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1 Introduction

The Standard Model of particle physics was developed in flat spacetime. In this process, global gauge invariances
were transformed into local ones in accordance with the local characteristics of special relativity. The resulting
symmetries brought with them certain interactions and conserved quantities, so one can say they are the founda-
tion on which the Standard Model was built. Of course, since we are now aware of the fact that we live in a curved
spacetime, rather than a flat one, it is important to bring the Standard Model into a curved spacetime setting. In
this thesis, we implement this in the form of a background metric. The starting point is a Lagrangian with gauge
symmetry before symmetry breaking. At this point, there is no need for mass and our theory is globally scale in-
variant. Similarly to gauge invariances, we would like to implement this global phenomenon locally and investigate
the consequences. To that end, conformal symmetry is introduced. The conformal transformation transforms both
the metric and the fields. Of course, electroweak symmetry breaking is eventually needed to introduce mass. This
means that conformal symmetry would also need to be broken at this point, perhaps leaving interesting remnants
for us to observe.

Many people have worked on conformal symmetries, including Dr. E. A. Tagirov. He investigated conformal sym-
metry for a spinless Quantum Field Theory (QFT) in general spacetime in [1]. He found that a coupling between the
scalar field and the scalar curvature is needed for a conformal symmetry to exist. He then proceeded to compare
this to an entirely different approach in which a potential term proportional to the scalar curvature arises. This
second approach, described in [2], is the quantization of the non-relativistic motion of a spinless particle moving
along a geodesic line. This approach was inspired by DeWitt, who did similar calculations resulting in a potential
term proportional to the scalar curvature in [3]. When Tagirov compares the two coupling coefficients of the dif-
ferent approaches, he concludes that they are the same in 4 dimensions and goes on to say that this cannot be a
coincidence. This is because the coefficient in the geodesic approach is a fingerprint of the underlying conformal
symmetry of the massless theory, according to Tagirov.

We were intrigued by these findings and set out to further understand them. However, this proved challenging
since the reasoning in these papers is limited and often times more complex than can be determined at first glance,
which brings us to our present goal. In this thesis, the reasoning behind the comparison of the coupling with cur-
vature in these two approaches is reviewed and documented in a clear, unambiguous, and complete manner.

To this end, we will first investigate conformal symmetry in a QFT setting in line with the first approach of Tagirov,
which can be found in chapter 2. Next, we will investigate the second approach of Tagirov, the quantization of the
non-relativistic motion of a spinless particle that is moving along a geodesic line, which can be found in chapter 3.
Our conclusions and outlook can then be found in chapter 4.
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2 Conformal transformations

We first want to investigate conformal transformations in a QFT setting. Although we want them to work similarly
to the gauge transformations in the SM, they are more complex. A large part of this complexity is due to the fact that
we are in a general spacetime setting, which affects our Lagrangian and equations of motion. Therefore, we first
focus on QFT in a general spacetime. After this, we can focus on the conformal transformations and the resulting
symmetries.
Tagirov focuses on spin-0 particles and our main focus will reflect this. However, we grew curious about the effects
on spin- 1

2 particles as well. Since they show some differences with respect to the spin-0 particles, we decided to
include them in this chapter.

2.1 Notation and conventions

In this chapter, we use natural units. Additionally, a general n-dimensional metric gµν is used, where of course
d s2 = gµνd xµd xν. We use the ‘mostly minus’ metric signature, which means the Riemann tensor is

Rα
βγδ = ∂δΓαβγ−∂γΓαβδ+ΓαδλΓλβγ−ΓαγλΓλβδ, (1)

where ∂µ = ∂
∂xµ and

Γαβγ =
1

2
gδα

(
∂βgδγ+∂γgδβ−∂δgβγ

)
. (2)

The scalar curvature is defined as
R = gβδRα

βαδ. (3)

2.2 Quantum Field Theory in a general spacetime

QFT is often set up in flat Minkowski spacetimei with metric ηab . However, we want to work in a general spacetime
with a general metric gµν. In this section, we discuss the necessary changes to arrive at a QFT in a general spacetime.

2.2.1 Spin-0

In flat Minkowski spacetime, we have the scalar Lagrangianii L = 1
2

(
ηab∂aφ∂bφ−m2φ2

)
, where φ is the scalar

field and m the mass. The Euler-Lagrange equation that accompanies it is
(
□+m2

)
φ = 0, which is also known as

the Klein-Gordon (KG) equation. Here, we have used that □ = ηab∂a∂b in Minkowski spacetime. The switch to
a general spacetime is not complicated in this case. The metric ηab is replaced by the metric gµν and the partial
derivative ∂a is replaced by the covariant derivative ∇µ. This results in

L = 1

2

√|g |(gµν∂µφ∂νφ−m2φ2 −ξRφ2) , (4)

where g = det(gµν) is the determinant of the metric tensor, R is the scalar curvature, and ξ is a constant. ∇µφ= ∂µφ
was used since φ is a scalar field. We have added

√|g |, which is a result of the invariant volume element
√|g |d n x.

