
set to zero, the mixing between the generations i and j vanishes.

By using the experimental data of many different particle decays and processes involving quark transi-
tions, the current measurements of the absolute size of the CKM matrix elements |VUD| have been found to
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be [92]

|V̂CKM| =

0.97401± 0.00011 0.22650± 0.00048 0.003610.00011−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00851+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

 . (3.6)

These values for the elements of the CKM matrix exhibit a hierarchical structure for the different quark
transitions. The CKM matrix elements for transitions within the same generation are of order O(1), while
transitions between the first and second generation are of order O(10−1), transitions between the second and
third generation are of order O(10−2), and transitions between the first and third generation are of order
O(10−3). This hierarchy is visualised in Fig. 3.2. Much research is being performed to find the origin of the
hierarchical structure of the CKM matrix.

Figure 3.2: The hierarchy of the different quark transitions in the CKM matrix. Adapted
from [86].

Another very common parametrisation of the CKM matrix is the Wolfenstein parametrisation [93], which
has the advantage of clearly visualising the hierarchy of the quark transitions shown in Fig. 3.2. It is defined
by the following transformations [94]:

s12 ≡ λ , s23 ≡ Aλ2 , s13e
−iδ13 ≡ Aλ3(ρ− iη) . (3.7)

Using the reparametrisation in Eq. 3.7, we can expand the elements in the CKM matrix and we find up to
order O(λ4):

V̂CKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (3.8)

Using λ = s12 ≈ 0.22, the hierarchical structure of the CKM matrix shown in Fig. 3.2 becomes apparent
in Eq. 3.8. In some high precision applications, it becomes useful to expand the CKM matrix elements to
higher order in λ and to use the generalised Wolfenstein parameters [94]:

ρ̄ ≡ ρ

(
1− 1

2
λ2
)
, η̄ ≡ η

(
1− 1

2
λ2
)
. (3.9)

Using a global CKM fit analysis from semileptonic and leptonic decays, the four Wolfenstein parameters
have been fitted to be [95]

λ = 0.224979± 0.000293 ,

A = 0.79925+0.00766
−0.00757 ,

ρ̄ = 0.17657± 0.00971 ,

η̄ = 0.3867+0.0119
−0.0118 .

(3.10)

The CKM matrix is a unitary matrix. Therefore, we can write

V̂ †
CKM · V̂CKM = 1̂ = V̂CKM · V̂ †

CKM , (3.11)
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where 1̂ is the 3x3 unit matrix. From these unitary conditions, the following relations can be derived from
the columns [86]:

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 , (3.12)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 , (3.13)

VudV
∗
ub︸ ︷︷ ︸

O(λ3)

+VcdV
∗
cb︸ ︷︷ ︸

O(λ3)

+VtdV
∗
tb︸ ︷︷ ︸

O(λ3)

= 0 , (3.14)

where we have indicated the relative size of the terms in factors of λ. For the rows of the CKM matrix, we
find [86]

V ∗
udVcd︸ ︷︷ ︸
O(λ)

+V ∗
usVcs︸ ︷︷ ︸
O(λ)

+V ∗
ubVcb︸ ︷︷ ︸
O(λ5)

= 0 , (3.15)

V ∗
cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗
csVts︸ ︷︷ ︸
O(λ2)

+V ∗
cbVtb︸ ︷︷ ︸
O(λ2)

= 0 , (3.16)

V ∗
udVtd︸ ︷︷ ︸
O(λ3)

+V ∗
usVts︸ ︷︷ ︸
O(λ3)

+V ∗
ubVtb︸ ︷︷ ︸
O(λ3)

= 0 . (3.17)

These six orthogonality relations can be represented by triangles in the complex plane [96]. However, most
of these triangles are very squashed due to the different orders of λ appearing in each term. Notably, only
the relations in Eq. 3.14 and 3.17 have all three terms of the same order of λ. These give rise to the two
non-squashed unitarity triangles of the CKM matrix.

Using the Wolfenstein parametrisation, Eq. 3.14 and 3.17 both give rise the following relation at O(λ3):

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0 . (3.18)

After dividing by Aλ3, this equation defines the unitarity triangle of the CKM matrix.

When including terms of higher powers of λ, the orthogonality relations in Eq. 3.14 and 3.17 give rise to two
different triangles. Firstly, by including terms up to O(λ7) in Eq. 3.14, we obtain

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0 , (3.19)

where we have used the generalised Wolfenstein parameters from Eq. 3.9. After dividing by Aλ3, this relation
gives rise to the unitarity triangle in Fig. 3.3a with the angles labelled as α, β, and γ. The lengths of the
sides of this triangle are given by Rb and Rt and are defined by

Rb ≡
√
ρ̄2 + η̄2 =

(
1− λ2

2

) ∣∣∣∣VubVcb

∣∣∣∣ , (3.20)

Rt ≡
√
(1− ρ̄)2 + η̄2 =

1

λ

∣∣∣∣VubVcb

∣∣∣∣ . (3.21)

When expanding Eq. 3.17 in higher orders of λ, we arrive at[{
1− λ2

2
− (1− λ2)ρ− i(1− λ2)η

}
+

{
−1 +

(
1

2
− ρ

)
λ2 − iηλ2

}
+ {ρ+ iη}

]
Aλ3 +O(λ7) = 0 , (3.22)

which describes the unitarity triangle in Fig. 3.3b after dividing by Aλ3. The apex is now given by (ρ, η)
instead of (ρ̄, η̄) and a tiny angle δγ appears between the base of the triangle and the real axis. This angle
satisfies the following relation [86]:

δ13 = γ = γ′ + δγ . (3.23)
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(a) The unitarity triangle arising from Eq. 3.14. (b) The unitarity triangle arising from Eq. 3.17.

Figure 3.3: The two non-squashed unitarity triangles of the CKM matrix. In Asia and thus also
within the Belle collaboration, another convention is used for the angles of unitarity triangle.
Namely: ϕ1 ≡ β, ϕ2 ≡ α, and ϕ3 ≡ γ. Adapted from [86].

Furthermore, this small angle also satisfies [97]

δγ = λ2η̄ +O(λ4) . (3.24)

A summary of the bounds on the CKM unitarity triangle of Fig. 3.3a is shown in Fig. 3.4. These figures
show the global analyses performed by the CKMfitter group [98] and UTfit collaboration [99], incorporating
the results of different experiments.

3.2 CP violation

The existence of the complex phase δij in the CKM matrix allows for CP violation through charged-current
interactions. However, this condition is not sufficient for CP violation to occur. The following relation also
must be satisfied [100,101]:

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) · JCP ̸= 0 , (3.25)

where

JCP =
∣∣Im (ViαVjβV ∗

iβV
∗
jα

)∣∣ (i ̸= j, α ̸= β) (3.26)

= s12s13s23c12c23c
2
13 sin δ13 (3.27)

= λ6A2η̄ +O(λ10) . (3.28)

Eq. 3.25 implies that no two quarks of the same charge should have the same mass, since otherwise this
would allow for a unitary transformation of the quark fields which would eliminate the CP-violating phase
of the CKM matrix.

The combination of CKM factors in the Jarlskog parameter JCP is uniquely defined, since the unitarity
of the CKM matrix ensures that all combinations

∣∣∣Im(ViαVjβV ∗
iβV

∗
jα

)∣∣∣ are equal. This parameter can be
interpreted as the strength of the CP violation from the CKM matrix [100]. Moreover, the area of all CKM
unitarity triangles satisfy 2A△ = JCP [102]. The expression in Eq. 3.28 [103] and the experimental data in
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(a) Analysis of the CKM Fitter Group [98]. (b) Analysis of the UTfit collaboration [99].

Figure 3.4: Global analyses of measurements determining the parameters of the CKM uni-
tarity triangle of Fig. 3.3a. The differently coloured and labelled regions represent the con-
straints obtained from measurements of for example (semi)leptonic decays and mixing ef-
fects. Updated results of the CKM Fitter group and the UTfit collaboration can be found
at http://ckmfitter.in2p3.fr and http://www.utfit.org/UTfit/ respectively.

Eq. 3.10 imply that JCP is of order O(10−5), resulting in small CP-violating effects.

CP violation is an important phenomenon to explain the matter−antimatter asymmetry observed in the
universe [20]. The Big Bang should have produced an equal amount of matter and antimatter. However,
currently the universe mainly consists of regular matter and very little antimatter is found. In order to explain
this asymmetry, several conditions must be satisfied. These have been formulated in 1967 by Sakharov [20].
The three Sakharov conditions are:

• The existence of baryon number violation. Processes violating baryon number conservation would
allow the production of an excess of baryons over antibaryons.

• The existence of C and CP violation. If there were no C violation, processes causing an excess of
baryons over antibaryons would have a symmetric counterpart causing an excess of antibaryons over
baryons. If there were no CP violation, any process producing left-handed baryons would have a
symmetric counterpart producing right-handed antibaryons.

• The existence of interactions out of thermal equilibrium. Any process in thermal equilibrium will
conserve baryon number due to CPT symmetry.

Unfortunately, the amount of CP violation in the SM is many orders of magnitude too small to explain the
asymmetry [22]. However, extensions of the SM may contain new sources of CP violation.

CP violation can be categorised in the following categories [104]:

1. CP violation in decay.

http://ckmfitter.in2p3.fr
http://www.utfit.org/UTfit/
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2. CP violation in mixing.

3. CP violation in interference between a decay with and without mixing.

Firstly, CP violation in decay is a difference between the decay width Γ of a particle X to a final state f and
its CP-conjugate decay of X̄ to f̄ , i.e. Γ(X → f) ̸= Γ(X̄ → f̄).

Neutral mesons X0 can oscillate to their antimeson counterpart X̄0 and vice versa. This mixing can for
example be found in the B0

s -B̄0
s system through box diagrams like in Fig. 3.5 (which will be elaborated upon

in Section 3.3.1). CP violation in mixing refers to a difference between the oscillation of a neutral meson X0

to its antimeson X̄0 and the oscillation of the antimeson to the meson, i.e. Prob(X0 → X̄0) ̸= Prob(X̄0 → X).

Finally, CP violation in interference between a decay with and without mixing refers to a difference be-
tween the decay width of a meson and antimeson to the same final state, i.e. Γ(X0 → f)(t) ̸= Γ(X̄0 → f)(t).
These decay widths will depend on the transition amplitudes A(X0 → f) and A(X0 → X̄0 → f).

Alternatively, CP violation can be categorised as direct CP violation or indirect CP violation [104]. Di-
rect CP violation arises from a difference in transition amplitudes between CP conjugate decays, i.e. A(X →
f) ̸= A(X̄ → f̄). It appears in CP violation in decays and in CP violation in interference between a decay
with and without mixing. Direct CP violation is quantified in the direct CP asymmetry observable, defined
by

ACP ≡ Γ(X → f)− Γ(X̄ → f̄)

Γ(X → f) + Γ(X̄ → f̄)
. (3.29)

Indirect CP violation arises from mixing effects. Clearly, it appears in CP violation in mixing and in CP
violation in interference between a decay with and without mixing. Indirect CP violation was first observed
in 1966 in KL → π+π− decays by Cronin and Fitch et al. [23], for which Cronin and Fitch have been
awarded the Nobel Prize in 1980. Direct CP violation has been observed in decays of the kaons1 KL and KS

to the pions2 π0π0 and π+π− in 1999 by the NA48 experiment (CERN) [105] and by the KTeV experiment
(FNAL) [106]. Furthermore, CP violation in the B-meson system has been established in 2001 through
B0
d → J/ψKS by the Belle [107] and BaBar [108] collaborations.

3.3 B-mesons

A very important system for the study of flavour physics and CP violation is the B-meson system. B-mesons
are characterised by containing at least one bottom (b) quark in its valence-quark content. The neutral B-
mesons include B0 (db̄), B̄0 (bd̄), B0

s (sb̄), B̄0
s (bs̄), and the bottomomium states (bb̄). The charged B-mesons

include B+ (ub̄) and B− (bū). The charmed B-mesons are B+
c (cb̄) and B−

c (bc̄). Based on the total angular
momentum quantum number J and the eigenvalues of the parity operator P , these mesons can be further
grouped according to the classes in Table 3.1.

A very interesting class of decays in the B-meson system are the rare decays. These are decays that do not
occur at the tree-level, meaning Feynman topologies containing no loops. Rare decays thus only proceed
through loop processes. Loop-level processes are suppressed since they contain more interaction points, that
is more vertices. Since these processes are strongly suppressed, they are very sensitive to effects of New
Physics (NP), i.e. physics beyond the SM. The name ‘rare decays’ is fitting since the suppression manifests
itself as very small branching fractions for those decays. The branching fraction of a decay X → f is defined

1Mesons having a strange quark, and an up or a down quark as its valence-quark content.
2Mesons having a combination of up and down quarks as its valence-quark content.
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JP Meson
0+ Scalar
0− Pseudoscalar
1− Vector
1+ Pseudovector/axial vector
2+ Tensor

Table 3.1: Classification of mesons based on the total angular momentum quantum number J
and the parity eigenvalues P (±1) [109].

as

B(X → f) ≡ Γ(X → f)

Γtot
X

, (3.30)

where Γtot
X is the decay width of the particle X, which is the sum of all decay rates of all possible decay

channels of X. The branching fraction can be interpreted as the fraction of particles X that have decayed to
a specific final state f with respect to the total number of particles X that have decayed. The decay width
is related to the lifetime of X (τX) through

τX =
1

Γtot
X

. (3.31)

The rare decays B− → K−ℓ+ℓ− and B0
s → ℓ+ℓ− (and their CP-conjugate counterparts), where ℓ = e, µ, τ

and the K-meson has valence-quark composition sū, will play an important role in this thesis.

3.3.1 B-meson mixing

Neutral B-mesons can spontaneously change into their antiparticle, through processes like in the box dia-
grams in Fig. 3.5. Therefore, the neutral B-meson will oscillate over time between the particle and antipar-
ticle state, which is referred to as B0

q -B̄0
q mixing. This mixing needs to be accounted for when comparing

theoretical branching fractions with experimental ones since B0
q -B̄0

q mixing cannot be ‘turned off’ during
a measurement. Since this thesis focuses on b → sℓ+ℓ− transition, we will introduce the relevant mixing
parameters for B0

s -B̄0
s mixing (one can similarly define the parameters for B0

d-B̄
0
d mixing by replacing the

subscripts s with d in the definitions).

Figure 3.5: Leading-order Feynman diagrams for B0
s -B̄0

s mixing in the SM. These type of
topologies are referred to as box diagrams.

B0
s -B̄0

s mixing can be modelled using an effective Hamiltonian (the concept of effective Hamiltonians will be
discussed in more detail in Chapter 4) [110]:

⟨B0
s |H∆B=2

eff |B̄0
s ⟩ = 2MBsM

s
12 , (3.32)



3.3. B-MESONS 25

where MBs is the mass of the Bs-meson. Ms
12 is related to the mass difference between the ‘heavy’ (H) and

‘light’ (L) mass eigenstates by [86]

2|Ms
12| = ∆Ms ≡Ms

H −Ms
L . (3.33)

The mass eigenstates can be written as

|Bs(t)⟩ = a(t)|B0
s ⟩+ b(t)|B̄0

s ⟩ , (3.34)

which are governed by the Schrödinger equation [86]:

i
d
dt

(
a(t)
b(t)

)
= H ·

(
a(t)
b(t)

)
≡

[(
M

(s)
0 M

(s)
12

M
(s)∗
12 M

(s)
0

)
︸ ︷︷ ︸

mass matrix

− i

2

(
Γ
(s)
0 Γ

(s)
12

Γ
(s)∗
12 Γ

(s)
0

)]
︸ ︷︷ ︸

decay matrix

·
(
a(t)
b(t)

)
. (3.35)

The solutions of this Schrödinger equation can be found in [86]. The difference in mass of these eigenstates
determines 2|Ms

12| = ∆Ms. The SM prediction for this parameter has been determined in [111]:

∆MSM
s = 18.3± 2.7 ps−1 . (3.36)

Any NP affecting B0
s -B̄0

s mixing will manifest as a contribution to ∆Ms. This parameter has been measured
to be [112]

∆M exp
s = 17.757± 0.021 ps−1 , (3.37)

which is in agreement with the SM prediction, considering the large uncertainty of the theoretical SM value.
The CP violation caused by B0

s -B̄0
s mixing is parameterised by the phase [110]

ϕs ≡ argMs
12 , (3.38)

which is conveniently split up into SM and NP contributions as

ϕs ≡ ϕSMs + ϕNP
s . (3.39)

The SM contribution can be written in terms of CKM unitarity triangle angles and in the Wolfenstein
parameters of the CKM matrix [86,113] as

ϕSMs = −2δγ = −2λ2η̄ = −(2.086+0.080
−0.069)

◦ = −0.0364+0.0014
−0.0012 . (3.40)

ϕs (together with the B0
d-B̄

0
d mixing counterpart ϕd) can be determined from simultaneous analysis of the

decays B0
d → J/ψK0, B0

s → J/ψϕ, B0
d → J/ψπ0, B0

s → J/ψK0
S , and B0

d → J/ψρ0 [114]. Including doubly
Cabibbo-suppressed penguin topologies in the calculation results in a value of [114]

ϕs = (−5.0+1.6
−1.5)

◦ = −0.088+0.028
−0.027 . (3.41)

This result is clearly larger than the SM prediction, hinting at NP causing new contributions to B0
s -B̄0

s

mixing. Using Eqs. 3.40 and 3.41, we find the following for the NP contribution in ϕs:

ϕNP
s = −0.052± 0.028 , (3.42)

where we assumed that all variables are distributed according to Gaussian distributions and we used the
largest uncertainties in Eqs. 3.40 and 3.41 respectively as the standard deviation for ϕSMs and ϕs (i.e.
σ(ϕSMs ) = 0.0014 and σ(ϕs) = 0.028).