The term containing the R-φ2 coupling is also added. This is allowed because in flat spacetime R = 0, so this term

iThe Roman indices are used to make an explicit distinction between flat Minkowski spacetime and a general spacetime, for which Greek
indices are used. This will help with clarity later on.

iiNote that Lagrangian density is meant whenever the term Lagrangian is used.
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drops out automatically when we go back to Minkowski spacetime. The special case when ξ = 0 is referred to as
minimal coupling. The KG-equation turns into (

□+m2 +ξR
)
φ= 0 (5)

where □= gµν∇µ∇ν.

2.2.2 Spin- 1
2

Similarly to the spin-0 approach, we start with the Dirac Lagrangian in Minkowski spacetime,

LD = i
2

(
ψ̄γa∂aψ− ψ̄γa←−∂ aψ

)
−mψ̄ψ, whereψ is the spin- 1

2 field and γa are the Dirac gamma matrices. The Euler-

Lagrange equation that accompanies it is
(
iγa∂a −m

)
ψ= 0, which is also known as the Dirac equation. In a general

spacetime these become

LD =√|g |
(

i

2

(
ψ̄γµ∇µψ− ψ̄γµ←−∇µψ

)
−mψ̄ψ

)
(6)

and (
iγµ∇µ−m

)
ψ= 0. (7)

Please note that ψ̄ ̸= ψ†γ0 because we work in a different spacetime than Minkowski spacetime. Also note that
the transformation into a general spacetime is not as straight forward as it seems. The field ψ is not scalar, which
means ∇µψ ̸= ∂µψ but rather somewhat more complicated. This is easily explained using the n-bein formalism as
described by Parker and Toms in [4]. We will not explain the entire procedure in the same depth as they do, instead
we quote the necessary definitions.

The n-bein formalism relies on the introduction of a tensor, the n-bein ea
µ(x). With this n-beiniii one can relate

the general spacetime to a local orthonormal frame (Minkowski spacetime) in the following way:

gµν = ea
µeb

νηab . (8)

This can then also be used for other quantities, for example Aa = ea
µAµ. This raises the question of what ∇µAa

represents. Aa is not a scalar and therefore ∇µ does not only involve a partial derivative but also a connection.
However, this connection is not the Christoffel symbol Γλµν but rather something involving the Minkowski indices.
We introduce the connection ωa

µb in the following way,

∇µAa = ∂µAa +ωa
µb Ab . (9)

In order to fully define this connection we use that ∇µea
ν = 0 and arrive at

ωa
µb =−eνb(∂µea

ν −Γλµνea
λ). (10)

The exact steps taken to arrive at this definition can be found on page 223 of [4]. Note that, with this definition, we
can rewrite the Riemann tensor, and thus the scalar curvature R, in terms of the connectionωa

µb and the n-bein ea
µ.

Of course, what we are actually interested in is ∇µψ. If we follow the reasoning in [4], we arrive at

∇µψ= ∂µψ+ 1

8
ωab
µ [γa ,γb]ψ (11)

iiiNote that the n-bein is not unique, nothing stops us from using a Lorentz-transformed n-bein. This means we need to make sure that the
choice of n-bein has no impact on the end result.
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where γa are the Dirac gamma matrices in Minkowski spacetime satisfying {γa ,γb} = 2ηab . One can bring those
into our general spacetime as well, γµ = eµaγ

a , where they satisfy {γµ,γν} = 2gµν.

In Minkowski spacetime, the Dirac equation squared equals the Klein-Gordon equation. However, in our general
spacetime with the new covariant derivative this becomes

(
γµ∇µ

)2
ψ=□ψ+ 1

4
Rψ. (12)

Here, we see that a coupling with the scalar curvature R arises naturally and with a fixed coefficient.

2.3 Conformal transformations

Now we have QFT in a general spacetime, we can investigate the conformal transformations. As mentioned in
the introduction, we want to implement local scale invariance, which is why conformal transformations are intro-
duced. As part of the conformal transformations, not only the fields transform but the metric itself transforms as
well. The transformations are defined as follows,

φ′(x) =Ω(x)
2−n

2 φ(x) (13)

ψ′(x) =Ω(x)
1−n

2 ψ(x) (14)

g ′
µν(x) =Ω(x)2gµν(x). (15)

Here,Ω is the factor describing the local scale transformation and is itself dependent on the spacetime coordinates
x. As one can see, the power ofΩ is determined by the mass-dimension of the transformed field. These are the ba-
sic transformed quantities, but note that the transformation of the metric means that Γλµν and R transform as well.
In order to not interrupt the flow of this thesis too much, all step-by-step derivations of relevant transformations
can be found in appendix A. In this section, we will discuss the results of those transformations.

Before we perform the conformal transformations of the Lagrangians and Euler-Lagrange equations mentioned
above, we remove the mass. This is done because the conformal symmetry is based on the scale invariance of these
equations, which is only applicable when they do not contain mass.

2.3.1 Spin-0

For spin-0, we are interested in the transformation of the Lagrangian and the Klein-Gordon equation, since their
invariance under the transformation will signal a conformal symmetry. We begin with the scalar Lagrangian, which
behaves in the following way under conformal transformation,

L ′ =L +∇µ
(
−p−g

(n

2
−1

) 1

2
Ω−1gµνφ2∂νΩ

)
. (16)

It is invariant up to a total four-divergence, which is quite common in symmetries. The transformation of the
Klein-Gordon equation yields the following result

□′φ′+ξR ′φ′ =Ω− n
2 −1 (

□φ+ξRφ
)= 0, (17)

which is also invariant. However, both of these invariances only hold for a coupling coefficient of ξ = ξc = n−2
4(n−1) .

This is the same value Tagirov finds in [1] and Birrell and Davies have found in [5]. This also corresponds to the
findings of Penrose [6], who did similar calculations in four dimensions which resulted in a coupling coefficient

5
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of 1
6 . Since the Klein-Gordon equation and the Lagrangian are invariant, we are indeed dealing with a conformal

symmetry.

Note that it was necessary to introduce the coupling ξRφ2 between the scalar curvature and the field, with a spe-
cific value for the coupling coefficient, in order to arrive at a conformal symmetry. Now, we have followed Tagirov’s
first approach and have come to similar conclusions. This means that we have everything we need to continue
with the second approach, the quantization of geodesic motion. However, before we do this, we have added the
transformations for spin- 1

2 particles below for completeness.

2.3.2 Spin- 1
2

For spin- 1
2 we are interested in the transformation of the Lagrangian and the Dirac equation, since their invariance

under the transformation will again signal a conformal symmetry. The Dirac Lagrangian behaves as follows under
conformal transformation,

L ′
D =LD , (18)

so it is invariant. The transformed Dirac equation becomes,

iγ′µ∇′
µψ

′ =Ω 1−n
2 −1iγµ∇µψ= 0, (19)

which is invariant. In this case, it was not necessary to introduce any extra couplings in order to arrive at a con-
formal symmetry due to the nature of ∇µψ. Even though we do not need to add any extra terms, we have seen in
equation 12 that a coupling between the Dirac field and the scalar curvature arises naturally. It is interesting to note
that it is impossible to make the coefficients 1

4 and ξc = n−2
4(n−1) for the different spin cases match for any number

of dimensions. With this we have completed our investigation of the conformal transformations and will continue
with the quantization of geodesic motion.

6
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3 Quantization of geodesic motion

Now we have completed our investigation of conformal transformations, we can continue with the second ap-
proach of Tagirov. In this approach, the non-relativistic motion of a spinless particle, moving along a geodesic line
in a general spacetime, is quantized. In this quantization, we pay special attention to some rules of ordering, which
become more complex in a general spacetime. We then hope to find that the quantized Hamiltonian has a potential
term proportional to the scalar curvature R. In this section, we will follow the outline of sections 2 and 3 of Tagirov’s
paper [2] and add our own calculations and observations.

3.1 Notation and conventions

In this chapter, we focus on the quantization process and we will therefore not be working in natural units. For
the sake of simplicity, we will be working with a slightly different metric than before. We take time foliations of the
spacetime to separate a single component, t = x0/c, from the rest of the metric in the following way,

d s2 = gµνd xµd xν = (cd t )2 −ωi j (t ,x)dxi dx j . (20)

Since gµν is n-dimensional, it follows that ωi j is (n −1)-dimensional. The slightly different notation between d x
and dx is used to highlight the difference between coordinates before and after separating the time component.iv

This coordinate system is chosen without loss of generality.

3.2 Classical Hamiltonian along a geodesic line

Before we start the quantization process, we must first find a classical Hamiltonian for us to quantize. To this end,
we start with an on-shell spinless particle moving along a geodesic line, adhering to the following constraint,

gµνpµpν = m2c2. (21)

Similarly to the metric, we can separate the time component and arrive at(
p0 +mc

√
1+ 2H0

mc2

)(
p0 −mc

√
1+ 2H0

mc2

)
= 0, (22)

where H0 is

H0 = 1

2m
ωi j (x)pi p j . (23)

We then choose the solution for which H = cp0 > 0 and arrive at the classical Hamiltonian

H = mc2

√
1+ 2H0

mc2 . (24)

Since we are interested in a non-relativistic particle, we can expand H into

H ≈ mc2 +H0 (25)

plus higher order terms.

ivNote that in this section the difference between the Greek and Roman indices is not for Minkowski spacetime but for the separation of the
time component.
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3.3 Quantization and rules of ordering

In canonical quantization the primary observables x and p become operators, q̂ and p̂ respectively, satisfying the
canonical commutation relations

[q̂ i , q̂ j ] = 0 [p̂i , p̂ j ] = 0 [q̂ i , p̂ j ] = iħδi
j . (26)

Note that upper indices are used for the position operators and lower indices for the momentum operators from
now on.v We will mostly be working in coordinate representation, where the operators become

q̂ i coord. repr.−−−−−−−−→ xi (27a)

p̂ j
coord. repr.−−−−−−−−→−iħ

(
∂

∂x j
+ 1

4

(
∂

∂x j
lnω(x)

))
=−iħω− 1

4 (x)
∂

∂x j
ω

1
4 (x). (27b)

Here, ω(x) = det(ωi j (x)) is the determinant of the metric tensor and ∂
∂x j acts on everything to its right.

Obviously, we want to quantize the classical Hamiltonian, equation 25. The non-trivial part of this quantization
is H0 and, as such, we will focus on the quantization of equation 23. In this quantization, the rule of hermitian
operator ordering becomes rather important. Just like Tagirov, we choose a combination of two rules of ordering to
see which one might be better suited to our goal.