Furthermore, we can look at the difference in decay widths between the ‘heavy’ and ‘light’ mass eigen-
states [86]:

∆Γs ≡ Γ
(s)
H − Γ

(s)
L =

4Re
[
M

(s)
12 Γ

(s)∗
12

]
∆Ms

. (3.43)
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Moreover, the average of the two decay widths satisfies

Γs ≡
Γ
(s)
H + Γ

(s)
L

2
= Γ

(s)
0 . (3.44)

From the last two relations, we can define that what often is defined as ‘the B0
s -B̄0

s mixing parameter’ [86]:

∆Γs
Γs

≈ −O(10−2) · xs , (3.45)

where

xs ≡
∆Ms

Γs
= O(20) . (3.46)

For B0
d-B̄

0
d mixing, this parameter is negligibly small since ∆Γd/Γd ≈ 10−2, while for the B0

s -B̄0
s system this

parameter becomes relevant since ∆Γs/Γs ≈ 10−1. This can be clearly seen in the SM predictions [115]:

|∆Γs|
Γs

= 0.147± 0.060 ,
|∆Γd|
Γd

= (3± 1.2) · 10−3 , (3.47)

The most recent experimental results on the decay difference the B0
s -B̄0

s system is [112]

∆Γs = (0.082± 0.005) ps−1 , (3.48)

while ∆Γd has not been measured yet [112]. This measured value is in agreement with the SM prediction
of [115]:

∆ΓSM
S = (0.096± 0.039) ps−1 . (3.49)

where the theoretical uncertainty is large due to large uncertainties in the determination of the decay con-
stant of Bs.

This sizeable difference in decay widths in the B0
s -B̄0

s system allow for studies of CP violation through
untagged Bs rates, which are defined as [86]

⟨Γ(Bs(t) → f)⟩ ≡ Γ(B0
s (t) → f) + Γ(B̄0

s (t) → f) . (3.50)

This untagged decay rate is dependent on the decay width difference ∆Γs through [86]

⟨Γ(Bs(t) → f)⟩ ∝ [cosh (∆Γst/2)−A∆Γ(Bs → f) sinh (∆Γst/2)] e
−Γst . (3.51)

The parameter A∆Γ(Bs → f) will play an important role when converting theoretical branching fractions to
experimental ones, which will be elaborated upon in Section 5.2.6.

3.4 Lepton flavour universality violation

In the SM, the only difference between processes involving different leptons ℓ arises from their difference
in mass. The gauge couplings do not differ for the different lepton flavours. This is called lepton flavour
universality (LFU). Since the masses of the electron and muon are small, only very small differences arise
between decays like B− → K−e+e− and B− → K−µ+µ−. In the limit me = mµ = 0, the SM predicts that
the decay widths of these two decays equal one another. This is summarised in the observable RK , which
for any meson X is defined as

RX [q2min, q
2
max] ≡

∫ q2max

q2min

dB(B→Xµ+µ−)
dq2 dq2∫ q2max

q2min

dB(B→Xe+e−)
dq2 dq2

, (3.52)
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where q2min and q2max denote the range of the dilepton invariant mass squared. The SM predicts RK = 1, and
only a tiny difference between the branching fractions occurs when accounting for the difference between the
electron and muon mass. However, the LHCb collaboration has measured a value of

RK [1.1 GeV2, 6.0 GeV2] = 0.846+0.042+0.013
−0.039−0.012 , (3.53)

where the statistical and systematic uncertainties have been stated [116]. In order to explain this result, many
look for NP models which accommodate the result in Eq. 3.53. For example, a NP scenario which suppresses
the B− → K−µ+µ− channel compared to the B− → K−e+e− channel could explain the measured value of
RK .
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4 | Effective field theory

Effective theories allow physicists to describe phenomena at specific scales in a simplified manner. The
main idea is to isolate a specific scale range and describe the phenomena at that scale without needing to
understand everything at all scales. The different scale regions are given different appropriate descriptions
of important physics at that scale [117]. This allows for much easier calculations. In order to do this,
parameters that are very small compared to the quantities of interest at the selected scale are set to zero,
while very large parameters are set to infinity. Subsequently, the finite effects of these altered parameters
are included as tiny perturbations [117]. For example, Newtonian physics is an effective theory description
of the small velocity limit of relativistic mechanics. One could perform calculations in this limit using rel-
ativistic mechanics, but it is much more convenient to use Newtonian mechanics. This shows how effective
theories are useful tools for physicists. Furthermore, effective theories allow us to describe phenomena when
we do not know what the full theory is at all scales. Any discrepancies between the effective theory predic-
tions and experiments serve as hints for unknown physics in the theory describing the larger parameter space.

In quantum field theory, the relevant parameter is the distance scale (or energy). In effective field theo-
ries (EFT), the quantities of interest are the particle masses. In EFT, nonlocal interactions mediated by
virtual heavy particles are replaced by a set of local interactions, such that the same physics is described
at low energies. The heavy particles in this theory are ‘integrated out’ by setting their mass to infinity and
including finite-size effects as perturbations. This theory can then be used at energy scales below the masses
of the heavy particles. For energies above the mass of the heavy particles, these heavy particles are included
in the EFT, while below this boundary they are integrated out [117].

In this chapter, we will discuss how EFTs can be used to describe decays of particles by looking first at
the Fermi four-fermion coupling as an example and second at how the operator product expansion can be
implemented to calculate amplitudes. Subsequently, we will show how the EFT is linked to the full theory
through a process called matching. Finally, we will show how we can use this formalism to probe NP effects.

4.1 Fermi theory

To illustrate how EFTs can be used for particle decays, we will investigate the process b → cdū [118].
At the tree level, this process occurs through an exchange of a W− boson (see the left diagram in Fig.
4.1). The decay amplitude will include a factor of g2 from the two weak interaction vertices and a factor
of 1/(p2 − M2

W ) originating from the W boson propagator with momentum p. The typical energy scale
of this process (E = O(0.1 GeV)) is much smaller than the mass of the W boson (MW = O(80 GeV)).
Consequently, the following approximation can be made:

g2

p2 −M2
W

p2≪M2
W−−−−−→ − g2

M2
W

+O
(

p2

M4
W

)
. (4.1)

Diagrammatically, this is represented by introducing a four-quark vertex as seen in the right diagram in Fig.
4.1 with an effective coupling GF (Fermi coupling). This type of low-energy decay processes led Fermi to

29
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postulate the existence of the four-fermion vertices to describe the weak interaction [119]. This example also
shows why the weak interaction is perceived as ‘weak’, since the decay amplitude is suppressed by the mass
of the W boson. At p2 > O(M2

W ), the underlying physics of the underlying W boson exchange will become
relevant and the weak interaction will no longer be ‘weak’.

Figure 4.1: Diagrammatic representation of the EFT approach to the b → cdū process where
the W boson is integrated out.

4.2 Operator product expansion

In the EFT approach to weak decays, the massive virtual particles that mediate the decay are integrated
out and one focuses on the external particles. The interaction is parameterised by a set of effective operators
and effective couplings called Wilson coefficients. The transition amplitude for the decay is written as

⟨f |Heff |i⟩ =
GF√
2
λCKM

∑
k

Ck(µ)⟨f |Ok(µ)|i⟩ . (4.2)

This is called the operator product expansion (OPE), where the effective Hamiltonian Heff encodes the
physics of the decay in question. GF is the Fermi coupling constant and is given as

GF =

√
2

8

g2

M2
W

, (4.3)

where g is the coupling constant of the weak interaction. λCKM contains the CKM matrix elements relevant
for the decay in question. The OPE separates the effective Hamiltonian into two parts. Namely, the low-
energy (long-distance) effects are encoded in the local operators Ok(µ) and the high-energy (short-distance)
effects are encoded in the Wilson coefficients Ck(µ). The operators Ok(µ) describe the non-perturbative low-
energy contributions and the structure of the current that mediates the decay. The Wilson coefficients Ck(µ)
are interpreted as the effective coupling constants of their corresponding operators. The Wilson coefficients
are perturbative scalar quantities that describe the short-distance, high-energy physics of the virtual parti-
cles that have been integrated out. µ is the energy scale at which the local operators and Wilson coefficients
have been evaluated.

As an example, let us return to the b → cdū process, ignoring QCD effects. We can write the following
for the left diagram in Fig. 4.1:

GF√
2
VcbV

∗
ud(c̄b)V−A

M2
W

p2 −M2
W

(d̄u)V−A , (4.4)
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where we have introduced the ‘vector minus axial current’ notation:

(q̄1q2)V−A ≡ q̄1γ
µ(1− γ5)q2 , (4.5)

and the contraction of the Lorentz indices is implied in Eq. 4.4. By integrating out the W boson (p2 ≪M2
W )

and safely ignoring terms of order O(p2/M2
W ), we find the effective Hamiltonian to be

Heff =
GF√
2
VcbV

∗
ud(c̄b)V−A(d̄u)V−A =

GF√
2
VcbV

∗
udO2 , (4.6)

where we have introduced the following four quark operator:

O2 ≡ (c̄b)V−A(d̄u)V−A . (4.7)

The corresponding Wilson coefficient equals unity in this leading-order perturbation approximation ignoring
QCD effects. If one would include the QCD effects, the value for this Wilson coefficient would change and
another operator with a corresponding Wilson coefficient will appear in Eq. 4.6 [120].

4.3 Matching and Wilson coefficients

Fig. 4.2 illustrates the concept of EFTs and matching. At a large energy scale µ, the theory includes heavy
particles of mass M described by the fields Φ. It also includes lighter particles of mass m described by the
fields ϕ. The full theory is described by the Lagrangian L(ϕ)+L′(ϕ,Φ) where the first term does not depend
on the fields of the heavy particles. Below the heavy particle mass, the theory is described by an EFT where
the heavy particles have been integrated out. In this regime, the physics is described by the Lagrangian
L(ϕ)+Lint(ϕ) and is not dependent on the heavy fields Φ. The second term in this EFT Lagrangian contains
all changes between the EFT and full theory [117]. To link the two theories, the Lagrangians must coincide
at a matching scale µ =M , resulting in a set of matching conditions. Notably, the matching scale does not
need to equal the heavy particle mass exactly but can be chosen with a certain freedom.

Figure 4.2: Schematic representation of the EFT approach and matching. See the full text for
a detailed explanation. Adapted from [118].

The Wilson coefficients in Eq. 4.2 can be determined using perturbation theory. This is done by com-
paring the transition amplitude calculated in the full theory with the transition amplitude calculated from
the effective theory. More precisely, the decay amplitude Afull is first calculated in the full theory. Subse-
quently, the local operator matrix elements ⟨Ok⟩ are calculated and the Wilson coefficients are extracted
through

Afull = Aeff =
GF√
2
λCKM

∑
k

Ci⟨Ok⟩ . (4.8)
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The Wilson coefficients obtained generally depend logarithmically on the matching scale µ. In order to
perform calculations at lower scales, the Wilson coefficients and matrix elements ⟨Ok⟩ need to be evolved
to the lower energy scales utilising renormalization group equations. A more detailed explanation of this
process can be found in [120].

Physical quantities have to be independent of the scale µ where the Wilson coefficients and local opera-
tors are evaluated. However, the Wilson coefficients Ck(µ) and matrix elements ⟨f |Ok(µ)|i⟩ both depend on
the scale µ. In quantities like the transition amplitude in Eq. 4.2, the dependence of the Wilson coefficients
and matrix elements should therefore cancel each other out. From these conditions, renormalisation group
equations can be derived. Namely, the Wilson coefficients appearing the Lagrangian of the EFT are bare
quantities, which need to be renormalised to remove the infinities that may occur in calculations. In short,
this is achieved with the renormalisation matrix Zij :

Cbare
i = Cphysical

j (µ)Zij(µ) . (4.9)

Since the left-hand side of Eq. 4.9 is µ-independent, the renormalisation group equations can be derived by
taking the derivative µ d

dµ of Eq. 4.9. These equations can be used to evolve the physical Wilson coefficients
to the scale of interest. A more detailed explanation of this process and the determination of the renormali-
sation matrix Zij can be found in [120].

The cancellation of the dependence on µ in e.g. Eq. 4.2 is only true if the full expressions for the Wil-
son coefficients and matrix elements are known. In practice, they are only known up to a certain order, e.g.
often the Wilson coefficients are only known up to NNLO (Next-to-Next-to-Leading Order) in perturbation
theory. Due to this truncation, a residual dependence on the scale µ remains in quantities like the amplitude
in Eq. 4.2. By keeping higher-order terms in the expansion of the Wilson coefficients and matrix elements by
for example including higher-order Feynman diagrams in the calculation, this dependence can be reduced.
If all orders are included, the µ-dependence will disappear [120].

4.4 Probing New Physics

The EFT approach is a useful tool for a model-independent analysis of the effects of NP. Namely, NP can
enter the effective Hamiltonian of Eq. 4.2 in two ways [86]. Firstly, the NP effects may contribute to a Wilson
coefficient Ck by providing new channels through which the process of the corresponding operator Ok can
occur. This effect can be represented as

Ck → CSM
k + CNP

k , (4.10)

where the contributions of the Wilson coefficient are split into the contributions from SM processes and
contributions from NP processes. Heavy NP particles are thus integrated out in the EFT approach and
appear as new contributions to the Wilson coefficients. Secondly, NP can give rise to processes that are not
present in the SM at all, enlarging the basis of operators needed to describe the phenomenon of interest.
Consequently, new operators are introduced in the effective Hamiltonian:

{Ok} → {OSM
k ,ONP

l } , (4.11)

with corresponding new Wilson coefficients CNP
l . The NP contributions to the Wilson coefficients CNP

k and the
Wilson coefficients of the NP operators CNP

l may be complex and therefore provide new ways of CP violation.
By constraining the Wilson coefficients using experimental data, one can select possible hypothesised full
theories based on their predicted contributions to the different Wilson coefficients.



5 | B-meson decays

The b → sℓ+ℓ− transitions have been given a lot of attention by theorists and experimentalists alike in the
last years. The transitions are both Cabibbo and loop suppressed in the SM. This makes these transitions
very sensitive to NP [121]. Any discrepancies between measurements and SM predictions would give physi-
cists a tool to test possible extensions of the SM.

In several experiments, deviations have been found from SM predictions. These include:

• Deviations in the branching fractions for B → Kµ+µ− [28], B → K∗µ+µ− [28–30], and Bs → ϕµ+µ−

[38].

• Discrepancies between experimental results and SM predictions in the angular observables in B →
K∗µ+µ− [31–37].

• The branching fraction of B0
s → µ+µ− has been measured to be lower than the SM predictions [39–42].

• Hints for µ/e lepton flavour universality violation in the ratios RK [28, 43] and RK∗ [44], and in the
B → K∗ℓ+ℓ− angular observables [45,46].

• Hints for lepton flavour universality violation in b→ cℓν̄ℓ transitions, specifically τ/µ and τ/e univer-
sality [47–49].

In this chapter, we will derive the expressions for the differential branching fraction for the B− → K−ℓ+ℓ−

decay and the decay width for the B0
s → ℓ+ℓ+ decay. This will be achieved using an EFT approach.

Furthermore, the effects of hadronic long-distance contributions on the B− → K−ℓ+ℓ− decay and the effects
of B0

s -B̄0
s mixing on the B0

s → ℓ+ℓ+ decay will be discussed.

5.1 The semileptonic decay B− → K−ℓ+ℓ−

The B− → K−ℓ+ℓ− decay only occurs at the loop level in the SM. In other words, there are no tree-level
diagrams in the SM that allow for this decay. The one-loop diagrams of this decay in the SM are presented
in Fig. 5.1.

5.1.1 Effective Hamiltonian

To determine a general expression for the differential decay width of this decay, we will employ the EFT
approach introduced in Chapter 4. The effective Hamiltonian for b → sℓ+ℓ− transitions, including SM and

33
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Figure 5.1: The one-loop Feynman diagrams for the B− → K−ℓ+ℓ− decay in the SM. The
diagrams involving Higgs bosons are not shown, due to the tiny Yukawa couplings of the Higgs
boson to the leptons.

NP operators, is given by [121]

Heff = −4GF√
2

[
λu[C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 )] + λt

∑
i∈I

CiOi

]
, (5.1)

where λq = VqbV
∗
qs are the relevant CKM factors for this transition. The operators included in the sum are

I = {1c, 2c, 3, 4, 5, 6, 8, 7, 7′, 9ℓ, 9′ℓ, 10ℓ, 10′ℓ, P ℓ, P ′ℓ, Sℓ, S′ℓ, T ℓ, T ′ℓ}. We neglect the doubly Cabibbo sup-
pressed contributions in Heff proportional to λu ∝ λ4 and keep the contributions proportional to λt ∝ λ2,
where λ is the usual parameter of the Wolfenstein parametrisation of the CKM matrix. We also neglect the
hadronic operators O1,...,6,8 since the NP contributions are heavily constrained by non-leptonic decays and
do not receive large contributions from NP [122–124]. The remaining operators of interest are given by [121]

O7(′) =
e

(4π)2
mb[s̄σ

µνPR(L)b]Fµν ,

O9(′)ℓ =
e2

(4π)2
[s̄γµPL(R)b][ℓ̄γµℓ] ,

O10(′)ℓ =
e2

(4π)2
[s̄γµPL(R)b][ℓ̄γµγ5ℓ] ,

OS(′)ℓ =
e2

(4π)2
[s̄PR(L)b] ,

OP (′)ℓ =
e2

(4π)2
[s̄PR(L)b][ℓ̄γ5ℓ] ,

OT (′)ℓ =
e2

(4π)2
[s̄σµνPR(L)b][ℓ̄σ

µνℓ] ,

(5.2)

where σµν = i
2 [γ

µ, γν ]. We will drop the index ℓ for the operators and Wilson coefficients whenever the
context is clear enough whether we consider a generic lepton ℓ or specific case ℓ ∈ {e, µ, τ}. In the SM, only
C7, C9, and C10 are non-zero. The scalar (S), pseudoscalar (P), tensor (T), and primed operators are included
to study the effects of possible NP scenarios.

The operator O7(′) describes the effective diagram for a b → sγ transition. To apply this to the decay
in question, we need to multiply it by the photon propagator −i gµνq2 and a photon-lepton-lepton vertex
sandwiched between external lepton spinors ℓ̄ieγµℓ. Furthermore, one needs to make the substitution
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−σµνFµν → 2iσµνq
ν [120], where qν is the four-momentum of the virtual photon. All together, this gives:

O7(′) → −2i
e

(4π)2
mb[s̄σ

µν 1

2
(1± γ5)b]q

ν

(
−igµν

q2

)
ℓ̄ieγµℓ

= −i e2

(4π)2
mb[s̄σµν(1± γ5)b]q

ν 1

q2
(ℓ̄γµℓ) . (5.3)

5.1.2 Hadronic matrix elements

The decay amplitude for B− → K−ℓ+ℓ− can be determined by

A(B−(p) → K−(k)ℓ+(p1)ℓ
−(p2)) = ⟨K(k)ℓ+(p1)ℓ

−(p2)|Heff |B−(p)⟩ . (5.4)

The operators in the effective Hamiltonian can be written as Oi = κi[s̄Γib][ℓ̄Γ
′
iℓ] where κi is a constant and

Γ
(′)
i are the different gamma matrix structures of the operators. We can then write the decay amplitude as

A(B−(p) → K−(k)ℓ+(p1)ℓ
−(p2)) = −4GF√

2
λt
∑
i∈I

Ciκi⟨K−(k)|s̄Γib|B−(p)⟩(ℓ̄Γ′
iℓ) , (5.5)

where we have decomposed the right hand side in a product of amplitudes separating the hadronic contri-
butions and the leptonic contributions.