The first rule of ordering we choose is Weyl ordering. This popular ordering takes all possible orderings of non-
commuting operators and weighs them equally. A one dimensional example is

xp2 Q−→ 1

3
(q̂ p̂2 + p̂ q̂ p̂ + p̂2q̂). (28)

The second rule of ordering is Rivier ordering. In this case, all position operators are grouped on one side and all
momentum operators on the other side, supplemented by the reversed expression and a weight of 1

2 . The above
one dimensional example then becomes

xp2 Q−→ 1

2
(q̂ p̂2 + p̂2q̂). (29)

We then combine the two by taking ν times Weyl ordering and (1−ν) times Rivier ordering.

In our case, the position operators q̂ only appear inside the metric ωi j (q̂), which poses a problem. We do not
know what formωi j (x) may take or how many position operators it contains. To tackle this problem we will use the
method of implementing an ordering by means of integrals, where we make the assumption thatωi j (x) can be writ-
ten as a polynomial. The method of implementing an ordering using integrals in Euclidean space is described in
detail by Berezin and Shubin in [7]. Our version in the general spacetime with metric ωi j is based on that method.
The goal is to write f̂ Ψ(x), a random function of operators acting on a state function, as an integral of the symbol f .
The symbol is the classical analogue of the operator function f̂ , the way you would intuitively write it. We use this
because although we might not know f̂ , we do know the function we want to quantize, f. This naturally means that
a rule of ordering must be chosen and implemented in order to switch between a symbol and a quantized function.
This integral method is an important part of our reasoning and the entire process is thus described in detail in this
section.

vIf the indices were both upper/lower, the last commutation relation would contain the metric instead of the delta-function, which would
complicate the calculations.
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3.3.1 Weyl ordering using integrals

We will start with Weyl ordering, since it poses the biggest problem in our investigation. As mentioned before, in
Weyl ordering, every ordering of non-commuting operators has an equal contribution. To write this down sim-

ply, we use the Weyl-ordered symmetric product
(

Ak1
1 ...AkN

N

)
W

of non-commuting operators Ak1
1 , ..., AkN

N , which is

defined as follows,

(α1 A1 + ...+αN AN )k = ∑
k1+...+kN=k

k !

k1!...kN !
α

k1
1 ...αkN

N

(
Ak1

1 ...AkN
N

)
W

. (30)

In our case there are only pairs of non-commuting position and momentum operators, so N = 2 and the previous
equation becomes (

αq̂ +βp̂
)k = ∑

l+m=k

k !

l !m!
αlβm

(
q̂ l p̂m

)
W

(31)

for one such (q̂ , p̂) pair. This means, for example,(
q̂ p̂

)
W = 1

2

(
q̂ p̂ + p̂ q̂

) (
q̂2p̂

)
W = 1

3

(
q̂2p̂ + q̂ p̂ q̂ + p̂ q̂2) . (32)

We then define our polynomial Weyl-ordered function f̂W as follows in n −1 spatial dimensions

f̂W = ∑
σα,σβ≤m

c
α⃗β⃗

(q̂α1
1 p̂β1

1 )W ...(q̂αn−1
n−1 p̂βn−1

n−1 )W , (33)

where σα =α1+ ...+αn−1, σβ =β1+ ...+βn−1, m is the maximum degree of the polynomial, and c
α⃗β⃗

is a coefficient.

To clarify the notation, with q̂αk
k we mean that every operator q̂k has its own corresponding powerαk , where the lat-

ter are integers and the repeated k-indices are not summed over. This series of symmetric products is implemented
in the form of an exponential function, similarly to [7],

e i
(
ri q̂ i+s j p̂ j

)
= e i(r1 q̂1+s1 p̂1)...e i(rn−1 q̂n−1+sn−1 p̂n−1)

=
∞∑

k1=0

i k1

k1!

(
r1q̂1 + s1p̂1

)k1 ...
∞∑

kn−1=0

i kn−1

kn−1!

(
rn−1q̂n−1 + sn−1p̂n−1

)kn−1 .
(34)

Each of the terms above is of the form of equation 31, so we automatically arrive at something of the form of
equation 33. To deal with the lack of knowledge about the precise functional form of the operator f̂ , we use a
Fourier Transformation (FT) of position and momentum at the same time. To this end, we start by writing f̂ as a
FT of some function ϕ(r, s),

f̂W (q̂ , p̂) =
∫

e i
(
ri q̂ i+s j p̂ j

)
ϕ(r, s)dr d s. (35)

Here, we have used the compact notation dr = dr1...drn−1 and d s = d s1...d sn−1, the same holds true for d p and
d q . We also write the classical symbol f in a similar way,

f (q, p) =
∫

e i
(
ri q i+s j p j

)
ϕ(r, s)dr d s, (36)

and its inverse

ϕ(r, s) = (2π)2(1−n)
∫

e−i
(
ri q i+s j p j

)
f (q, p)d q d p. (37)

As mentioned before, we are interested in the effect of f̂W on a state functionΨ(x),

f̂WΨ(x) =
∫

e i
(
ri q̂ i+s j p̂ j

)
Ψ(x)ϕ(r, s)dr d s. (38)

9
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We want to know how the exponential acts on the state function, but this is made difficult by the appearance of
both position and momentum operators in the exponent. As a short intermezzo, we will explore this.

To study the effect of e i
(
ri q̂ i+s j p̂ j

)
onΨ(x), we will first split the exponential into components with a single operator

type and then investigate the effect onΨ(x). To split the exponential, we define

U (t ) = e−i t sk p̂k e−i trl q̂ l
e i t

(
r f q̂ f +sm p̂m

)
. (39)

Then we take the derivative

∂U (t )

∂t
=−i e−i t sk p̂k (sa p̂a)e−i trl q̂ l

e i t
(
r f q̂ f +sm p̂m

)
− i e−i t sk p̂k e−i trl q̂ l

(rb q̂b)e i t
(
r f q̂ f +sm p̂m

)
+ i e−i t sk p̂k e−i trl q̂ l

(
rc q̂c + sd p̂d

)
e i t

(
r f q̂ f +sm p̂m

)
=−i e−i t sk p̂k

(
sa p̂ae−i trl q̂ l −e−i trl q̂ l

sd p̂d

)
e i t

(
r f q̂ f +sm p̂m

)
=−i e−i t sk p̂k

(
e−i trl q̂ l

sa p̂a −ħt sbrbe−i trl q̂ l −e−i trl q̂ l
sd p̂d

)
e i t

(
r f q̂ f +sm p̂m

)
= iħt sbrbe−i t sk p̂k e−i trl q̂ l

e i t
(
r f q̂ f +sm p̂m

)
= iħt sbrbU (t ).

(40)

We know U (0) = 1 so we can solve this to get

U (t ) = e iħt 2sk rk /2 = e−i t sk p̂k e−i trl q̂ l
e i t

(
r f q̂ f +sm p̂m

)
. (41)

This means
e i t

(
r f q̂ f +sm p̂m

)
= e iħt 2sk rk /2e i trl q̂ l

e i t sm p̂m (42)

and for t = 1
e i

(
r f q̂ f +sm p̂m

)
= e iħsk rk /2e i rl q̂ l

e i sm p̂m . (43)

Now, we have our rule for splitting the exponential in terms of components with a single operator type, which
means we can continue to the action of the exponential on the state functionΨ(x):

e i
(
r f q̂ f +sm p̂m

)
Ψ(x) = e iħsk rk /2e i rl q̂ l

e i sm p̂mΨ(x)

= 〈x|e iħsk rk /2e i rl q̂ l
e i sm p̂m |Ψ〉

= e iħsk rk /2〈x|e i rl q̂ l
e i sm p̂m |Ψ〉

= e iħsk rk /2e i rl xl 〈x|e i sm p̂m |Ψ〉
= e i rk (skħ/2+xk )ω− 1

4 (x)Ψ′(x+ħs).

(44)

10
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In the last step, we used that

e−i ak p̂k /ħ =
∞∑

l=0

1

l !

(
−i ak p̂k /ħ

)l

=
∞∑

l=0

1

l !

(
−i ak (−iħ)ω− 1

4 (x)
∂

∂xk
ω

1
4 (x)/ħ

)l

=
∞∑

l=0

1

l !
ω− 1

4 (x)

(
−ak ∂

∂xk

)l

ω
1
4 (x)

=ω− 1
4 (x)e−ak∂/∂xk

ω
1
4 (x),

(45)

where we used equation 27b for the momentum operator in coordinate representation. This results in the following
translation, which is implemented in the last step of equation 44,

e−i ak p̂k /ħΨ(x) =ω− 1
4 (x)e−ak∂/∂xk

ω
1
4 (x)Ψ(x)

=ω− 1
4 (x)Ψ′(x−a),

(46)

where we defined the new state function asΨ′(x) =ω 1
4 (x)Ψ(x). This concludes our intermezzo.

Now, we can go back to f̂WΨ(x) as defined in equation 38, where we can implement what we learned in equation
44,

f̂WΨ(x) =
∫

e i
(
ri q̂ i+s j p̂ j

)
Ψ(x)ϕ(r, s)dr d s

=
∫

e i rk (skħ/2+xk )ω− 1
4 (x)Ψ′(x+ħs)ϕ(r, s)dr d s

= (2π)2(1−n)
∫

e i rk (skħ/2+xk )e−i
(
ri q i+s j p j

)
f (q, p)ω− 1

4 (x)Ψ′(x+ħs)d q d p dr d s

= (2π)2(1−n)
∫

e i
(
rk (skħ/2+xk−qk )−s j p j

)
f (q, p)ω− 1

4 (x)Ψ′(x+ħs)d q d p dr d s

= (2π)1−n
∫

e−i s j p j δ
(
sħ/2+x−q

)
f (q, p)ω− 1

4 (x)Ψ′(x+ħs)d q d p d s

= (2π)1−n
∫

e−i s j p j f (sħ/2+x, p)ω− 1
4 (x)Ψ′(x+ħs)d p d s.

(47)

In the third step, we used the inverse FT for ϕ(r, s) as described in equation 37. We then define new coordinates
y = x+ħs and rewrite equation 47,

f̂WΨ(x) = (2πħ)1−n
∫

e i p j (x j −y j )/ħ f (
x+y

2
, p)ω− 1

4 (x)Ψ′(y)d p dy

= (2πħ)1−n
∫

e i p j (x j −y j )/ħ f (
x+y

2
, p)ω− 1

4 (x)Ψ(y)ω
1
4 (y)d p dy.