All the hadronic physics is encoded in the hadronic matrix elements of the form:

⟨K(k)|s̄Γb|B(p)⟩ . (5.6)

Not all combinations of gamma matrices Γ give rise to non-zero matrix elements. In order to quickly deter-
mine if a hadronic matrix element like in Eq. 5.6 vanishes, we employ a ‘hand-wavy’ argument based on the
parity eigenvalues of the different factors in the matrix elements [86]. This argument uses the property that
the matrix element can be written as a linear combination of objects carrying the correct Lorentz indices.
We can construct such objects using the momenta pµ and kµ. Furthermore, we use the property that the
parity eigenvalue of a product of two terms is the product of their eigenvalues. Finally, we use that for the
B− an K− meson we have JP = 0−, i.e. their parity eigenvalue equals −1.

To illustrate how this argument can be applied, let us look at the hadronic matrix element ⟨K(k)|s̄γ5b|B(p)⟩.
Since this matrix element carries no open Lorentz indices, it must be proportional to a constant A, which
has a parity eigenvalue of +1. The parity eigenvalues of ⟨K(k)|, s̄γ5b, and |B(p)⟩ all equal −1, so their
combined parity eigenvalue also equals −1. Since this does not equal the parity eigenvalue of A (+1), the
hadronic matrix element must vanish. This argument can be summarised as

⟨K(k)|︸ ︷︷ ︸
P :−1

s̄γ5b︸︷︷︸
P :−1

|B(p)⟩︸ ︷︷ ︸
P :−1︸ ︷︷ ︸

P :−1

= A︸︷︷︸
P :+1

(5.7)

−1 ̸= +1

From this we conclude that ⟨K(k)|s̄γ5b|B(p)⟩ = 0.

As a second more involved example, we consider the hadronic matrix element ⟨K(k)|s̄σµνγ5b|B(p)⟩. The
different parity eigenvalues of the different fermion bilinears are listed in Table 5.1. Notably, the parity
eigenvalue of s̄σµνγ5b is −(−1)µ(−1)ν where we use the shorthand (−1)µ = 1 for µ = 0 and (−1)µ = −1 for
µ = 1, 2, 3. Due to the Lorentz index structure, the hadronic matrix elements must equal a linear combina-
tion of pµkν and pνkµ (we neglect gµν with P = +1 since we can see immediately it does not correspond



36 CHAPTER 5. B-MESON DECAYS

with the parity eigenvalue of the bilinear s̄σµνγ5b). By applying the same argumentation as before, we find

⟨K(k)|︸ ︷︷ ︸
P :−1

s̄σµνγ5b︸ ︷︷ ︸
P :−(−1)µ(−1)ν

|B(p)⟩︸ ︷︷ ︸
P :−1︸ ︷︷ ︸

P :−(−1)µ(−1)ν

= A pµ︸︷︷︸
P :(−1)µ

kν︸︷︷︸
P :(−1)ν︸ ︷︷ ︸

P :(−1)µ(−1)ν

+B pν︸︷︷︸
P :(−1)ν

kµ︸︷︷︸
P :(−1)µ︸ ︷︷ ︸

P :(−1)µ(−1)ν︸ ︷︷ ︸
P :(−1)µ(−1)ν

(5.8)

−(−1)µ(−1)ν ̸= (−1)µ(−1)ν

where we have not written down that the parity eigenvalues of the constants A and B equal +1. From Eq.
5.8, we conclude that ⟨K(k)|s̄σµνγ5b|B(p)⟩ = 0.

ψ̄ψ iψ̄γ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄σµνψ ψ̄σµνγ5ψ
P +1 −1 (−1)µ −(−1)µ (−1)µ(−1)ν −(−1)µ(−1)ν

Table 5.1: The parity eigenvalues of different fermion bilinears. We use the shorthand (−1)µ = 1
for µ = 0 and (−1)µ = −1 for µ = 1, 2, 3. Adapted from [125].

By applying this argumentation to other matrix elements, we find that the only relevant non-zero hadronic
matrix elements have the following gamma matrix structure: Γ ∈ {1, γµ, σµν}. We use the following
parametrisation from [121] for these hadronic matrix elements:

⟨K(k)|s̄b|B(p)⟩ = m2
B −m2

K

mb −ms
f0(q

2) , (5.9)

⟨K(k)|s̄γµb|B(p)⟩ = (p+ k)µf+(q
2) +

m2
B −m2

K

q2
qµ(f0(q

2)− f+(q
2)) , (5.10)

⟨K(k)|s̄σµνb|B(p)⟩ = i ((p+ k)µqν − (p+ k)νqµ)
fT (q

2)

mB +mK
, (5.11)

with qµ = (p − k)µ and mB,K,b,s the masses of the B-meson, kaon, bottom quark, and strange quark. The
form factors fT,+,0(q2) are real valued q2-dependent functions.

The form factors appearing the the hadronic matrix elements are non-perturbative quantities, i.e. they
cannot be calculated using the usual calculations of perturbation theory and Feynman diagrams. These
form factors are non-perturbative since the QCD coupling constant increases as the energy scale decreases.
Therefore, it becomes too large for perturbation theory to be applicable. One way of calculating these form
factors is through the use of Lattice QCD (LQCD), where spacetime is discretised on a lattice. The finite
distance between the lattice points also serves as a regulator for UV divergencies [126]. Lattice QCD cur-
rently only allows for a reliable determination of form factors at large values of q2 [126]. Another method
of calculating these form factors is using Light-Cone QCD Sum Rules (LCSRs). Contrary to lattice QCD,
LCSRs only allow for a reliable determination of form factors at low q2 [126]. Unfortunately, these form
factor determinations come with large uncertainties which are one of the main sources of the uncertainties
in theoretical predictions of b → sℓ+ℓ− observables. Therefore, ‘clean’ observables like RK where the form
factor dependence is reduced are very popular for precision studies.

5.1.3 Decay amplitude

By inserting the hadronic matrix elements from Eqs. 5.9, 5.10, and 5.11 in Eq. 5.5, we obtain

A(B−(p) → K−(k)ℓ+(p1)ℓ
−(p2)) = −GF√

2
λt
αem

π

[
Vp(ℓ̄/pℓ) + Vq(ℓ̄/qℓ)

+Ap(ℓ̄/pγ5ℓ) +Aq(ℓ̄/qγ5ℓ) + S(ℓ̄ℓ) + P (ℓ̄γ5ℓ) + T (ℓ̄(/p/q − /q/p)ℓ)
]
, (5.12)
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with αem = e2

4π the electromagnetic fine structure constant and

Vp ≡ Vp(q
2) = (C7 + C7′)

2mbfT (q
2)

mB +mK
+ (C9 + C9′)f+(q2) , (5.13)

Vq ≡ Vq(q
2) = −(C7 + C7′)

2mbfT (q
2)

mB +mK

(
1 +

m2
B −m2

K

q2

)
+ (C9 + C9′)

1

2

(
m2
B −m2

K

q2
f0(q

2)−
(
1 +

m2
B −m2

K

q2

)
f+(q

2)

)
, (5.14)

Ap ≡ Ap(q
2) = (C10 + C10′)f+(q2) , (5.15)

Aq ≡ Aq(q
2) = (C10 + C10′)

1

2

(
m2
B −m2

K

q2
f0(q

2)−
(
1 +

m2
B −m2

K

q2

)
f+(q

2)

)
, (5.16)

S ≡ A(q2) = (CS + CS′)
1

2

m2
B −m2

K

mb −ms
f0(q

2) , (5.17)

P ≡ P (q2) = (CP + CP ′)
1

2

m2
B −m2

K

mb −ms
f0(q

2) , (5.18)

T ≡ T (q2) = −(CT + CT ′)
fT (q

2)

mB +mK
. (5.19)

To determine the differential decay width, this amplitude needs to be squared and summed over the spins
s(′) of the two leptons (

∣∣Ā∣∣2 =
∑
s,s′ AA

†). In order to do this calculation, the spinor completeness relations,
Casimir’s trick, and trace identities of the gamma matrices need to be implemented. For a detailed description
of these steps, the reader is referred to [127].

5.1.4 Kinematics

By applying the calculation steps described, an expression is found as a function of the scalar products p ·p1,
p · p2, and p1 · p2. This expression can be simplified using kinematics to determine pµ and pµ1,2.

Figure 5.2: Schematic representation of the momenta in the dilepton centre-of-mass frame for
the B− → K−ℓ+ℓ− decay.

As a reference frame, the qµ rest frame (the dilepton centre-of-mass frame) is chosen. In this frame, we have
p⃗ = k⃗ and p⃗1 = −p⃗2, which is shown in Fig. 5.2. By using four-momentum conservation, one finds for the
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three relevant unknown momenta:

pµ1,2 =

√q2
2

, 0, 0,±
√
q2

2

√
1−

4m2
ℓ

q2

 , (5.20)

pµ =

(
q2 +m2

B −m2
K

2
√
q2

,−
√
λ

2
√
q2

sin θℓ, 0,

√
λ

2
√
q2

cos θℓ

)
, (5.21)

where λ ≡ λ(m2
B ,m

2
K , q

2) is the Källèn function defined as λ(x, y, z) = x2 + y2 + z2 − 2xy− 2xz − 2yz. The
angle θℓ is defined as in Fig. 5.2. Eqs. 5.20 and 5.21 can be used to calculate the scalar products p · p1, p · p2,
and p1 · p2. Subsequently, these expression can be used to simplify the squared amplitude

∣∣Ā∣∣2.

5.1.5 Phase space element

To determine the differential decay width, we employ the following formula [92]:

dΓ =
S(2π)4

∣∣Ā∣∣2
2mB

dΦ3(p; k, p1, p2) , (5.22)

where the symmetry factor S is equal to unity since there are no identical particles present in the decay.
Moreover, the Lorentz-invariant phase space element dΦ3 is given by [92]

dΦ3(p; k, p1, p2) = dΦ2(q; p1, p2)dΦ2(p; q, k)(2π)
3dq2 (5.23)

= δ4(q − p1 − p2)
d3p1

(2π)32E1

d3p2
(2π)32E2

δ4(p− q − k)
d3q

(2π)32Eq

d3k

(2π)32Ek
(2π)3dq2 . (5.24)

Evaluating this Lorentz-invariant phase space element in the dilepton centre-of-mass frame, we obtain

dΦ3(p; k, p1, p2) =

√
1−

4m2
ℓ

q2

√
λ

32(2π)7m2
B

sin θℓdθℓdq2 . (5.25)

5.1.6 Differential decay width

After combining Eq. 5.22 and 5.25, and inserting the squared decay amplitude, we integrate over θℓ to obtain
the differential decay width. The differential decay width for B− → K−ℓ+ℓ− is found to be

dΓ(B− → K−ℓ+ℓ−)

dq2
=
G2

F|λt|2α2
em

√
λ

210π5m3
B

√
1−

4m2
ℓ

q2

[(
λ− λ

3

(
1− 4m2

ℓ

q2

))
|Ṽ |2

+ 8mℓλRe(Ṽ T̃ ∗) + 4m2
ℓq

2|Ã0|2 + 4mℓq
2Re(Ã0P̃

∗)

+

(
1− 4m2

ℓ

q2

)
2λ

3
|Ã+|2 + q2

(
1− 4m2

ℓ

q2

)
|S̃|2 + q2|P̃ |2

+
4λ

3

(
q2 + 8m2

ℓ

)
|T̃ |2

]
, (5.26)
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with

Ṽ ≡ Ṽ (q2) = (C7 + C7′)
2mb

mB +mK
fT (q

2) + (C9 + C9′)f+(q2) ,

Ã+ ≡ Ã+(q
2) = (C10 + C10′)f+(q2) ,

Ã0 ≡ Ã0(q
2) = (C10 + C10′)

m2
B −m2

K

q2
f0(q

2) ,

S̃ ≡ S̃(q2) = (CS + CS′)
m2
B −m2

K

mb −ms
f0(q

2) ,

P̃ ≡ P̃ (q2) = (CP + CP ′)
m2
B −m2

K

mb −ms
f0(q

2) ,

T̃ ≡ T̃ (q2) = (CT + CT ′)
1

mB +mK
fT (q

2) . (5.27)

By setting ms, CT , and all primed Wilson coefficients to zero, one can check that the result in Eq. 5.26 agrees
with the result found by Krüger and Hiller in [57].

5.1.7 Form factors

We will use the form factors for the B → K transitions determined in [126]. The form factors are parame-
terised as

fi(q
2) =

1

1− q2/m2
R,fi

2∑
k=0

α
(fi)
k (z(q2)− z(0))k , (5.28)

where

z(q2) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (5.29)

t± = (mB ±mK)2 , (5.30)

t0 = (mB +mK) · (
√
mB −

√
mK)2 . (5.31)

mR,fi denotes the mass of the sub-threshold resonances. The relevant values of mR,fi for this thesis are given
in Table 5.2. The form factor parameters α(fi)

k are taken from [126]. These have been determined using the
combined results from LCSRs at small q2 values and from lattice QCD at large q2 values. The values used
in this thesis are presented in Table 5.3.

To determine the error on any function Ψ originating from the form factor parameters α(fi)
k , we employ

the following error propagation formula [128]:

σ2(Ψ) =
∑
k,l,i,j

∂Ψ(fi)

∂αik
cov(αik, α

i
l)
∂Ψ(fi)

∂αjl
, (5.32)

where i, j ∈ {0,+, T} is the form factor index and k, l ∈ {0, 1, 2} label the parameters in the z-series
expansion of the form factors. The covariance cov(αik, α

i
l) is related to the correlation corr(αik, α

i
l) between

two parameters through the relation cov(αik, α
i
l) = corr(αik, α

i
l)σ(α

i
k)σ(α

i
l). The correlations used can be

found in [126].

Using the parameterisation in Eq. 5.28, the error propagation formula in Eq. 5.32, and the form factor
parameter values determined in [126], we can determine the relevant form factors for the B → K
transition. These form factors are shown in Fig. 5.3 as a function of q2.
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Form factor mR,fi

f0 5.630 GeV
fT 5.412 GeV
f+ 5.412 GeV

Table 5.2: The resonance mass parameter mR,fi for the different B → K form factors, which
appear in the parametrisation in Eq. 5.28 [126].

f0 fT f+
α0 = 0.299± 0.026 α0 = 0.329± 0.028

α1 = 0.195± 0.168 α1 = −0.774± 0.150 α1 = −0.867± 0.138
α2 = −0.446± 0.409 α2 = 0.010± 0.872 α2 = 0.006± 0.751

Table 5.3: The form factor parameters determined using the combined results of LCSRs and
lattice QCD taken from [126]. Since f0(0) = f+(0), we have α(f0)

0 = α
(f+)
0 .

(a) f+
BK(q2) (b) fT

BK(q2)

(c) f0
BK(q2)

Figure 5.3: The form factors for the B → K transition as a function of q2 determined using the
results from [126]. No error on mB or mK was assumed. The errors originating from the form
factor parameters α(fi)

k have been incorporated for these plots. The shaded areas represent the
1σ probability envelopes. These plots agree with the results in [126].
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5.1.8 SM prediction for B− → K−ℓ+ℓ−

Using the form factors obtained from [126], we can determine the SM prediction for the differential
branching fraction of B− → K−ℓ+ℓ− ignoring hadronic long-distance contributions (which will be
discussed in Section 5.1.9). In the SM, the only non-zero Wilson coefficients are C7, C9, and C10. We use
the SM values for the Wilson coefficients determined in [129]. The SM Wilson coefficients have been
determined at a matching scale of µ0 = 2MW and run down to µb = 4.8 GeV ≈ mb [129] at
Next-to-Next-to-Leading Order (NNLO). For the Wilson coefficient C7, we use its effective version Ceff

7 .
This effective Wilson coefficient includes contributions from C1−6 corresponding to the four-quark operators
O1−6, which can mimic a contribution to the b→ sγ process described by O7. The definition of the
four-quark operators O1−6 and a more detailed discussion of the effective Wilson coefficient Ceff

7 can be
found in [130]. The masses of the bottom quark mb and the strange quark ms have been taken from [92]
and [121] respectively. They are determined at the bottom quark mass scale using the MS scheme, i.e. the
modified minimal subtraction scheme. This renormalisation scheme absorbs the divergencies and a
universal constant that always appears in Feynman diagrams into the counter term needed for
renormalisation. The inverse of the electromagnetic fine structure constant 1/αem is also taken at the
bottom quark mass scale and is also determined in the MS scheme [131]. The running of the Fermi
coupling constant GF is negligible for our purposes. The values used for the SM predictions are presented
in Table 5.4. For any parameter with asymmetric errors, i.e. X = x

+σ+

−σ−
, the confidence interval is

symmetrised using the largest of the two errors, i.e. X = x± max{σ+, σ−}.

The SM prediction for the differential decay width of B− → K−µ+µ− excluding hadronic long-distance
effects is presented in Fig. 5.4.