(48)

This integral can be used to determine the Weyl ordering of a random polynomial function f̂ of non-commuting op-
erators q̂ and p̂. Our integral differs from that of Tagirov in [2] in that the phase has a different sign. We checked this
by using a f̂W with an odd number of momentum operators (x2p), where our phase gives the correct expression.
However, this difference between our findings and those of Tagirov is inconsequential to our current investigation
since we are dealing with an even number of momentum operators in Ĥ0.

11
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We will take a another short intermezzo to show that this integral indeed produces Weyl ordered functions. We
perform a check with the one dimensional example of equation 28, where f (x, p) = xp2:

f̂WΨ(x) = (2πħ)−1
∫

e i p(x−y)/ħ x+y

2
p2ω− 1

4 (x)Ψ′(y)d p dy

= (2πħ)−1
∫

(iħ)2
(
∂2

∂y2 e i p(x−y)/ħ
)

x+y

2
ω− 1

4 (x)Ψ′(y)d p dy

=
∫

−ħ2
(
∂2

∂y2 δ(x−y)

)
x+y

2
ω− 1

4 (x)Ψ′(y)dy

=−ħ2ω− 1
4 (x)

∫
δ(x−y)

∂2

∂y2

(x+y

2
Ψ′(y)

)
dy

=−ħ2ω− 1
4 (x)

∫
δ(x−y)

(
∂

∂y
Ψ′(y)+ x+y

2

∂2

∂y2Ψ
′(y)

)
dy

=−ħ2ω− 1
4 (x)

(
∂

∂x
Ψ′(x)+x

∂2

∂x2Ψ
′(x)

)
=−ħ2ω− 1

4 (x)
1

3

(
x
∂2

∂x2Ψ
′(x)+ ∂

∂x

(
x
∂

∂x
Ψ′(x)

)
+ ∂2

∂x2

(
xΨ′(x)

))
= 1

3

(
q̂ p̂2 + p̂ q̂ p̂ + p̂2q̂

)
Ψ(x).

(49)

This is exactly the same result as before. Note that there are more ways than one to rewrite the before last equation,
resulting in seemingly different weights for each term. For example,

f̂WΨ(x) =−ħ2ω− 1
4 (x)

(
∂

∂x
Ψ′(x)+x

∂2

∂x2Ψ
′(x)

)
=−ħ2ω− 1

4 (x)
1

4

(
x
∂2

∂x2Ψ
′(x)+2

∂

∂x

(
x
∂

∂x
Ψ′(x)

)
+ ∂2

∂x2

(
xΨ′(x)

))
= 1

4

(
q̂ p̂2 +2p̂ q̂ p̂ + p̂2q̂

)
Ψ(x).

(50)

This is still Weyl ordering, just rewritten in a different form. We will make explicit use of this later on, while deter-
mining Ĥ0.

3.3.2 Rivier ordering

Returning to our original problem, the function f̂ that we are interested in contains exactly two momentum opera-
tors and an unknown number of position operators in the form ofωi j (q̂). Equation 48 tells us how to deal with this
in Weyl ordering, but we wanted to use a combination of Weyl and Rivier ordering. Rivier ordering, in this case, is
rather simple since the unknown part of f̂ only contains position operators and, in Rivier ordering, they do not mix
with the momentum operators. Thus, we can simply write

f̂R = 1

2

(
ωi j (q̂)p̂i p̂ j + p̂i p̂ jω

i j (q̂)
)

(51)

for Rivier ordering in our specific case. As required, f̂R is hermitian. The general case with an unknown number
of position and momentum operators, similar to the approach above for Weyl ordering, is described in detail in
appendix B.

12
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3.4 Quantized Hamiltonian

We can now continue with the quantization of H0, equation 23. Using the integral of equation 48 for Weyl ordering
and equation 51 for Rivier ordering, and weighing them with ν and 1−ν respectively, we get

Ĥ0Ψ(x) =
(

2−ν
8m

ωi j (q̂)p̂i p̂ j + ν

4m
p̂iω

i j (q̂)p̂ j + 2−ν
8m

p̂i p̂ jω
i j (q̂)

)
Ψ(x). (52)

The full derivation can be found in appendix C. This is exactly the same as equation (25) in [2] of Tagirov.

This may look as though the different terms in Weyl ordering do not share the same weight, but this is not the
case. The terms are simply rewritten in the same way as the example of equation 50. To prove the validity of the
integral method for Weyl ordering, we perform a check by way of a Taylor expansion of the metric ωi j (x). The full
Taylor expansion can be found in appendix D and agrees with equation (52). In this appendix, one can also find
that equation 52 can be written as

Ĥ0Ψ(x) =
(

1

2m
p̂iω

i j (q̂)p̂ j − ħ2

4m
(1− ν

2
)

(
∂

∂q̂ i

∂

∂q̂ j
ωi j (q̂)

))
Ψ(x), (53)

where the dependence on the ordering is purely in the second term.