Parameter Value Source and notes
mµ 105.6583745± 0.0000024 MeV [92]
GF 1.1663787(6) · 10−5 GeV−2 [92] The running of GF is negligible.
|Vts| 0.03978+0.00082

−0.00060 [92] Taken from the fit for the
magnitude of the CKM elements.

|Vtb| 0.999172+0.000024
−0.000035 [92] Taken from the fit for the

magnitude of the CKM elements.
1/αem 132.138± 0.0368 [131] µ = mb, MS scheme.
mB 5.27934± 0.00012 GeV [92]
mK 0.493677± 0.000013 GeV [92]
mb 4.18+0.03

−0.02 GeV [92] µ = mb, MS scheme.
ms 0.078± 0.007 GeV [121] µ = mb, MS scheme.
τB (1.638± 0.004) · 10−12 s [92]
C7 = Ceff

7 -0.2923 [129] µ = 4.8 GeV, NNLO.
C9 4.0749 [129] µ = 4.8 GeV, NNLO.
C10 -4.3085 [129] µ = 4.8 GeV, NNLO.
Ci 0 i ∈ {7′, 9′, 10′, S, S′, P, P ′, T, T ′}

Table 5.4: The values of the different parameters used for the SM predictions, excluding the
form factor parameters.
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Figure 5.4: The SM branching fraction of the B− → K−µ+µ− decay as a function of q2 ∈
[4m2

µ, (mB − mK)2]. The shaded area denotes the 1σ probability envelope arising from the
uncertainties in the form factors and the parameters in Table 5.4. The uncertainties on the
branching fraction are dominated by the form factor uncertainties. No hadronic long-distance
effects have been included in this figure. The determination of the uncertainties is described in
Section 5.1.10.
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5.1.9 Hadronic long-distance effects

The B → Kℓ+ℓ− decay can proceed through an intermediate vector meson V which subsequently decays in
the dilepton pair, i.e. B → K(V →)ℓ+ℓ−. In order to make precise predictions, these need to be accounted
for in the differential decay width. Moreover, these contributions can become very large in the q2-region near
the vector meson resonance peak (q2 ≈ m2

V ), where the vector meson can become on-shell. These hadronic
long-distance effects mimic a contribution to the Wilson coefficient C9.

In order to include these resonances in B → Kµ+µ−, we employ the model constructed by LHCb [132].
Since vector resonances mimic a contribution to C9, we introduce the following substitution:

C9 → C9 + Y (q2) , (5.33)

where

Y (q2) =
∑
j

ηje
iδjAres

j (q2) , (5.34)

where the index j labels the vector meson resonances, ηj is the magnitude of the resonance amplitude, and
δj is the phase relative to C9 (in [132], LHCb assumes that C9 is real). The q2-dependence is encoded in the
functions Ares

j (q2). The resonances included for B → Kµ+µ− are ω, ρ0, ϕ, J/ψ, ψ(2S), ψ(3770), ψ(4040),
ψ(4160) and ψ(4415)1. Contributions from other resonances, hadronic continuum states and weak annihila-
tion are ignored in this model. Weak annihilation contributions are caused by Feynman diagram topologies
where the incoming bq̄ pair annihilates into a W boson, giving away an infinitesimal amount of momentum
through soft gluon radiation [133]. Examples of non-annihilating topologies and weak annihilation topologies
are shown in Fig. 5.5. Hadronic continuum states are hadronic resonances along the q2-spectrum. It refers
to a continuum of increasingly heavy meson states.

Figure 5.5: Examples of a) non-annihilating topologies; b) weak annihilation diagrams. Adapted
from [133].

For all resonances except ψ(3770), the Ares
j (q2) are relativistic Breit-Wigner functions:

Ares
j (q2) =

m0jΓ0j

(m2
0j

− q2)− im0jΓj(q
2)
, (5.35)

where m0j is the pole mass of the vector resonance, and Γ0j is the decay width of the vector resonance.
Furthermore, Γj(q2) is given by

Γj(q
2) =

p

p0j

m0j√
q2

Γ0j , (5.36)

1The valence-quark content can be found in Appendix A.
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where p is the momentum of the muons in the dilepton centre-of-mass frame evaluated at q, and p0j is the
momentum evaluated at the mass of the resonance m0j .

For the ψ(3770) resonance, we modify Γ(q2) in order to account for the open charm threshold. Charm
is said to be ‘open’ when a meson has a nonzero charm number, i.e. the number of charm quarks does not
equal the number of anticharm quarks. The open charm threshold refers to the lowest value of q2 needed to
generate an open charm, which consists of two D0 mesons. To incorporate this in the long-distance model,
the resonance of ψ(3770) is described by a Flatté function defined as

Γψ(3770)(q
2) =

p

p0ψ(3770)

m0ψ(3770)√
q2

[
Γ1 + Γ2

√
1− 4m2

D/q
2

1− 4m2
D/m

2
0ψ(3770)

]
, (5.37)

where mD is the mass of the D0 meson. Furthermore, we use Γ1 = 0.3 MeV and Γ2 = 27 MeV [132].

In the dilepton centre-of-mass frame, we can write the relevant momenta for the long-distance model as

p =

√
q2

2

√
1− 4m2

ℓ/q
2 , (5.38)

p0j =
m0j

2

√
1− 4m2

ℓ/m
2
0j
. (5.39)

Finally, in order to extract the magnitudes ηj and phases δj from the branching fractions given in [132], the
following relation is required:

Bj = τB
G2

Fα
2
em|λt|2

128π5

(mB−mK)2∫
4m2

µ

dq2|k|3
[
β − 1

3
β3

]
|f+(q2)|2|ηj |2|Ares

j (q2)|2 , (5.40)

where β and |k| are defined as

β2 = 1−
4m2

µ

q2
, (5.41)

|k| =
√
λ

2mB
. (5.42)

Using the magnitudes and phases extracted from [132] for the B → Kµ+µ− decay, the values in Table
5.4, and the vector resonance masses and decay widths given in Appendix A, the function Y (q2) can be
determined. However, in the determination of the phases of the resonances, there remains an ambiguity in
the signs of the phases of the J/ψ and ψ(2S) resonances [132]. This gives rise to four possible branches of
solutions for the magnitudes and phases of the resonances. These solutions will be labelled according to the
signs of the phases of the J/ψ and ψ(2S) resonances. The absolute value of Y (q2), the argument of Y (q2),
and Y (q2) in the complex plane are presented as functions of q2 in Figures 5.6, 5.7, and 5.8 respectively.

Using this long-distance model, we can determine the differential branching fraction of B− → K−µ+µ−,
which is presented in Fig. 5.9 for two scenarios: the SM prediction and a NP scenario. This NP scenario
is characterised by δC9 = −δC10 = −0.48 − 0.7i (the NP benchmark point in [134]), where Ci ≡ CSM

i + δCi.
Fig. 5.9 also shows which vector resonances contribute in which q2-ranges. In the figure, we see that the
vector-resonance contributions alter the differential decay width significantly. Therefore, these need to be
taken into account when studying the B → Kµ+µ− decay near the resonance q2-regions. Alternatively, one
can reduce effects and uncertainties from the long-distance contributions, by restricting to q2-regions without
resonances. Furthermore, this figure shows an example of how NP contributions to C9,10 may reduce the
differential branching fraction of B− → K−µ+µ−.
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Figure 5.6: The absolute value of the function Y (q2) modelling the hadronic long-distance
effects in B → Kµ+µ−. The four colours represent the different solution branches of the LHCb
measurements [132].

Figure 5.7: The argument of the function Y (q2) modelling the hadronic long-distance effects
in B → Kµ+µ−. The four colours represent the different solution branches of the LHCb
measurements [132].
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Figure 5.8: The function Y (q2) modelling the hadronic long-distance effects in B → Kµ+µ−,
shown in the complex plane for q2 ∈ [0.1, 25] [132]. For this figure, the J/ψ neg / ψ(2S) neg
solution branch was used.

Figure 5.9: The branching fraction for the B− → K−µ+µ− decay as a function of q2 ∈
[4m2

µ, (mB −mK)2] including hadronic long-distance contributions. The different vector meson
resonances have been indicated. For this figure, the J/ψ neg / ψ(2S) neg solution branch was
used. The branching fraction is determined for SM values for the Wilson coefficients and a NP
scenario where δC9 = −δC10 = −0.48− 0.7i.
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5.1.10 Error propagation

Since the expression for the differential decay width for B → Kℓ+ℓ− in Eq. 5.26 contains absolute values
and real parts of (possibly) complex parameters, the usual error propagation formula in Eq. 5.32 cannot be
applied. This is due to the fact that the functions |.| and Re(.) are nowhere complex differentiable since they
do not satisfy the Cauchy-Riemann equations. Furthermore, we need to account for the uncertainties that
arise from the fact that we do not know which of the four branches of the long-distance model of the LHCb
is the true solution.

Therefore, a Monte Carlo approach is used in this thesis from this point onward to calculate the 1σ confidence
intervals for all calculated quantities. The strategy for a quantity Ψ can be summarised as follows:

1. The mean vector of all input parameters µ⃗ is defined.

2. The covariance matrix Σ of all input parameters is defined, assuming all parameters are distributed
according to Gaussian distributions. The only correlated parameters are the form factor parameters
α
(fi)
k . All other parameters are assumed to be uncorrelated.

3. Values for the input parameters x⃗i are sampled from the multivariate normal distribution N (µ⃗,Σ).
Unless specified differently, 1000 samples are used (i ∈ {1, ..., 1000}). When relevant for the determi-
nation of ψ, one of the four branches of the long-distance model is chosen randomly for every sample
x⃗i.

4. The quantity Ψi is calculated for every sample x⃗i.

5. The mean and standard deviation of the samples Ψi is determined, assuming Ψ is distributed according
to a Gaussian distribution.

5.2 The leptonic decay B0
s → ℓℓ

In the SM, the decay B0
s → ℓ+ℓ− only occurs at the loop level, i.e. there are no tree-level Feynman diagrams

that facilitate this decay. Some of the SM Feynman diagrams for this decay are presented in Fig. 5.10.

5.2.1 Effective Hamiltonian

We use the same effective Hamiltonian for the b → sℓ+ℓ− transitions from Eq. 5.1, employing the same
assumptions. Consequently, the effective Hamiltonian can be written as

Heff = −4GF√
2
λt
∑
i∈I

CiOi . (5.43)

The relevant operators for B0
s → ℓ+ℓ− are I ∈ {10ℓ, 10′ℓ, P ℓ, P ′ℓ, Sℓ, S′ℓ}, which are given in Eq. 5.2.

Similar to the calculation for B− → K−ℓ+ℓ−, the decay amplitude of B0
s → ℓ+ℓ− can then be written

as

A(B0
s (p) → ℓ+(p1)ℓ

−(p2)) = −4GF√
2
λt
∑
i∈I

Ci⟨ℓℓ|Oi|B⟩

= −4GF√
2
λt
∑
i∈I

Ciκi⟨0|s̄Γib|B(p)⟩ℓ̄Γ′
iℓ , (5.44)

where we have written the operators as Oi = κi[s̄Γib][ℓ̄Γ
′
iℓ].
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Figure 5.10: One-loop Feynman diagrams for the decay B0
s → ℓ+ℓ− in the SM. There are no

tree-level diagrams that facilitate this decay in the SM. Diagrams involving the Higgs boson
are not shown, due to the tiny Yukawa couplings of the Higgs boson to the leptons.

5.2.2 Hadronic matrix elements

By applying the ‘hand-wavy’ argument introduced in Section 5.1.2, we can determine which hadronic matrix
elements of the form ⟨0|s̄Γb|B0

s (p)⟩ are non-zero. The only object available with a Lorentz index is pµ
and therefore the hadronic matrix element is either proportional to a constant A or to pµ. This can be
summarised as

⟨ 0︸︷︷︸
P :+1

| s̄ΓXb︸ ︷︷ ︸
P :X

|B0
s (p)︸ ︷︷ ︸
P :−1

⟩

︸ ︷︷ ︸
P :−X

= Apµ︸︷︷︸
P :(−1)µ

(5.45)

⟨ 0︸︷︷︸
P :+1

| s̄ΓY b︸ ︷︷ ︸
P :Y

|B0
s (p)︸ ︷︷ ︸
P :−1

⟩

︸ ︷︷ ︸
P :−Y

= A︸︷︷︸
P :+1

(5.46)

From Eq. 5.45, we conclude that the parity eigenvalue of the bilinear s̄ΓXb must be PX = −(−1)µ such that
the hadronic matrix element is non-zero. From Table 5.1, we see that this corresponds to ΓX = γµγ5. From
Eq. 5.46, we conclude that the parity eigenvalue of s̄ΓY b must be PY = −1, corresponding to ΓY = γ5. We
employ the parametrisation of the non-zero hadronic matrix elements from [135]:

⟨0|s̄γµγ5b|B0
s (p)⟩ = ifB0

s
pµ , (5.47)

⟨0|s̄γ5b|B0
s (p)⟩ = −ifB0

s

m2
B0
s

mb +ms
, (5.48)

where fB0
s

is the decay constant of B0
s which needs to be determined through non-perturbative methods.
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5.2.3 Decay amplitude

Inserting the hadronic matrix elements of Eq. 5.47 and 5.48 in the decay amplitude of Eq. 5.44, we find the
decay amplitude of B0

s → ℓ+ℓ− to be

A(B0
s (p) → ℓ+(p1)ℓ

−(p2)) =− i
GF

2
√
2
λt
αem

π
fB0

s

[
Z10(ℓ̄/pγ

5ℓ)

+ZP (ℓ̄γ
5ℓ) + ZS(ℓ̄ℓ)

]
, (5.49)

with

Z10 = C10′ − C10 , (5.50)

ZP = (CP ′ − CP )
m2
B0
s

mb +ms
, (5.51)

ZS = (CS′ − CS)
m2
B0
s

mb +ms
. (5.52)

5.2.4 Kinematics and phase space element

After squaring the decay amplitude in Eq. 5.49, an expression is found as a function of the B0
s momentum

pµ and the lepton momenta pµ1,2. From four-momentum conservation, we find that, in the B0
s rest frame,

these momenta equal

pµ = (mB0
s
, 0, 0, 0) , (5.53)

pµ1,2 =

mB0
s

2
, 0, 0,±

√
m2
B0
s

4
−m2

ℓ

 . (5.54)

The decay width can be determined through

dΓ =
S(2π)4|Ā|2

2mB0
s

dΦ2(p; p1, p2) , (5.55)

where the symmetry factor S equals unity, since there are no identical particles present in the decay. The
Lorentz-invariant phase space element equals

dΦ2(p; p1, p2) = δ4(p− p1 − p2)
d3p1

(2π)32E1

d3p2
(2π)32E2

, (5.56)

which after evaluating the integrals becomes

dΦ2(p; p1, p2) = − 1

2(2π)5mB0
s

√
m2
B0
s

4
−m2

ℓ . (5.57)

5.2.5 Decay width

Combining everything in Eq. 5.55, we find for the decay width for B0
s → ℓ+ℓ−:
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Γ(B0
s → ℓ+ℓ−) =

G2
F|λt|2α2

emmB0
s
f2B0

s

64π3

√
1−

4m2
ℓ

m2
B0
s

[
4m2

ℓ |Z10|2

+4mℓRe(Z10Z
∗
P ) + |ZP |2 +

(
1− 4m2

ℓ

m2
B0
s

)
|ZS |2

]
, (5.58)

where the Zi are defined in Eqs. 5.50, 5.51, and 5.52. This expression agrees with the result found by Bobeth,
Ewerth, Krüger and Urban in [136]. The differences found in ZP and ZS arise due to different conventions in
defining the Wilson coefficients CP (′),S(′) . The Wilson coefficients in [136] appear with a factor of mb or ms,
since the dimensionality of CP (′),S(′) differs from those of the other Wilson coefficients. By including the quark
masses, all Wilson coefficients have the same dimensionality. We will employ the convention without the
quark masses, in order to easily combine results from B0

s → ℓ+ℓ− decays with those of the B− → K−ℓ+ℓ−

decays.

5.2.6 Mixing effects

Due to B0
s -B̄0

s mixing introduced in Section 3.3.1, the following conversion needs to be made to compare
theoretical branching fractions with experimental ones [137]:

B(B0
s → ℓ+ℓ−)theo =

(
1− y2s

1 +Aℓℓ
∆Γs

ys

)
B̄(B0

s → ℓ+ℓ−) , (5.59)

where

B(B0
s → ℓ+ℓ−)theo =

1

2
(B(B̄0

s → ℓ+ℓ−) + B(B0
s → ℓ+ℓ−)) , (5.60)

is the CP-averaged theoretical branching fraction and B̄ is the time-integrated branching fraction. The CP
conjugate theoretical branching fraction can be determined by changing the signs of all weak phases in Eq.
5.58, i.e. Ci → C∗

i . The parameter ys is equals [112]

ys =
∆Γs
2Γs

= 0.062± 0.004 , (5.61)

where ∆Γs is the difference in decay widths between B0
s and B̄0

s and Γs is the total decay width.

We can reparameterise the decay width using [137]

P sℓℓ = |P sℓℓ|eiϕ
ℓℓ
Ps ≡ Cs,ℓℓ10 − Cs,ℓℓ

′

10

CSM
10

+
m2
Bs

2mℓ

(
1

mb +ms

)[
Cs,ℓℓP − Cs,ℓℓ

′

P

CSM
10

]
, (5.62)

Ssℓℓ = |Ssℓℓ|eiϕ
ℓℓ
Ss ≡

√
1−

4m2
ℓ

m2
Bs

m2
Bs

2mℓ

(
1

mb +ms

)[
Cs,ℓℓS − Cs,ℓℓ

′

S

CSM
10

]
. (5.63)

The decay width for B0
s → ℓ+ℓ− then becomes

Γ(B0
s → ℓ+ℓ−) =

G2
F|λt|2α2

emmB0
s
f2B0

s

64π3

√
1−

4m2
ℓ

m2
B0
s

4m2
ℓ(CSM

10 )2
[
|P sℓℓ|2 + |Ssℓℓ|2

]
. (5.64)

Furthermore, we can write Aℓℓ
∆Γs

as [137]

Aℓℓ
∆Γs =

|P sℓℓ|2 cos (2ϕℓℓPs − ϕNP
s )− |Ssℓℓ|2 cos (2ϕℓℓSs − ϕNP

s )

|P sℓℓ|2 + |Ssℓℓ|2
. (5.65)

Notably, Aℓℓ
∆Γs

equals unity in the SM.



6 | τ analysis

In the previous chapter, we derived expressions for (semi)leptonic B-meson decays with a generic charged
lepton ℓ in the final state. Moreover, we introduced a model for the hadronic long-distance contributions in
B → Kµ+µ−. In this chapter, we will shift the focus to decays with τ leptons in the final state. The τ lepton
is the third-generation charged lepton, that is the heavier equivalent of the electron or muon. The discovery
of the τ lepton was an important milestone in physics, since it was the first third-generation fermion to be
discovered. For its discovery, M. Perl received the Nobel Prize in physics in 1995 [58, 59]. The discovery
confirmed the existence of a third-generation of fermions, allowing for CP violation through the CKM matrix.

τ leptons are interesting due to their very large mass, namely mτ = 1776.86 ± 0.12 MeV [92]. While
the muon is approximately 200 times heavier than the electron, the τ lepton is approximately 3500 times
heavier than the electron. Furthermore, the mass of the τ lepton is approximately a third of the B±-meson
mass, making the approximation mℓ ≈ 0 often used for electrons and muons in these decays inapplicable.