3.4.1 Separating kinetic and potential terms

As usual, we would like to separate Ĥ0 into a purely kinetic term and a potential term. Before doing so, we introduce
some definitions that will simplify our calculations. First of all, we introduce the Laplace-Beltrami operator ∆ω,

∆ωΨ(x) =∇·∇Ψ(x) = 1p
ω(x)

∂

∂xi

(√
ω(x)ωi j (x)

∂

∂x j
Ψ(x)

)
= 1

2
ω−1(x)ωi j (x)

(
∂

∂xi
ω(x)

)(
∂

∂x j
Ψ(x)

)
+

(
∂

∂xi
ωi j (x)

)(
∂

∂x j
Ψ(x)

)
+ωi j (x)

(
∂

∂xi

∂

∂x j
Ψ(x)

)
.

(54)

Next, we introduce the Christoffel symbol,

Γk
i j (x) = 1

2
ωkl (x)

(
∂

∂xi
ω j l (x)+ ∂

∂x j
ωi l (x)− ∂

∂xl
ωi j (x)

)
, (55)

which we can use to define

Γi (x) = Γk
i k (x) = 1

2
ωkl (x)

(
∂

∂xi
ωkl (x)+ ∂

∂xk
ωi l (x)− ∂

∂xl
ωi k (x)

)
= 1

2
ωkl (x)

∂

∂xi
ωkl (x), (56)

where the last equation holds because of the symmetry in the indices k, l . We then use the identity

lnω(x) = Tr(lnωi j (x)), (57)

to get
1

ω(x)

∂

∂xk
ω(x) =ωi j (x)

∂

∂xk
ωi j (x), (58)

which can be proven directly using the fully diagonalised version of the metric. This is then connected to the
Christoffel symbol, resulting in the following identity:

∂

∂xk
ω(x) = 2ω(x)Γk (x). (59)

13
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Now, we can separate Ĥ0 into a kinetic term and a potential. We start with equation 53 and work this out until we
have the separation we are looking for.

Ĥ0Ψ(x) =
(

1

2m
p̂iω

i j (q̂)p̂ j − ħ2

4m
(1− ν

2
)

(
∂

∂q̂ i

∂

∂q̂ j
ωi j (q̂)

))
Ψ(x)

=− ħ2

2m
ω− 1

4 (x)
∂

∂xi

(
ωi j (x)

∂

∂x j

(
ω

1
4 (x)Ψ(x)

))
− ħ2

4m
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
Ψ(x)

=− ħ2

2m
ω− 1

4 (x)

[(
∂

∂xi
ωi j (x)

)(
ω

1
4 (x)

∂

∂x j
Ψ(x)+Ψ(x)

∂

∂x j
ω

1
4 (x)

)
+ωi j (x)

((
∂

∂xi

∂

∂x j
ω

1
4 (x)

)
Ψ(x)

+
(
∂

∂xi
ω

1
4 (x)

)(
∂

∂x j
Ψ(x)

)
+

(
∂

∂x j
ω

1
4 (x)

)(
∂

∂xi
Ψ(x)

)
+ω 1

4 (x)

(
∂

∂xi

∂

∂x j
Ψ(x)

))]
− ħ2

4m
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
Ψ(x)

=− ħ2

2m

[(
∂

∂xi
ωi j (x)

)(
∂

∂x j
Ψ(x)

)
+ 1

4
ω−1(x)Ψ(x)

(
∂

∂xi
ωi j (x)

)(
∂

∂x j
ω(x)

)
+ 1

4
ω−1(x)ωi j (x)Ψ(x)

(
∂

∂xi

∂

∂x j
ω(x)

)
− 3

16
ω−2(x)ωi j (x)

(
∂

∂xi
ω(x)

)(
∂

∂x j
ω(x)

)
Ψ(x)+ 1

2
ω−1(x)ωi j (x)

(
∂

∂xi
ω(x)

)(
∂

∂x j
Ψ(x)

)
+ωi j (x)

(
∂

∂xi

∂

∂x j
Ψ(x)

)
+ 1

2
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
Ψ(x)

]
=− ħ2

2m
∆ωΨ(x)− ħ2

4m

[
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
+ 1

2
ω−1(x)

∂

∂xi

(
ωi j (x)

(
∂

∂x j
ω(x)

))
− 3

8
ω−2(x)ωi j (x)

(
∂

∂xi
ω(x)

)(
∂

∂x j
ω(x)

)]
Ψ(x)

=− ħ2

2m
∆ωΨ(x)− ħ2

4m

[
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
+ ∂

∂xi

(
ωi j (x)Γ j (x)

)
+ 1

2
ωi j (x)Γi (x)Γ j (x)

]
Ψ(x)

=− ħ2

2m
∆ωΨ(x)+V (x)Ψ(x)

(60)

The first term is the kinetic term and

V (x) =− ħ2

4m

[
(1− ν

2
)

(
∂

∂xi

∂

∂x j
ωi j (x)

)
+ ∂

∂xi

(
ωi j (x)Γ j (x)

)
+ 1

2
ωi j (x)Γi (x)Γ j (x)

]
(61)

represents the potential term, which Tagirov calls the quantum potential in [2]. It is interesting to note that, al-
though we are dealing with a ‘free’ particle, there is still a potential term because we are working in a general space-
time instead of a flat one. Also note that V (x) still contains ν and, as such, is dependent on the choice of a rule of
ordering. At this point, we have no means of preferring a specific ordering.
If we compare our potential to that of Tagirov in [2] (equation 27), we can see that the two results are distinctly
different. To investigate this, we directly replicated Tagirov’s calculations but still end up with our own results.
Therefore, we conclude that we are in disagreement with Tagirov.