Besides possible interesting effects due to the large mass of the τ lepton, B-meson decays to final states
with τ leptons are important for the study of NP models. Namely, many models that try to simultaneously
explain the B-anomalies, like the apparent LFU violation in RK and the discrepancies between experiment
and theory in decays based on b→ sµ+µ− transitions, predict strong couplings to third-generation fermions
and large enhancements in b → sτ+τ− transitions [50–57]. The models often also include an underlying
explanation for the structure of the CKM matrix. It is therefore important to study the b→ sτ+τ− decays
in order to constrain these NP models.

Unfortunately, τ leptons are notoriously hard to measure experimentally. Due to their short lifetime and
many different decay modes, the τ leptons are very hard to detect precisely [60]. Due to its short lifetime,
the τ lepton decays before it travels through a detector like electrons and muons. Furthermore, many other
particles give rise to signals similar to those of the τ lepton. The τ decay can be leptonic with an electron
or muon in the final state accompanied by a pair of neutrinos. It is hard to distinguish these electrons and
muons from those originating from other processes. Due to its large mass, the τ lepton can also decay to
hadrons. These decays produce hadronic jets which are difficult to distinguish from those originating from a
quark. Especially in hadron colliders, the QCD background is strong, making it hard to identify which jets
belong to τ decays. In leptonic colliders, like the KEK e+e− collider where the Belle experiment is located,
this QCD background is much smaller and it is easier to distinguish between hadronic jets originating from
τ leptons and quarks.

In this chapter, we will first investigate the semileptonic B → Kτ+τ− decay. We will carefully look at
the hadronic long-distance contributions from vector resonances in these decays and at how NP is linked
to this decay mode. Furthermore, we will look at the interplay with the leptonic B0

s → τ+τ− decay. We
will investigate several lepton flavour universality, CP violation, and angular observables and how they are
related to the improved SM predictions and NP in b → sτ+τ− decays. Moreover, we will investigate one
specific NP model based on the U1 vector leptoquark and see how it affects the tauonic B-meson decays.

51
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6.1 B− → K−τ+τ−

We define the binned branching fraction for B− → K−τ+τ− as

BK− [q2min, q
2
max] ≡ τB

q2max∫
q2min

dq2
dΓ(B− → K−τ+τ−)

dq2
. (6.1)

Using the expression for the differential decay width in Eq. 5.26, the values for the different parameters in
Table 5.4, mass of the τ lepton (mτ = 1776.86± 0.12 MeV [92]), we can determine the SM prediction for the
branching fraction of B− → K−τ+τ− over the entire kinematically allowed q2-range:

BSM,NLD
K− [4m2

τ , (mB −mK)2] = (1.52± 0.17) · 10−7 , (6.2)

where the label ‘NLD’ (No Long Distance) indicates that the hadronic long-distance effects have been ne-
glected, that is Y (q2) = 0. Furthermore, the SM differential decay width of B− → K−τ+τ− is shown as a
function of q2 in Fig. 6.1.

The size of the theoretical uncertainties is dominated by the form factors (FF) which can be seen when
splitting the contributions of the different parameters:

BSM,NLD
K− [4m2

τ , (mB −mK)2] = (1.52± 0.15 (FF) ± 0.06 (other param.)) · 10−7 . (6.3)

Notably, the SM prediction in Eq. 6.2 is four orders of magnitude smaller the current BaBar upper limit
of [138]

B(B+ → K+τ+τ−) ≤ 2.25 · 10−3 , CL = 90% . (6.4)

Figure 6.1: The SM prediction for the differential branching fraction of B− → K−τ+τ−,
ignoring long-distance effects. The shaded area indicates the 1σ theoretical uncertainty. These
are dominated by the uncertainties of the form factors and have been determined using the
Monte Carlo method described in Section 5.1.10.
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6.1.1 Long-distance model for B → Kτ+τ−

The model describing the hadronic long-distance effects introduced in Section 5.1.9 taken from [132] (here-
after referred to as the LHCb model) contains parameters that are not necessarily universal for all three
charged lepton flavours. These include the mass of the lepton, the magnitudes of the resonances ηj , and the
phases of the resonances δj . To adapt the model to the other lepton flavours, we naturally change the mass
of the lepton to the flavour in question, but it is initially unclear what should be done with the magnitudes
and phases. The determination of their numerical values in [132] is namely specific to B → Kµ+µ−.

In order to investigate how the long-distance model should be adjusted to apply it to B → Kτ+τ− de-
cays, we will investigate a similar long-distance model described in [139] (hereafter referred to as the BCIK
model). In the BCIK model, the long-distance effects are encoded in the function:

Ỹ (q2) =
16π2

f+(q2)
·


∑
j

η̃je
iδ̃j q

2

m2
j
Ãres
j (q2) j ∈ {J/ψ, ψ(2S), ...}∑

j

η̃je
iδ̃j Ãres

j (q2) j ∈ {ρ, ω, ϕ}
, (6.5)

with

Ãres
j (q2) =

mjΓj
m2
j − q2 − imjΓj

∀j . (6.6)

We use a tilde to denote functions and parameters that correspond to the BCIK model, while the absence of
a tilde corresponds to the LHCb model or to functions or parameters that are equal in both models. Several
differences between the LHCb and BCIK model can be identified. Firstly, the BCIK model includes a factor
of 16π2/f+(q

2) in its definition of Ỹ (q2). Secondly, the BCIK model does not include the running width
Γj(q

2) in its definition of Ãres
j (q2) in Eq. 6.6. In the BCIK model, dispersion relations subtracted at q2 = 0

are used for the resonances j ∈ {J/ψ, ψ(2S), ...}, resulting in the factor of q2/m2
j in the definition of Ỹ (q2).

For the light resonances j ∈ {ρ, ω, ϕ} and in the LHCb model, unsubtracted dispersion relations are used
which is equivalent to assuming that the long-distance contributions of light quarks vanish for large q2 [139].
Lastly, the BCIK model does not account for the open charm threshold and therefore does not treat ψ(3770)
differently from the other resonances like in the LHCb model.

Similar to the LHCb model, the magnitudes for the BCIK model can be determined through the follow-
ing relation [139]:

B(B− → K−Vj) · B(Vj → ℓ+ℓ−) ≈ τB
G2

Fα
2
em|VtbV ∗

ts|2

1024π5m3
B

(mB−mK)2∫
4m2

τ

dq2λ3/2(m2
B ,m

2
K , q

2)β(q2)·

·
(
1− β2(q2)

3

)
(16π2)2|Ãres

j (q2)|2η̃2j ·

 q2

m2
j

∣∣∣∣λ(s)
c

λ
(s)
t

∣∣∣∣2 Vj ∈ {J/ψ, ψ(2S), ...}

1 Vj ∈ {ρ, ω, ϕ}
, (6.7)

where Vj is the intermediate meson, λ(s)i = V ∗
isVib, λ(x, y, z) is the Källén function, and β(q2) =

√
1− 4m2

ℓ

q2 .
Eq. 6.7 can be used to determine the magnitudes of the resonances for all three charged lepton flavours
using data on the branching fractions B(B− → K−Vj) and B(Vj → ℓ+ℓ−). Of the nine resonances were are
interested in listed in Section 5.1.9, only ψ(2S), ψ(3770), ψ(4040), ψ(4160) and ψ(4415) are relevant for the
decay widths of all three lepton flavours. However, only for ψ(2S) all four necessary branching fractions,
needed to determine the magnitudes ηj for all three charged leptons, have been measured experimentally
unfortunately. Therefore, we will use the ψ(2S) meson to compare the magnitudes of the vector resonance
in the long-distance model for the three different lepton flavours.
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The relevant branching fractions involving ψ(2S) needed for this comparison are [92]

B(B− → K−ψ(2S)) = (6.24± 0.2) · 10−4 , (6.8)

B(ψ(2S) → e+e−) = (7.93± 0.17) · 10−3 , (6.9)

B(ψ(2S) → µ+µ−) = (8.0± 0.6) · 10−3 , (6.10)

B(ψ(2S) → τ+τ−) = (3.1± 0.4) · 10−3 . (6.11)

Using these experimental data and Eq. 6.7, we find for the magnitude of the ψ(2S) resonance in the BCIK
model:

η̃ψ(2S) =

7.26± 0.14 ℓ = e
7.3± 0.3 ℓ = µ
7.2± 0.5 ℓ = τ

(6.12)

Notably, these magnitudes are very similar for all three lepton flavours, with the main difference being the
increasing uncertainty with increasing lepton mass. This is mainly caused by the larger experimental uncer-
tainties on the branching fraction of ψ(2S) → ℓ+ℓ− for the muon and τ lepton.

Based on the similarity of the magnitudes in Eq. 6.12, we assume the following for the modelling of the
hadronic long-distance effects in B → Kτ+τ−. We base our model on the LHCb model from [132], which
has been discussed in Section 5.1.9. Firstly, we assume that the magnitudes of the vector resonances for
B → Kτ+τ− are equal to the magnitudes extracted from [132], that is the magnitudes for B → Kµ+µ−.
This assumption is based on the result in Eq. 6.12. To account for any slight differences in the actual mag-
nitudes, we double the uncertainties on the muonic magnitudes extracted from [132]. The magnitudes that
will be used for the long-distance model for the semileptonic decay involving τ are shown in Table 6.1.

Unfortunately, there is no estimate to be made for the phases δj of the resonances for B → Kτ+τ−,
since these need to be extracted from experimental data. Furthermore, there is no data available on these
phases for any resonance for all three charged leptons and therefore no comparison can be made. Therefore,
we will sample these phases randomly from [0, 2π) for the long-distance model for the B → Kτ+τ− decay1.

Resonance Calculated |ηj | for τ
ψ(2S) (1.35± 0.18) · 103
ψ(3770) 2.6± 1.2
ψ(4040) 0.8± 0.5
ψ(4160) 2.4± 0.8
ψ(4415) 1.5± 1.2

Table 6.1: The LHCb model magnitudes of the cc̄ resonances in B → Kτ+τ− decays. These
are determined from the results in [132] and the uncertainties are doubled to account for dif-
ferences between the decays involving µ or τ . The uncertainties have been determined using
the method described in Section 5.1.10, accounting for the four solution branches in [132]. The
same magnitudes will be used for B → Ke+e− decays.

6.1.2 SM predictions including long-distance contributions

Using the modified LHCb long-distance model described in the previous section, we can determine the
theoretical SM predictions for the branching fraction of B− → K−τ+τ− decay including hadronic long-
distance contributions for the entire kinematically allowed q2-range:

BSM,LD
K− [4m2

τ , (mB −mK)2] = (2.0± 0.6) · 10−6 , (6.13)
1Similar arguments can be made for B → Ke+e− and therefore the same long-distance model will be applied for the

semileptonic decays involving e and involving τ , only changing the lepton mass.
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where the label ‘LD’ (Long Distance) indicates that the hadronic long-distance effects have been incorporated
through the function Y (q2). The theoretical uncertainties are dominated by the long-distance model (mainly
the magnitudes and phases of the vector resonances) and the form factors, which is visible when splitting
the contributions to the uncertainties:

BSM,LD
K− [4m2

τ , (mB −mK)2] =

(2.0± 0.55 (LD) ± 0.22 (FF) ± 0.09 (other param.)) · 10−6 . (6.14)

The differential branching fraction for B− → K−τ+τ− is shown in Fig. 6.2 as a function of q2. The shaded
area indicates the 1σ theoretical uncertainty and the purple line shows the differential branching fraction
where the phases of the vector resonances are taken to be equal to those of B → Kµ+µ− decay2.

Fig. 6.2 clearly shows that the main long-distance contribution originates from the ψ(2S) resonance. The
theoretical uncertainties are the largest in the q2 region around this resonance. Therefore, it is useful to look
at the binned branching fraction where this resonance is excluded:

BSM,LD
K− [14.18 GeV2, (mB −mK)2] = (1.41± 0.18) · 10−7 . (6.15)

This lower q2-bound is chosen to agree with the bins used in [140]. The NLD and LD branching fractions for

Figure 6.2: The SM prediction for the differential branching fraction of B− → K−τ+τ− in-
cluding hadronic long-distance effects. The shaded area indicates the 1σ uncertainty. These
are dominated by the uncertainties of magnitudes and phases in the long-distance model and
of the form factors. For the purple line, the phases δj of the long-distance model are set to the
values corresponding to the B → Kµµ decay. These are taken from the J/ψ neg / ψ(2S) neg
solution branch from Ref. [132].

the two q2-bins used are summarised in Table 6.2. Comparing the branching fractions in the [4m2
τ , (mB −

mK)2] q2-bin, we find that the LD result is one order of magnitude larger. Consequently, the LD result lies
three orders of magnitude below the BaBar upper bound in Eq. 6.4. This is summarised in Fig. 6.3. As
can be seen in the figure, the SM prediction with LD effects lies an order of magnitude higher than without,
improving our prospects of measuring this decay experimentally.

2Specifically, the phases are taken from the J/ψ neg / ψ(2S) neg solution branch in [132].
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q2-bin BSM
K−

NLD (Y (q2) = 0) LD (Y (q2) ̸= 0)
[4m2

τ , (mB −mK)2] 1.52(17) · 10−7 2.0(6) · 10−6

[14.18 GeV2, (mB −mK)2] 1.35(15) · 10−7 1.41(18) · 10−7

Table 6.2: SM predictions for the branching fraction of the B− → K−τ+τ− decay, determined
both including (LD) and excluding (NLD) hadronic long-distance effects. The lower bound of
14.18 GeV2 of the q2-bin is chosen to exclude the ψ(2S) resonance region, which has the largest
contribution of all resonances and contributes the most to the theoretical uncertainties.

Figure 6.3: The SM theoretical branching fraction predictions for B → Kτ+τ− including (LD)
and excluding (NLD) hadronic long-distance contributions compared to the experimental upper
bound reported by the BaBar collaboration [138]. The SM predictions are determined over the
entire kinematically allowed q2-range.

6.1.3 NP analysis

To analyse the NP behaviour, we split the SM and NP contributions to the branching fraction. After
normalising it to the SM branching fraction prediction, we find

BNLD
K− [q2min, q

2
max]

BSM,NLD
K− [q2min, q

2
max]

= 1 + ρℓ7|CNP
7ℓ + C7′ℓ|2 + ρℓ9|CNP

9ℓ + C9′ℓ|2 + ρℓ10|CNP
10ℓ + C10′ℓ|2

+ ρℓR7Re
[
CNP
7ℓ + C7′ℓ

]
+ ρℓR9Re

[
CNP
9ℓ + C9′ℓ

]
+ ρℓR10Re

[
CNP
10ℓ + C10′ℓ

]
+ ρℓS |CSℓ + CS′ℓ|2 + ρℓP |CPℓ + CP ′ℓ|2 + ρℓT |CTℓ + CT ′ℓ|2

+ ϕℓ10PRe [(C10ℓ + C10′ℓ)(C∗
Pℓ + C∗

P ′ℓ)] + ϕℓ7TRe [(C7ℓ + C7′ℓ)(C∗
Tℓ + C∗

T ′ℓ)]

+ ϕℓ9TRe [(C9ℓ + C9′ℓ)(C∗
Tℓ + C∗

T ′ℓ)] + ϕℓ79Re
[
(CNP

7ℓ + C7′ℓ)(CNP∗
9ℓ + C∗

9′ℓ)
]
, (6.16)

where CNP
i = Ci − CSM

i . The expressions for the parameters ρℓi and ϕℓij are given Appendix B.1. These
parameters do not depend on the values of NP Wilson coefficients and are therefore independent of the NP
model. They are dependent on the form factors which are the main source of the theoretical uncertainties
on these parameters.

The numerical values for these parameters for the three different charged lepton flavours are presented
in Table 6.3. Since these parameters do not depend on NP Wilson coefficients, the only difference between
the different charged leptons can occur as a result of the differences in their masses mℓ. Notably, almost no
difference is found between the parameters for electrons and muons, except for ϕℓ10P , ϕℓ7T , and ϕℓ9T . The
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integrands of these similar electronic and muonic parameters are either independent of lepton mass or the
lepton mass only appears squared in these integrands, most often appearing as a factor β ≡ 1− 4m2

ℓ

q2 . Since
the mass of both the electron and muon are small, no large differences can be found between most of the
electronic and muonic parameters. The same factor of β causes ϕτ79 and ρτi for i ∈ {7, 9, R7, R9, S} to be
smaller than their electronic and muonic counterparts.

e µ τ
ρℓ7 0.054(6) 0.054(6) 0.032(5)
ρℓ9 0.03107(17) 0.03102(16) 0.0182(12)
ρℓ10 0.03107(17) 0.03111(17) 0.0405(9)
ρℓR7 0.301(16) 0.301(16) 0.176(15)
ρℓR9 0.2294(6) 0.2290(6) 0.135(9)
ρℓR10 −0.2677(14) −0.2681(14) −0.349(8)
ρℓS 0.048(4) 0.048(4) 0.0168(6)
ρℓP 0.048(4) 0.048(4) 0.0558(19)
ρℓT 0.0138(17) 0.0139(17) 0.028(4)
ϕℓ10P 0.0000356(22) 0.0073(5) 0.0903(28)
ϕℓ7T 0.000039(4) 0.0081(9) 0.058(8)
ϕℓ9T 0.0000299(17) 0.0061(4) 0.044(4)
ϕℓ79 0.082(5) 0.082(5) 0.048(4)

Table 6.3: Numerical values for the parameters in Eq. 6.16 for the three different charged lep-
tons. These have been determined for q2 ∈ [4m2

ℓ , (mB −mK)2], that is the entire kinematically
allowed q2-range. The expressions for these parameters are included in Appendix B.1.

Several of the parameters in Table 6.3 are larger for the τ lepton compared to the lighter charged leptons.
These are:

• ρℓ10. The second term in its integrand is proportional to m2
ℓ , causing its increased size for the heavier

τ lepton compared to the other charged leptons. Therefore, ρℓR10 also is larger since it is equal to ρℓ10
multiplied by 2CSM

10 .

• ρℓP . Since the total branching fraction BSM,NLD
K− is smaller for τ compared to electrons and muons, the

relative contribution from the pseudoscalar Wilson coefficients is larger.

• ρℓT . The integrand of ρℓT contains a term proportional to m2
ℓ resulting in the larger size for ℓ = τ .

• ϕℓ10P , ϕℓ7T , and ϕℓ9T . The integrands of these parameters contain a factor of mℓ, causing both the
differences between the electronic and muonic parameters and the increased size for ℓ = τ .

The values in Table 6.3 show that the τ channel of B− → K−ℓ+ℓ− is more sensitive to NP in Ci for
i ∈ {10ℓ, 10′ℓ, P ℓ, P ′ℓ, T ℓ, T ′ℓ} compared to the electronic and muonic channels. Important to note here is
that NP need not be lepton flavour universal, i.e. Ciℓ need not be equal for all charged leptons ℓ. Consequently,
if NP would have small couplings to τ leptons compared to electrons and muons, these enhancements effects
in ρτi and ϕτij due to the large τ mass could possibly be cancelled by the small values of Ciτ .

To show the impact of the hadronic long-distance contributions in B → Kτ+τ−, Eq. 6.16 is modified by
adding the following terms which are normalised to the SM branching fraction prediction excluding long-
distance effects:

BLD
K− [q2min, q

2
max]

BSM,NLD
K− [q2min, q

2
max]

=
BNLD
K− [q2min, q

2
max]

BSM,NLD
K− [q2min, q

2
max]

+ ρℓY + ρℓRY 7Re
[
CNP
7ℓ + C7′ℓ

]
+ ρℓIY 7Im

[
CNP
7ℓ + C7′ℓ

]
+ ρℓRY 9Re

[
CNP
9ℓ + C9′ℓ

]
+ ρℓIY 9Im

[
CNP
9ℓ + C9′ℓ

]
+ ρℓRY TRe [CTℓ + CT ′ℓ] + ρℓIY T Im [CTℓ + CT ′ℓ] . (6.17)
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The expressions for these parameters are given in Appendix B.1. These new parameters are also not de-
pendent on the values of NP Wilson coefficients and therefore independent of the specifics of NP. However,
they are highly dependent on the long-distance model, that is Y (q2). Using the modified LHCb model we
constructed, we can determine the numerical values of these parameters. These are presented in Table 6.4.
Most notable is the large size of ρτY . The large size of ρτY is mainly caused by the ψ(2S) resonance. In Fig.
6.3, we see that the SM prediction including the hadronic long-distance model is one order of magnitude
larger than the SM prediction ignoring these effects and this is reflected in the large size of ρτY .

All integrands of the parameters in Table 6.4, except ρτY , are either proportional to Re
[
Y (q2)

]
or Im

[
Y (q2)

]
,

indicated by the subscripts R and I respectively. Since the modified LHCb long-distance model introduced
in Section 6.1.1 contains no predicted values for the phases δj of the resonances, but samples them randomly
from [0, 2π), the Monte Carlo method used to determine these parameters and their theoretical uncertainties
averages Re

[
Y (q2)

]
and Im

[
Y (q2)

]
out to zero. For this reason, we present these parameters as theoretical

1σ confidence intervals in Table 6.4.

Parameter Numerical value
ρτY 12± 4
ρτRY 7 [−0.021, 0.021]
ρτIY 7 [−0.021, 0.021]
ρτRY 9 [−0.016, 0.016]
ρτIY 9 [−0.016, 0.016]
ρτRY T [−0.020, 0.020]
ρτIY T [−0.020, 0.020]

Table 6.4: Numerical values for the parameters in Eq. 6.17. We employ the modified LHCb
long-distance model described in Section 6.1.1. The intervals given are the theoretical 1σ
confidence intervals. These have been determined for q2 ∈ [4m2

τ , (mB − mK)2], that is the
entire kinematically allowed q2-range. The expressions for these parameters are included in
Appendix B.1.

One of the goals of comparing theoretical branching fractions with experimental data is to constrain Wilson
coefficients. Using these constraints, NP models can be tested. By using the full theory of NP models,
expressions for Wilson coefficients can be found in terms of NP parameters and by combining those with the
constraints on the Wilson coefficients, one can constrain the NP parameters or even rule out NP scenarios.
Using Eqs. 5.26 and 6.1 with the modified LHCb long-distance model from Section 6.1.1, we can find con-
straints on the different Wilson coefficients using the BaBar upper limit on the branching fraction given in
Eq. 6.4. Assuming real Wilson coefficients and NP in only one Wilson coefficient and its primed counter-
part at a time, we find the constraints presented in Table 6.5. The constraints have been determined both
including (LD) and excluding (NLD) hadronic long-distance contributions. Since the theoretical branching
fraction predictions and experimental bounds are orders of magnitude apart, these constraints are very large.
This is clear when we compare these bounds to the SM values of the Wilson coefficients, which are namely
C7 ≈ 0.3 and C9 ≈ −C10 ≈ 4. Furthermore, we can also see that these constraints are very large when
comparing to similar constraints from B → Kµ+µ−. Namely, based on the experimental measurements of
B(B → Kµ+µ−) for q2 ∈ [15, 22] GeV2, a bound of Cµ,NP

9 ∈ [−8.68,−0.02] (CL = 95%) is found assuming
only NP in Cµ9 and setting all other Wilson coefficients to their SM values3. Comparing this to the bounds in
Table 6.5, we see that the bounds on the tauonic Wilson coefficients are very large. Improved experimental
bounds are needed to make more stringent and useful bounds on these Wilson coefficients. Moreover, due to
this current large difference between theory and experiment, the inclusion of hadronic long-distance effects
does not affect the constraints at the time.

3Determined by Anders Rehult, one of PhD students in our group.
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Wilson coefficients NLD LD
|Cτ7 + Cτ7′ | 7.9 · 102 8.0 · 102
|Cτ9 + Cτ9′ | 10 · 102 9.9 · 102
|Cτ10 + Cτ10′ | 6.8 · 102 6.8 · 102
|CτS + CτS′ | 11 · 102 11 · 102
|CτP + CτP ′ | 5.9 · 102 5.9 · 102
|CτT + CτT ′ | 7.9 · 102 7.9 · 102

Table 6.5: Constraints on the Wilson coefficients based on the BaBar upper limit on the branch-
ing fraction of B− → K−τ+τ−. For each bound, we assumed that NP only appears in the
Wilson coefficient and its primed counterpart corresponding to the bound in question. The
Wilson coefficients are assumed to be real. The limits have been determined with (LD) and
without (NLD) the inclusion of the modified LHCb long-distance model from Section 6.1.1.
The values given are CL = 95% upper bounds.

6.2 Interplay with B0
s → τ+τ−

By combining the expression for the decay width of B0
s → ℓ+ℓ− in Eq. 5.64 with the mean lifetime of the

B0
s -meson, we can determine the CP-averaged theoretical branching fraction (see Eq. 5.60) for this leptonic

decay. For the SM predictions, we use the values presented in Table 5.4 and the lepton masses presented in
Table 6.6. Moreover, the mean lifetime of the B0

s -meson is [92]

τB0
s
= (1.516± 0.006) · 10−12 s . (6.18)

Lepton Mass
e 0.51099895000(15) MeV
µ 105.6583755(23) MeV
τ 1776.86(12) MeV

Table 6.6: The masses of the different charged leptons [92].

Furthermore, we use the non-perturbative decay constant determined in [141] using lattice QCD, where they
report a value of

fB0
s
= 0.228± 0.010 GeV . (6.19)

Using these numerical values, we can determine the theoretical SM predictions for the branching fractions
of these leptonic decays for the three different leptons:

B(B0
s → e+e−)SMtheo = (7.8± 0.7) · 10−14 , (6.20)

B(B0
s → µ+µ−)SMtheo = (3.3± 0.3) · 10−9 , (6.21)

B(B0
s → τ+τ−)SMtheo = (7.0± 0.7) · 10−7 , (6.22)

where the uncertainties have been determined by the Monte Carlo sampling method described in Section
5.1.10. The theoretical uncertainties are dominated by the decay constant, as seen when we split the
contributions to the uncertainties to B(B0

s → τ+τ−)SMtheo as

B(B0
s → τ+τ−)SMtheo = (7.0± 0.6 (decay constant)± 0.28 (other param.)) · 10−7 . (6.23)

For the decays with other charged leptons in the final state, the theoretical uncertainties are also dominated
by the decay constant. Therefore, decreasing the uncertainties in the determination of the decay constant is
currently the main effort for increasing the precision of the theoretical predictions.
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The branching fractions in Eqs. 6.20, 6.21 and 6.22 clearly show that the large mass of the τ lepton lifts the
helicity suppression in the B0

s → ℓ+ℓ− decay. This helicity suppression occurs because, in the rest frame of
the B0

s meson, the two decay products have their momenta exactly opposite of each other. Since the B0
s is

spinless and the leptons are spin-1/2 particles, the spins of the two final state leptons have to be opposite.
Therefore, their helicity is either both positive or both negative. In the SM, this decay is mediated by
the weak interaction which only couples to particles with left-handed chirality and antiparticles with right-
handed chirality. If the leptons would be massless, their helicity would be equal to their chirality and this
decay would not be able to occur through SM interactions since one of the particles in the final state would
have a chirality that does not couple to the weak interaction. Since the leptons do have a mass, the helicity
suppression is only partially effective and becomes weaker for particles with larger masses. Therefore, the
SM branching fraction with τ leptons in the final state is much larger, and this can be also seen in the decay
width in Eq. 5.58 where contribution of CSM

10 is suppressed by m2
ℓ .

In order to more clearly investigate the contributions of the different Wilson coefficients, we define:

Ci′ − Ci ≡ |Ci′ − Ci|eiφii′ , (6.24)

and rewrite the branching fraction as

B(B0
s → τ+τ−)theo = rℓ10|C10′ − C10|2 + rℓP |CP ′ − CP |2 + rℓS |CS′ − CS |2

+ ψℓ10P |C10′ − C10||CP ′ − CP | cos (φ1010′ − φPP ′) . (6.25)

The expressions for the different parameters rℓi and ψℓ10P are given in Appendix B.2. The values of these
parameters for the three different charged leptons flavours are presented in Table 6.7. The lifting of the
helicity suppression is here clearly visible in the increasing values of rℓ10 for increasing lepton mass. Similarly,
the impact of the cross term between Wilson coefficients C10′ −C10 and CP ′ −CP described by ψℓ10P increases
with lepton mass. The only difference between the values for rℓS and rℓP for the different leptons comes
from powers of 1− 4m2

ℓ/m
2
B0
s

and therefore the difference between the electron and muonic channel here is
negligible due to their tiny masses, while a small suppression occurs when there are heavy τ leptons in the
final state.

Lepton rℓ10 · 108 rℓP · 107 rℓS · 107 ψℓ10P · 107
e (4.2± 0.4) · 10−7 1.83± 0.18 1.83± 0.18 (5.5± 0.5) · 10−4

µ (1.78± 0.18) · 10−2 1.83± 0.18 1.83± 0.18 (1.14± 0.11) · 10−1

τ 3.8± 0.4 1.37± 0.14 (7.7± 0.8) · 10−1 1.44± 0.14

Table 6.7: Numerical values for the parameters in the expression for the branching fraction of
B0
s → ℓ+ℓ− in Eq. 6.25. Expressions for these parameters can be found in Appendix B.2.

By using Eqs. 5.59 and 5.65, we can compare the theoretical predictions with experimental data. In 2017,
LHCb reported the following upper limit on the branching fraction of the leptonic B0

s decay with τ leptons
in the final state [142]:

B(B0
s → τ+τ−) ≤ 6.8 · 10−3 , CL = 95% . (6.26)

Notably, this upper bound is four orders of magnitude larger than the theoretical SM prediction in Eq.
6.22. Assuming NP in only one Wilson coefficient and its primed counterpart at a time, setting ϕNP

s =
−0.052± 0.028, and assuming that the Wilson coefficients are real, we find the following constraints on the
Wilson coefficients:

|Cτ10′ − Cτ10| ≤ 4.8 · 102 , CL = 95% , (6.27)

|CτS′ − CτS | ≤ 3.4 · 102 , CL = 95% , (6.28)

|CτP ′ − CτP | ≤ 2.6 · 102 , CL = 95% . (6.29)
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These upper bounds are very large, due to the large gap between current experimental bounds and theoret-
ical predictions. Improvement in the measurement of the branching fraction of B0

s → τ+τ− should lead to
stronger constraints on the Wilson coefficients. Assuming no NP in primed Wilson coefficients, we see by
comparing these bounds to the bounds from the semileptonic decay in Table 6.5 that the bounds from the
leptonic B0

s → τ+τ− decay are stronger, but offer no information on Cτ7,9,T .

The leptonic decay B0
s → τ+τ− is interesting for its dependence on the scalar and pseudoscalar Wilson

coefficients. For this reason, we try to constrain both of these types of Wilson coefficients simultaneously. To
simplify the analysis, we do not include theoretical uncertainties in the determination of these constraints.
Furthermore, we either assume no NP in Cτ10′ −Cτ10 or fix the NP contribution to Cτ10 to be Cτ,NP

10 ∈ {−50, 50}
to investigate how the constraints on CτP (S)′ −C

τ
P (S) change when NP is present in Cτ10′ −Cτ10. Assuming the

Wilson coefficients to be real and setting ϕNP
s = −0.052±0.028, we find contours constraining CτP (S)′ −C

τ
P (S)

shown in Fig. 6.4.

Figure 6.4: Allowed values for CτP (S)′ − CτP (S) for different values for C10, based on the ex-
perimental upper bound in Eq. 6.26 reported by the LHCb collaboration [142]. All Wilson
coefficients are assumed to be real. The purple contour corresponds to Cτ10 = CSM

10 . The red
contour corresponds to Cτ,NP

10 = −50. The blue contour corresponds to Cτ,NP
10 = 50. The values

of CτP (S)′ − CτP (S) within these contours are allowed for the upper bound in Eq. 6.26.

The shape of the contours in Fig. 6.4 are dominated by rτS and rτP (see Eq. 6.25). They are affected by
A∆Γ and ψτ10P , but at the current experimental precision the contours are mostly determined by the values
of rτS and rτP . The contours in Fig. 6.4 have an oval shape since rτS < rτP . Using the expression for these
parameters given in Appendix B.2, we find that

rℓS = A

(
1− 4m2

ℓ

m2
B0
s

)3/2

, (6.30)

rℓP = A

(
1− 4m2

ℓ

m2
B0
s

)1/2

, (6.31)

where A is a constant independent of mℓ and equal for both rℓS and rℓP . For electrons and muons where
1− 4m2

ℓ/m
2
B0
s
≈ 1, the values for rℓS and rℓP are very similar, as seen in Table 6.7. This will result in almost
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circular contours for ℓ = e, µ. For τ leptons, we find that 1− 4m2
τ/m

2
B0
s
≈ 0.56 resulting in rτS < rτP and the

oval shape of the contours. The bounds in Fig. 6.4 are smaller than those presented in Eqs. 6.28 and 6.29,
since we neglect theoretical uncertainties in the determination of the contours in Fig. 6.4.

6.3 Lepton flavour universality observables

Since NP need not be lepton flavour universal, observables that test this universality are important probes
for NP. Similar to the definition of RK in Eq. 3.52, we can define the lepton flavour universality ratios Rτℓ as

Rτℓ [q
2
min, q

2
max] =

q2max∫
q2min

dq2 dB(B−→K−τ+τ−)
dq2

q2max∫
q2min

dq2 dB(B−→K−ℓ+ℓ−)
dq2

. (6.32)

One of the advantages of these kinds of ratios is that the CKM factors drop out. Namely, the determination
of Vts which is relevant for B → Kℓ+ℓ− is dependent on the value of Vcb. Vts cannot be determined from
top quark decays directly and therefore it is expressed through Vcb using the Wolfenstein parameterisation.
However, Vcb brings large uncertainties due to the Vcb puzzle [143]. Namely, different determinations of
Vcb result in different values. In 2021, HFLAV (Heavy Flavour Averaging Group) reported a world average
of [112]

|Vcb|excl. = (39.10± 0.50) · 10−3 , (6.33)

which has been determined from exclusive decays like B → D∗ℓν combining results from BaBar, Belle, and
other experiments. On the other hand, determinations from inclusive decays like B → Xcℓν results in a
value of [112]

|Vcb|incl. = (42.19± 0.78) · 10−3 . (6.34)

The large difference in the values obtained from exclusive and inclusive decays is known as the Vcb puzzle.
Another advantage of the RK-like ratios is that in the SM, the form factor dependence is reduced and there-
fore also the impact of the uncertainties they bring with them.

To determine the SM predictions for these RK-like ratios, we employ the modified LHCb long-distance
model from Section 6.1.1 for both B → Kτ+τ− and B → Ke+e−. For B → Kµ+µ− we use the LHC
model from [132] without any modifications and account for the uncertainties arising from the ambiguity of
the signs of the phases of the J/ψ and ψ(2S) resonances, that is the four solution branches, by randomly
sampling a solution branch in the Monte Carlo calculation.

Looking at the entire kinematically allowed q2-region for B → Kτ+τ−, we then find (including the long-
distance model):

Rτµ[4m
2
τ , (mB −mK)2]LD = 0.5± 0.7 , (6.35)

Rτe [4m
2
τ , (mB −mK)2]LD = 0.5± 0.9 . (6.36)

These large uncertainties arise mainly from the long-distance modelling, especially the q2-region around the
ψ(2S) resonance. These ratios do not provide good observables in these q2-regions, since their theoretical
predictions come with very large uncertainties. Therefore, we restrict the q2-region to avoid the ψ(2S)
resonance region and obtain

Rτµ[14.18 GeV2, (mB −mK)2]LD = 1.0± 0.1 , (6.37)

Rτe [14.18 GeV2, (mB −mK)2]LD = 1.17± 0.18 . (6.38)
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To investigate the effects of the long-distance model on these ratios, we also determine Rτℓ with Y (q2) set to
zero:

Rτµ[14.18 GeV2, (mB −mK)2]NLD = 1.19± 0.08 , (6.39)

Rτe [14.18 GeV2, (mB −mK)2]NLD = 1.20± 0.08 . (6.40)

The results agree within their 1σ uncertainties with the theoretical predictions presented in [140], where
the hadronic long-distance effects have also been ignored. Notably, including or excluding hadronic long-
distance effects results in similar theoretical predictions for Rτe in the [14.18 GeV2, (mB − mK)2] q2-bin.
However, important to note is that the theoretical uncertainty on Rτe is more than twice as large when
including the long-distance effects, showing the importance of determining the long-distance contributions
in B → τ+τ− and B → Ke+e− to make precise theoretical predictions for Rτe . Furthermore, we notice that
the theoretical predictions for Rτµ differ when including or excluding the hadronic long-distance effects in the
[14.18 GeV2, (mB −mK)2] q2-bin. This stresses the need for more precise knowledge of these long-distance
contributions when analysing these RK-like ratios.

6.4 CP violation observables

In this section, we will investigate the impact of the modified LHCb long-distance model for B → Kτ+τ−

on CP violation. We will focus on the direct CP asymmetry, which is defined as [134]

ACP =
B(B− → K−τ+τ−)− B(B+ → K+τ+τ−)

B(B− → K−τ+τ−) + B(B+ → K+τ+τ−)
. (6.41)

The branching fraction of the CP-conjugate decay can be determined by changing the sign of the weak
phases of the Wilson coefficients. In order to have a non-vanishing direct CP asymmetry, we also need a CP-
conserving phase, i.e. a phase which does not change sign between CP-conjugate decays. This CP-conserving
phase is found in the hadronic long-distance contributions in the function Y (q2), that is the sign of the phase
of Y (q2) does not change when switching to the CP-conjugate decay.

We will also define the binned direct CP asymmetry and differential direct CP asymmetry as [134]

ACP[q
2
min, q

2
max] =

B(B− → K−τ+τ−)[q2min, q
2
max]− B(B+ → K+τ+τ−)[q2min, q

2
max]

B(B− → K−τ+τ−)[q2min, q
2
max] + B(B+ → K+τ+τ−)[q2min, q

2
max]

, (6.42)

ACP(q
2) =

dΓ/dq2(B− → K−τ+τ−)− dΓ/dq2(B+ → K+τ+τ−)

dΓ/dq2(B− → K−τ+τ−) + dΓ/dq2(B+ → K+τ+τ−)
. (6.43)

In the SM, the direct CP asymmetry vanishes since all SM Wilson coefficients are real-valued. This can be
easily seen when writing out the numerator of the differential direct CP asymmetry:

Num
[
ACP(q

2)
]
= 4τBN(q2)f+(q

2)2
(
λ− λ

3

(
1− 4m2

ℓ

q2

))
Im[Y (q2)]Im[C9 + C9′ ]

+ 8τBN(q2)mb
fT (q

2)f+(q
2)

mB +mK

(
λ− λ

3

(
1− 4m2

ℓ

q2

))
Im[Y (q2)]Im[C7 + C7′ ]

+ 16τBN(q2)mℓλ
fT (q

2)f+(q
2)

mB +mK
Im[Y (q2)]Im[CT + CT ′ ] , (6.44)

where N(q2) is defined in Eq. 6.73. The expression for the denominator is presented in Appendix C. Eq.
6.44 shows that only complex NP contributions in C7(′) , C9(′) , and CT (′) can cause direct CP violation in
B → Kℓ+ℓ− decays. Moreover, since all SM Wilson coefficients are real-valued, the direct CP asymme-
try vanishes in the SM. This makes the direct CP asymmetry a good probe for NP. A measurement of a
non-vanishing direct CP asymmetry in B → Kℓ+ℓ− decays would confirm NP in Cℓ

7(′)
, Cℓ

9(′)
, and/or Cℓ

T (′) .
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However, measuring the CP asymmetry in B → Kτ+τ− would first require great improvements in the mea-
surements of the individual branching fractions of the CP-conjugate decays, which is still many years ahead
of us considering the current bounds on the branching fraction.

By implementing the modified LHCb long-distance model for B → Kτ+τ− and by integrating over q2,
we can determine the numerical coefficients in front of the Wilson coefficients in the numerator of the direct
CP asymmetry in Eq. 6.44. Similar to the parameters in Table 6.4, the Monte Carlo method used to deter-
mine the numerical values and their theoretical uncertainties will average Im

[
Y (q2)

]
out to zero. Therefore,

we present the numerical values of the numerator of the direct CP asymmetry as theoretical 1σ intervals
around zero:

Num [ACP] = [−5, 5] · 10−11Im[C9 + C9′ ] + [−6, 6] · 10−10Im[C7 + C7′ ]
+ [−6, 6] · 10−7Im[CT + CT ′ ] . (6.45)

Notably, complex CP-violating phases from the tensor Wilson coefficients are accompanied by a factor four
orders of magnitudes larger than the factor accompanying C9(′) and three orders of magnitude larger than
the factor accompanying C7(′) .

In order to make predictions for the differential CP asymmetry, we need values for the complex NP Wilson
coefficients. Therefore, we take the benchmark scenario in [134] based on experimental constraints from RK
and B(Bs → µ+µ−):

CNP
9µ = −CNP

10µ = −0.48− 0.7i . (6.46)

These benchmark scenario values for the Wilson coefficients apply only to the muonic NP Wilson coefficients.
To compare the µ and τ channels of B → Kℓ+ℓ−, we will assume that the NP contributions to the Wilson
coefficients are lepton flavour universal. Furthermore, we will consider two more scenarios where the NP
contributes only to C7(′) or only to CT (′) . The differential direct CP asymmetry is shown as a function of q2
in Fig. 6.5, 6.6, and 6.7. Unless otherwise specified, all Wilson coefficients are set to their SM values in these
three figures. All three figures show that the direct CP asymmetry is enhanced near the peak of each vector
resonance [134]. No very strong conclusion can be made without more information on the phases of the
vector resonances in B → Kτ+τ−. However, assuming that the phases are equal for ℓ = µ, τ (i.e. comparing
the solid black and blue line), the q2 region around the ψ(2S) resonance in Fig. 6.5 and 6.6 show that the
direct CP asymmetry can become larger for ℓ = τ if the complex CP-violating phase originates from CNP

9(′)
or

CNP
7(′)

. Fig. 6.7 shows that the direct CP violation originating from CT (′) in B → Kµ+µ− is very tiny, even
near the vector resonances, especially compared to the direct CP violation in B → Kµ+µ− originating from
the other Wilson coefficients as seen in Fig. 6.5 and 6.6. However, for τ leptons, the direct CP asymmetry
can be of comparable size for complex CP-violating phases originating from all three Wilson coefficients C9(′) ,
C7(′) , and CT (′) .
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Figure 6.5: The differential direct CP asymmetry as a function of q2 in the [4m2
τ , (mB −

mK)2] region. The shaded green area shows the 1σ theoretical uncertainty interval of the CP
asymmetry in B → Kτ+τ− using the modified LHCb long-distance model. This is centred
around ACP(q

2) = 0, since the phases of the long-distance model are sampled randomly from
[0, 2π). The solid blue line shows the direct CP asymmetry in B → Kτ+τ− if one uses the
long-distance phases δj of the J/ψ neg / ψ(2S) neg solution branch from [132] and neglects all
theoretical uncertainties. The shaded red area shows the 1σ theoretical uncertainty interval for
B → Kµ+µ−, using the long-distance model from [132]. One of the four solution branches is
chosen randomly for each sample in the Monte Carlo calculation. The solid black line shows
the theoretical mean for the direct CP asymmetry in B → Kµ+µ−. All Wilson coefficients are
set to their SM value, except for the NP contributions CNP

9 = −CNP
10 = −0.48 − 0.7i, based on

the benchmark scenario in [134].

Figure 6.6: The differential direct CP asymmetry as a function of q2 in the [4m2
τ , (mB −mK)2]

region. All Wilson coefficients are set to their SM value, except for the NP contribution CNP
7 =

−0.48− 0.7i. Further explanation can be found in Fig. 6.5.
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Figure 6.7: The differential direct CP asymmetry as a function of q2 in the [4m2
τ , (mB −mK)2]

region. All Wilson coefficients are set to their SM value, except for the NP contribution CT =
−0.48− 0.7i. Further explanation can be found in Fig. 6.5.

6.5 Model-dependent NP analysis

In this section, we analyse the impact of a specific NP model on several observables in the B → Kτ+τ− and
B0
s → τ+τ− system. We will focus on a U1 vector leptoquark model with a mass at the TeV-scale. Lepto-

quarks are hypothetical particles that can couple to quarks and leptons simultaneously. Multiple leptoquarks
models have been formulated as extensions of the SM. We will investigate the U1 vector leptoquark, that is
spin-1 leptoquark with parity eigenvalue −1, described in [144]. Models with the U1 leptoquark are appealing
since they are able to explain several anomalies simultaneously, including the apparent µ/e lepton flavour
universality violation in RK , the deviations from SM predictions in b → sµ+µ− decays, and the apparent
τ/µ and τ/e lepton flavour universality violation in b → cℓν̄ decays [145–151]. Moreover, these leptoquark
models can be connected to an underlying theory of the flavour structure in the SM [144]. Another advan-
tage of the leptoquark models is that leptoquarks contribute at the tree-level to semileptonic transitions like
b→ qℓ+ℓ− and only contribute at the loop level to four-quark and four-lepton interactions, which currently
do not show any significant discrepancies with the SM [144].

The leptoquark model can be linked to an underlying theory of flavour in the SM [144]. The hierarchy
and smallness of the CKM mixing angles can be linked to a minimally broken U(2)5 flavour symmetry [144].
The U(2)5 flavour symmetry distinguishes the first two generations of fermions from the third one by con-
struction [55]. The first- and second-generation SM fermions with the same gauge quantum numbers are
grouped into doublets of a given U(2) subgroup, while the third-generation SM fermions form singlets. The
five flavour doublets are labelled Q,L,U,D,E, and therefore the U(2)5 symmetry group can be written
as [144]

U(2)5 = U(2)Q ⊗ U(2)L ⊗ U(2)U ⊗ U(2)D ⊗ U(2)E . (6.47)

When the U(2)5 symmetry is unbroken, only the third-generation fermions have non-vanishing couplings
to the leptoquark U1 [55]. Once the symmetry is minimally broken, the other generations receive small
couplings.

The relevant set of operators needed to address the anomalies generated by a tree-level exchange of the
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U1 leptoquark are [144]

Oijαβ
LL = (qiLγµℓ

α
L)(ℓ

β

Lγ
µqjL) , (6.48)

Oijαβ
LR = (qiLγµℓ

α
L)(e

β
Rγ

µdjR) , (6.49)

Oijαβ
RR = (d

i

Rγµe
α
R)(e

β
Rγ

µdjR) , (6.50)

where the indices i, j indicate the quark generation and α, β the charged lepton flavour. The EFT Lagrangian
corresponding to these operators is given as [144]

LNP
EFT = − 2

v2

[
CijαβLL Oijαβ

LL + CijαβRR Oijαβ
RR +

(
CijαβLR Oijαβ

LR + h.c.
)]

, (6.51)

where v = (
√
2GF)

−1/2. The Wilson coefficients of the Hermitian operators Oijαβ
LL(RR) satisfy

CjiβαLL(RR) =
(
CijαβLL(RR)

)∗
. (6.52)

The assumption of the minimally broken U(2)5 symmetry with only non-negligible breaking terms for left-
handed SM fermions implies that the largest couplings in LNP

EFT are those related to third-generation fermions.
These assumptions in [144] can be translated onto the Wilson coefficients in Eq. 6.51. Firstly, the Wilson
coefficients of right-handed first- and second-generations fermions can be neglected, that is CijαβRR ≈ 0 unless
i = j = 3 and α = β = τ , and CijαβLR ≈ 0 unless j = 3 and β = τ [144]. Secondly, the Wilson coefficients of the
left-handed first- and second-generation fermions are assumed to be suppressed by factors of ϵq, ϵℓ ∼ 10−1

for each quark or lepton from the second generation and by factors of ϵ2q, ϵ2ℓ ∼ 10−2 for each quark or lepton
from the first generation, e.g. C13µτ

LL ∼ ϵ2qϵℓC33ττ
LL [144].

The simplified model used in [144] for the U1 vector leptoquark is described by the following Lagrangian:

LU =− 1

2
U†
µνU

µν +M2
UU

†
µU

µ − igs(1− κc)U
†
µT

aUνG
µν,a

− 2i

3
g′(1− κY )U

†
µUνB

µν +
gU√
2
(UµJUµ + h.c.) , (6.53)

with

Uµν = DµUν −DνUµ , (6.54)

Dµ = ∂µ − igsG
a
µT

a − i
2

3
g′Bµ , (6.55)

JUµ = βiαL (q̄iLγµℓ
α
L) + βiαR (d̄iRγµe

α
R) . (6.56)

The leptoquark is therefore also denoted as U1 ∼ (3,1, 2/3), i.e. transforming as a triplet under SU(3)C,
singlet under SU(2)L, and having a hypercharge of 2/3. The parameters κc and κY vanish if the vector
leptoquark has a gauge origin, while this need not be true if the leptoquark originates from a bound state
from a strongly-coupled sector [144]. The couplings βH in the current in Eq. 6.56 are complex 3× 3 complex
matrices in flavour space. The assumptions on couplings to right-handed fermions and suppression for first-
and second-generation fermions lead to the following coupling matrices:

βL =

0 0 βdτL
0 βsµL βsτL
0 βbµL 1

 , βR =

0 0 0
0 0 0
0 0 βbτR

 . (6.57)

The null entries represent negligible couplings. The assumptions also imply that |βdτ,sτL | ≪ |βsτ,bµL | ≪ 1
and βbτR = O(1). Integrating out the U1 leptoquark at tree-level and using the EFT Lagrangian in Eq. 6.51,
results in the following matching conditions relevant for our analysis [144]:

C23ττ
LL = CUβ

2τ
L (β3τ

L )∗ , (6.58)

C23ττ
LR = CUβ

2τ
L (β3τ

R )∗ , (6.59)

CU =
g2Uv

2

4M2
U

. (6.60)
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Translating these Wilson coefficients to those in the effective Hamiltonian used to describe b → sτ+τ−

transitions in Eq. 5.1 results in the following NP contributions from the U1 vector leptoquark [144]:

Cτ,NP
9 = −Cτ,NP

10 = − 2π

αemV ∗
tsVtb

C23ττ
LL , (6.61)

CτS = −CτP =
4π

αemV ∗
tsVtb

C23ττ
LR . (6.62)

In [144], the U1 vector leptoquark model parameters have been fitted to experimental data on among others
R

(∗)
K , RD(∗) , semileptonic B decays, and leptonic B decays. For the full set of observables included in the fit

for the U1 parameters, we refer to [144].

In the fit, two benchmark scenarios were implemented. Namely, one scenario where βbτR = 0, that is Ci3ττLR = 0,
and one scenario where βbτR = −1, that is Ci3ττLR = −Ci3ττLL . Moreover, the minimal symmetry breaking of
U(2)5 results in the relation βdτL /βsτL = V ∗

td/V
∗
ts [144]. For each scenario in the determination of the U1

parameters, the fit has been performed including this constraint and also by relaxing this constraint. There-
fore, we can extract four sets of values for the NP contributions to the Wilson coefficients governing the
b→ sτ+τ− from [144] using the matching relations in Eqs. 6.61 and 6.62. These are presented in Table 6.8.

βbτR = 0 βbτR = −1

min. U(2)5 breaking, Cτ,NP
9 = 45± 28 Cτ,NP

9 = 16± 10
i.e. βdτL = βsτL V ∗

td/V
∗
ts CτS = 0 CτS = 32± 21

βdτL free Cτ,NP
9 = 49± 31 Cτ,NP

9 = 26± 12
CτS = 0 CτS = 52± 24

Table 6.8: Extracted values from [144] for the NP contributions to the Wilson coefficients
governing b→ sτ+τ− transitions. The values have been determined for four different scenarios,
which are described in the text. Note that Cτ,NP

9 = −Cτ,NP
10 and CτS = −CτP .

The Wilson coefficients in Table 6.8 can be used to determine predictions for the branching fractions of
B− → K−τ+τ− and B0

s → τ+τ− in the U1 vector leptoquark NP model of [144]. These are presented in
Table 6.9. These have been determined with and without the inclusion of the modified LHCb long distance
model introduced in Section 6.1.1 and for two different q2-bins. Since the uncertainties on the extracted
NP Wilson coefficients in Table 6.8 are very large, the theoretical uncertainties on the predicted branching
fractions in Table 6.9 become very large. Therefore, no very strong conclusions can be made from the NP
branching fraction predictions in Table 6.9. However, by comparing the two q2-bins, we can reconfirm that
the main contributions and uncertainties from the long-distance modelling originates in the ψ(2S) resonance
region. Furthermore, we notice that this NP scenario can cause the semileptonic branching fractions to
increase by approximately one order of magnitude compared to the SM prediction including hadronic long
distance contributions, that is BSM,LD

K− ∼ 2 · 10−6 compared to BNPK− ∼ 10−5. This would further decrease
the gap between theory predictions and current experimental upper bounds. Especially considering future
prospects of the Belle II experiment which predicts a future upper bound of B(B+ → K+τ+τ−) < 6.5 · 10−5

(CL = 90%) in the absence of any signals at a luminosity of 5 ab−1 [152]. We summarise the current and
predicted experimental upper bounds, the SM predictions, and the NP prediction in Fig. 6.8 (choosing the
smallest NP prediction including long-distance contributions of BNP, LD

K− = (3.0 ± 2.6) · 10−5 as a represen-
tative for the four different U1 fit scenarios). The future prospect on the experimental upper bound is very
close to the 1σ theoretical confidence interval of the NP prediction, indicating that these future bounds will
allow us to constrain this NP model even further.

The theoretical uncertainties on the NP predictions for the leptonic branching fraction are very large. How-
ever, we notice that in the U1 NP scenarios where CS = −CP = 0, the branching fraction may become almost
three orders of magnitudes larger than the current SM predictions, that is B(B0

s → τ+τ−)NP
theo ∼ 10−4 while

B(B0
s → τ+τ−)SMtheo ∼ 7 · 10−7. In the U1 NP scenarios where CS = −CP ̸= 0, the NP predictions become

of order O(10−5), that is two orders of magnitude larger than the SM prediction. Looking at the current
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CL = 95% experimental upper bound of B̄(B0
s → τ+τ−) < 6.8 · 10−3 [142] and the future prospect of Belle

II of B̄(B0
s → τ+τ−) < 8.1 · 10−4 (CL = 90%) at a luminosity of 5 ab−1 [152] and the future prospect of

LHCb of B̄(B0
s → τ+τ−) < 5 · 10−4 (CL = 95%) [153], we are nearing an era with experimental data near

the U1 NP predictions, allowing for stronger constraints on this NP model. The predictions, experimental
bounds, and future prospects are summarised in Fig. 6.9.

Branching fraction βbτR = 0, βbτR = 0, βbτR = −1, βbτR = −1,
min. U(2)5 breaking βdτL free min. U(2)5 breaking βdτL free

BNLD
K− [4m2

τ , q
2
max] (2.7± 2.8) · 10−5 (3.5± 3.3) · 10−5 (2.9± 2.5) · 10−5 (7± 4) · 10−5

BNLD
K− [14.18 GeV2, q2max] (2.5± 2.4) · 10−5 (2.9± 2.8) · 10−5 (2.7± 2.3) · 10−5 (6.3± 4.0) · 10−5

BLD
K− [4m2

τ , q
2
max] (3.0± 2.6) · 10−5 (3.7± 3.4) · 10−5 (3.2± 2.5) · 10−5 (7± 4) · 10−5

BLD
K− [14.18 GeV2, q2max] (2.5± 2.3) · 10−5 (3.0± 2.8) · 10−5 (2.7± 2.2) · 10−5 (6.3± 4.0) · 10−5

B(B0
s → τ+τ−)theo (9.4± 9.7) · 10−5 (1.1± 1.2) · 10−4 (9.1± 9.6) · 10−6 (2.5± 2.28) · 10−5

Table 6.9: Theoretical branching fraction predictions including contributions from the U1 vector
leptoquark NP scenario in [144]. The NP Wilson coefficients used are shown in Table 6.8 and
the four different scenarios are described in the text. For the semileptonic branching fractions
BK− for B− → K−τ+τ−, the q2-range is bounded from above by q2max = (mB −mK)2. The
q2-bin with 14.18 GeV2 as a lower bound is taken to avoid the ψ(2S) resonance region, where
the largest contributions to and uncertainties from the hadronic long-distance modelling are
found.

Figure 6.8: Overview of the SM predictions, NP predictions, and experimental upper bounds
on the branching fraction of the B → Kτ+τ− decay. The solid red line indicates the BaBar
CL = 95% experimental upper bound [138]. The dashed red line indicates the future prospect on
the CL = 90% experimental upper bound of the Belle II experiment [152]. The SM predictions
including (LD) and excluding (NLD) the modified LHCb long-distance model from Section 6.1.1
are shown with their 1σ theoretical uncertainties. The NP prediction is based on a U1 vector
leptoquark model from [144] and includes the modified LHCb long-distance model. Not all NP
predictions resulting from four fit scenarios in [144] are shown in this diagram, but can be found
in Table 6.9. The smallest NP (LD) prediction is shown here to represent the four different fit
scenarios.
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Figure 6.9: Overview of the SM prediction, NP predictions, experimental upper bounds, and
future experimental prospects on the branching fraction of the B0

s → τ+τ− decay. The SM
prediction is shown including its 1σ theoretical confidence interval, which is approximately
10% and tiny on the logarithmic scale. The solid red line represents the current experimental
CL = 95% upper bound reported by LHCb [142]. The future prospects on the experimental
upper bound of Belle II (CL = 90%) [152] and LHCb (CL = 95%) [153] are denoted by dashed
red lines. The purple lines show the NP predictions based on the U1 vector leptoquark model
in [144]. We do not show the theoretical uncertainties on these predictions, since they are very
large. We present here only two of the four fit scenarios in [144], namely where CS = −CP = 0
and where CS = −CP ̸= 0. These two fit scenarios contain two subscenarios and we only show
the largest branching fraction prediction of these subscenarios. The numerical values for these
four NP predictions and their theoretical uncertainties can be found in Table 6.9.

6.6 Angular observables

The angular distribution of the differential decay width of B → Kℓ+ℓ− can be written as

d2Γℓ
dq2 d cos θℓ

= aℓ(q
2) + bℓ(q

2) cos θℓ + cℓ(q
2) cos2 θℓ . (6.63)

The functions aℓ(q2), bℓ(q2), and cℓ(q2) are presented in Appendix D. We will define two angular observables.
Firstly, we will define the ‘flat term’ F ℓH as [154]

F ℓH =
2

Γℓ
(Aℓ + Cℓ) =

q2max∫
q2min

dq2
[
aℓ(q

2) + cℓ(q
2)
]
/

q2max∫
q2min

dq2
[
aℓ(q

2) +
1

3
cℓ(q

2)

]
, (6.64)

where

Aℓ =

q2max∫
q2min

dq2aℓ(q2) , (6.65)

and similarly for Bℓ and Cℓ. Secondly, we define the differential forward-backward asymmetry as

AFB(q
2) =

1∫
0

d cos θℓ
d2Γ

dq2d cos θℓ
−

0∫
−1

d cos θℓ
d2Γ

dq2d cos θℓ

1∫
0

d cos θℓ
d2Γ

dq2d cos θℓ
+

0∫
−1

d cos θℓ
d2Γ

dq2d cos θℓ

. (6.66)



6.6. ANGULAR OBSERVABLES 71

If one integrates over q2, one finds that the forward-backward asymmetry and decay width can be written
as functions of Aℓ, Bℓ, and Cℓ [140]:

Aℓ
FB =

Bℓ
Γℓ

, (6.67)

Γℓ = 2

(
Aℓ +

1

3
Cℓ

)
. (6.68)

The angular distribution of the decay width can then be written as [140]

1

Γℓ

dΓℓ
d cos θℓ

=
1

2
F ℓH +Aℓ

FB cos θℓ +
3

4
(1− F ℓH)(1− cos2 θℓ) . (6.69)

The SM predictions for the ‘flat term’ F τH including and excluding the modified LHCb long-distance model
for B → Kτ+τ− are found to be

F τH(SM, NLD) = 0.896(7) , (6.70)
F τH(SM, LD) = 0.900(11) . (6.71)

Notably, the ‘flat term’ F τH and its theoretical uncertainty are not affected much by the inclusion of the
hadronic long-distance contributions. The forward-backward asymmetry vanishes in the SM. To see why
this is, we write out the numerator of the differential forward-backward asymmetry in Eq. 6.66:

Num
[
AFB(q

2)
]
= N(q2)4

√
λ

√
1−

4m2
ℓ

q2
f0(q

2)
mB −mK

mb −ms
·

·
[
mℓmbfT (q

2)Re[(C7 + C7′)(CS + CS′)∗]

+mℓ
f+(q

2)

2
(mB +mK)Re[(C9 + C9′)(CS + CS′)∗]

+mℓ
f+(q

2)

2
(mB +mK)Re[Y (q2)(CS + CS′)∗]

−q2 fT (q
2)

2
Re[(CS + CS′)(CT + CT ′)∗]

]
, (6.72)

where

N(q2) ≡

√
1−

4m2
ℓ

q2
G2

F|λt|2α2
em

√
λ

210π5m3
B

. (6.73)

The denominator simplifies to

Denom
[
AFB(q

2)
]
= −dΓ(B− → K−τ+τ−)

dq2
, (6.74)

where the minus sign appears due to our choice of the definition of the angle θℓ. As Eq. 6.72 clearly shows, a
non-vanishing CS+CS′ is required for a non-vanishing forward-backward asymmetry. This makes the forward-
backward asymmetry a good probe for new physics in the scalar Wilson coefficients since a measurement of
a non-vanishing value for this observable would be a smoking-gun signal for scalar NP. Therefore, it could
be used to constrain the βbτR = −1 scenario of the U1 vector leptoquark model of [144]. Important to note
is that measuring these angular observables would require even greater improvements in the measurement
of τ leptons in experiments compared to the improvements required for improved bounds on the branching
fraction of the B-meson decays with τ leptons in the final state.
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7 | Conclusion

Several anomalies have been identified in the B-meson system. These include deviations in branching frac-
tions based on b → sℓ+ℓ− transitions, angular observables in B → K∗µ+µ−, and hints of lepton flavour
universality violation in B → K(∗)ℓ+ℓ− and b→ cℓν̄ℓ decays. These discrepancies could be signals of NP, but
increased experimental and theoretical precision is required to confirm or dismiss these anomalies as proofs
of NP. Many Beyond the Standard Model theories that try to simultaneously explain these B-anomalies pre-
dict strong couplings to third-generation fermions and therefore possible large enhancements of b→ sτ+τ−

transitions. Consequently, B-meson decays with τ leptons in the final state can be used as tests of these
NP models. Unfortunately, many of these decays have not been precisely measured yet due to difficulties
with detecting τ leptons. New data from upgraded experiments like Belle II, LHC Run III, and others will
hopefully provide better bounds or even first measurements of several b → sτ+τ− observables. On the the-
oretical side, improvements in the determination of decay constants and hadronic form factors will decrease
the uncertainties in theoretical predictions. The combined efforts of theorists and experimentalists will help
us confirm or dismiss the B-anomalies, study b→ sτ+τ− observables, and further constrain NP models.

In this thesis, we first introduced the Standard Model describing the fundamental particles of the universe
and their interactions. Secondly, we looked at the structure and properties of the CKM matrix in the context
of flavour physics and CP violation. Subsequently, we derived general theoretical expressions for B → Kℓ+ℓ−

and B0
s → ℓ+ℓ− decays using an effective field theory approach. The effective field theory approach integrates

out heavy degrees of freedom like the W± and Z0 bosons, and possible heavy NP particles which allows
for a model-independent approach to the study of NP. Furthermore, we employed a model of the LHCb
collaboration for the hadronic long-distance contributions from vector resonances in B → Kµ+µ− decays.
These contribute greatly to the branching fractions of these semileptonic decays and alter the differential
decay width significantly near the resonance masses, but also introduce large theoretical uncertainties. We
also used the same effective field theory approach to derive a theoretical expression for the branching fraction
of B0

s → ℓ+ℓ−. Moreover, we looked at how to account for B0
s -B̄0

s mixing when comparing experimental
data with theoretical predictions for B0

s → ℓ+ℓ− decays.

Subsequently, we employed these theoretical expressions to study b → sτ+τ− transitions and investigate if
these transitions provide new ways to study NP compared to the lighter charged leptons ℓ = e, µ. Firstly,
we determined the SM prediction for the branching fraction of the semileptonic decay B → Kτ+τ−, which
is four orders of magnitude smaller than the current experimental upper bound on this decay. Secondly,
we introduced for the first time a model for the hadronic long-distance contributions from cc̄ resonances
to this decay. We compared two different long-distance models and adapted them in order to apply them
to B → Kτ+τ−. We showed that by including these effects, the SM prediction for B(B → Kτ+τ−)
increases by one order of magnitude, decreasing the size of the gap between theory and experiment. The
model also introduces large theoretical uncertainties and therefore studies on these long-distance effects,
especially the phases of the vector resonances, are needed to decrease these uncertainties. Furthermore, we
used current experimental bounds on B(B → Kτ+τ−) to constrain the NP contributions to the different
Wilson coefficients governing the b → sτ+τ− transitions. Due to the lack of precise measurements, these
constraints are not strong and are not yet affected by the inclusion of the hadronic long-distance effects.
However, by carefully analysing the theoretical expression for this semileptonic B-meson decay, we identified

73



74 CHAPTER 7. CONCLUSION

that B(B → Kℓ+ℓ−) is more sensitive to NP in Wilson coefficients C10,P,T while it is less sensitive to NP in
Wilson coefficients C7,9,S for ℓ = τ compared to ℓ = e, µ, which is caused by the large mass of the τ lepton.

Furthermore, we looked at the B0
s → τ+τ− since it is governed by the same underlying b→ sτ+τ− transition.

We determined the SM predictions for B(B0
s → ℓ+ℓ−) for all three charged leptons showing the lifting of the

helicity suppression due to the large τ mass. For ℓ = τ , the SM prediction is currently 4 orders of magnitude
below the experimental upper bound. We used this experimental upper bound on the leptonic decay to find
constraints on the NP contributions to the different Wilson coefficients. We found that, assuming no NP
in primed Wilson coefficients, the B0

s → τ+τ− decay provides stronger bounds on the Wilson coefficients
C10,S,P . However, the leptonic decay is completely insensitive to C7(′),9(′),T (′) .

We also investigated several observables related to the B → Kτ+τ− decay and the effects of the implemented
long-distance model on these observables. Firstly, we looked at the RK-like ratios Rτℓ which test the lepton
flavour universality between the decays B → Kτ+τ− and B → Kℓ+ℓ− for ℓ = e, µ. We showed that the
inclusion of the long-distance effects in Rτℓ causes very large theoretical uncertainties when considering the
entire kinematically allowed q2-spectrum, where q2 is the dilepton invariant mass squared. These are mainly
caused by the ψ(2S) resonance and therefore it is helpful to restrict the spectrum to q2 ≥ 14.18 GeV2 to
avoid this resonance. We showed that after restricting the q2-spectrum, Rτµ becomes larger when including
the long-distance effects, while Rτe does not change significantly. However, the theoretical errors increase
when including long-distance effects and therefore one needs to be careful with the long-distance effects
when working with these observables. Secondly, we investigated the direct CP asymmetry in B → Kτ+τ−

decays, showing that, when assuming LFU in NP, the direct CP asymmetry originating from imaginary
contributions to C7(′),9(′) might become larger in certain q2-ranges for τ leptons in the final state compared
to muons. Interestingly, due to the large τ mass, the direct CP asymmetry originating from imaginary
contributions to CT (′) can become much larger for B → Kτ+τ− compared to B → Kµ+µ− in an LFU NP
scenario. However, more knowledge of the phases of the vector resonances in B → Kτ+τ− is necessary
to make precise conclusions. Finally, we briefly discussed two angular observables. We showed that the
inclusion of the long-distance model does not affect the SM prediction for the ‘flat term’ F τH significantly
and that a measurement of a non-zero forward-backward asymmetry would be a smoking-gun signal for NP
in the Wilson coefficients CS(′) .

Finally, we analysed one specific NP model based on a U1 vector leptoquark. Leptoquarks are popular
models for NP since they can simultaneously explain several B-anomalies and allow for an underlying theory
of flavour. We showed by matching the U1 vector leptoquark to the Wilson coefficients describing b→ sτ+τ−

transitions that the theoretical branching fraction predictions for B → Kτ+τ− and B0
s → τ6 + τ− may be

increased by several orders of magnitude, nearing the prospects of future upper bounds from Belle II and
LHCb analyses. These predictions come with very large uncertainties but show that future data from Belle
II and LHCb will allow us to constrain this NP model further.

Important to note is that NP need not be lepton flavour universal and therefore any conclusions based
on b → sℓ+ℓ− transitions, like constraints on Wilson coefficients from B(B → Kµ+µ−), cannot be easily
translated to the other charged leptons. This shows the importance of carefully studying the B-meson
decays for all three charged leptons. Experimental improvements are required to close the gap between
SM predictions and current upper bounds on B-meson decays to final states with τ leptons, which future
analyses at experiments like Belle II and LHCb may provide. This gap also decreases for B(B → Kτ+τ−)
when including hadronic long-distance contributions from vector resonances, which motivates further study
for more precise modelling of these effects in B → Kτ+τ−



A | Vector resonance parameters

In Table A.1, the valence-quark contents, masses and decay widths used for the different vector resonances
in the hadronic long-distance model for B → Kℓ+ℓ− are presented. Furthermore, to account for the open
charm threshold in the ψ(3770) resonance, we need the mass of the D0 (cū) meson: mD0 = 1864.84 ± 0.05
MeV [92].

Resonance j Valence-quark content Mass m0j Decay width Γ0j

ρ uū−dd̄√
2

775.26± 0.23 MeV 147.4± 0.8 MeV
ω uū+dd̄√

2
782.66± 0.13 MeV 8.68± 0.13 MeV

ϕ ss̄ 1019.461± 0.016 MeV 4.249± 0.013 MeV
J/ψ cc̄ 3096.900± 0.006 MeV 92.6± 1.7 keV
ψ(2S) cc̄ 3686.10± 0.06 MeV 294± 8 keV
ψ(3770) cc̄ 3773.7± 0.4 MeV 27.2± 1.0 MeV
ψ(4040) cc̄ 4039± 1 MeV 80± 10 MeV
ψ(4160) cc̄ 4191± 5 MeV 70± 10 MeV
ψ(4415) cc̄ 4421± 4 MeV 62± 20 MeV

Table A.1: Masses and decay widths used for the vector resonances in the model for the hadronic
long-distance effects in B → Kℓ+ℓ−. The masses and decay widths have been taken from [92].
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B | Expressions for branching fraction
parameters

B.1 B− → K−ℓ+ℓ−

Here, we present the expressions for the parameters ρℓi and ϕℓij found in the branching fraction of B− →
K−ℓ+ℓ− in Eqs. 6.16 and 6.17. We denote the SM branching fraction of B− → K−ℓ+ℓ− excluding long-
distance contributions (i.e. Y (q2) = 0) as BSM,NLD

Kℓ . The numerical values of these parameters can be found
in Tables 6.3 and 6.4.

ρℓ7 =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)

(
λ− λ

3

(
1− 4m2

ℓ

q2

))
4m2

b

(mB +mK)2
fT (q

2)2 , (B.1)

ρℓ9 =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)

(
λ− λ

3

(
1− 4m2

ℓ

q2

))
f+(q

2)2 , (B.2)

ρℓ10 =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)

[(
1− 4m2

ℓ

q2

)
2λ

3
f+(q

2)2 + 4m2
ℓ

(m2
B −m2

K)2

q2
f0(q

2)2
]
, (B.3)

ρℓS =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)q2
(
1− 4m2

ℓ

q2

)(
m2
B −m2

K

mb −ms

)2

f0(q
2)2 , (B.4)

ρℓP =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)q2
(
m2
B −m2

K

mb −ms

)2

f0(q
2)2 , (B.5)

ρℓT =
1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)
4λ

3
(q2 + 8m2

ℓ)
fT (q

2)2

(mB +mK)2
, (B.6)

ρℓR7 = 2CSM
7 ρℓ7 +

1

BSM,NLD
Kℓ

(mB−mK)2∫
4m2

ℓ

dq2 N (q2)

(
λ− λ

3

(
1− 4m2

ℓ

q2

))
4mb

mB +mK
fT (q

2)f+(q
2)CSM

9 , (B.7)
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where
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B.2 B0
s → ℓ+ℓ−

Here, we present the expressions for the parameters rℓi and ψℓ10P found in the branching fraction ofB0
S → ℓ+ℓ−

introduced in Eq. 6.25. Their numerical values can be found in Table 6.7.
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C | Denominator of ACP(q
2)

Here, we present the denominator of the differential direct CP asymmetry in B → Kℓ+ℓ− decays, as defined
in Eq. 6.43. The function N(q2) is defined in Eq. 6.73.
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D | Angular functions

Here, the expressions for the angular functions introduced in Eq. 6.63 are presented.
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