3.4.2 Coupling with R

A slightly different approach described by DeWitt in [3] investigates the path integral to see how a particle behaves
that is moving along a geodesic line. This was done because, in the classical limit, a freely moving particle will
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follow a geodesic line. Along this investigation some assumptions were made that come down to the following:
The extent of the particle’s wave packet is very small in comparison to the distance scale on which the metric
changes appreciably, so the particle can effectively be treated as a point particle. The other assumptions are that
this particle is moving non-relativistically and that the metric is static. DeWitt uses the same Hamiltonian as we
did and quantizes H0 as Ĥ0 = 1

2m p̂iω
i j (q̂)p̂ j , which corresponds to our findings if we take ν= 2. He then uses the

path integral to arrive at

Ĥ0 =− ħ2

2m

(
∆ω− 1

6
Rω

)
, (62)

where Ĥ0 is split into a kinetic term and a potential term proportional to the scalar curvature R with a coefficient
of 1

6 .

To cast our Ĥ0 into a similar form, we use Riemannian normal coordinates yµ. These coordinates arise from the
idea that a unique geodesic line can be found between two points that are sufficiently close together. The new
coordinates are defined as follows:

yµ = saµ, (63)

where s is the distance along the geodesic line between the two points and aµ is the tangent vector along the same
geodesic line. In the vicinity of the point yµ = 0, which we will call the origin (O), we can approximate the metric as

gµν ≈ gµν(O)+ 1

3
Rµανβ(O)yαyβ, (64)

plus higher order terms which we will omit in the current calculations. As a result of the Riemannian normal
coordinates, ∂

∂xα gµν(O) = 0 and thereforeΓµ
αβ

(O) = 0. We assume that all time derivatives ofωi j are zero, so we work

in a globally static spacetime, as a consequence, R = Rω. Implementing this into our potential term of equation 61,
we arrive at

V (O) =− ħ2

4m

[
−

(
2− ν

2

) 1

3
Rω(O)

]
=− ħ2

2m

[
−

(
2− ν

2

) 1

6
Rω(O)

]
. (65)

We have indeed found a potential term proportional to the scalar curvature and if we take ν = 2 we arrive at the
same result as DeWitt.

If we follow the same procedure described above for the potential term of Tagirov (equation 27 in [2]), we arrive
at

V (T )(O) =− ħ2

2m

[
−

(
1+ ν

2

) 1

6
Rω(O)

]
. (66)

It is the same as ours but with a different prefactor involving ν. In his paper, Tagirov describes following the same
procedure but he arrives at

V (T )(O) =− ħ2

2m

[
−

(ν
2

) 1

6
Rω(O)

]
, (67)

which is the same as DeWitt for ν = 2, unlike equation 66. It seems that the difference in the potential term com-
pared to ours and the difference in the prefactor above compared to our calculations magically cancel to arrive at
the same equation as DeWitt in the case of ν = 2. Tagirov then goes on to say that ν must be 2 so that the result
agrees with DeWitt. However, DeWitt did not take into account different rules of ordering and we still do not see
any reason to prefer a certain rule of ordering.

Like we set out to do in the beginning of this chapter, we have found that the quantized Hamiltonian has a po-
tential term proportional to the scalar curvature R in these Riemannian normal coordinates. The corresponding
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coefficient is
(
2− ν

2

) 1
6 , which is still dependent on the choice of rule of ordering, ν. If ν= 2, the coefficient becomes

1
6 , which is the same as the conformal coefficient found in section 2.3.1, ξc = n−2

4(n−1) , in four dimensions. However,

the factor 1
3 in equation 65 is a direct consequence of the use of normal coordinates so it is unclear whether this sim-

ilarity is a fingerprint of the underlying conformal symmetry of the massless theory or this is merely a coincidence.
Furthermore, as of yet we still have no clear compelling reasonvi to prefer a certain rule of ordering. This concludes
our investigation of the second approach, quantization of geodesic motion, which means we can proceed to some
interesting conclusions and areas of future research.

viIf you require the Hamiltonian to be purely kinetic, that could be realised by taking ν= 4, which coincides with minimal coupling or ξ= 0.
However, we do not have a compelling reason for this requirement yet.
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4 Conclusions and outlook

In the introduction, we mentioned that the goal of this thesis was to review and document the reasoning behind
the QFT approach with conformal symmetry and the approach of quantization of geodesic motion presented by
Tagirov in a clear, unambiguous and complete manner. The two approaches have been explored and described in
detail and we can draw some interesting conclusions from our research.

In chapter 2, the first approach of setting up a Quantum Field Theory (QFT) in a general spacetime and search-
ing for a conformal symmetry was investigated thoroughly. From that investigation we can conclude that, for a
massless spin-0 field, there is a conformal symmetry if we introduce the coupling ξRφ2 to the scalar Lagrangian
and take the coupling coefficient to be ξ = ξc = n−2

4(n−1) , where n is the number of spacetime dimensions. This is
exactly the same result found by Tagirov in [1].

We have also investigated the same approach for a massless spin- 1
2 Dirac field. In this case, there is a conformal

symmetry without the need for introducing extra terms. Furthermore, in writing the squared of the Dirac equation
we arrive at a Klein-Gordon-like equation with a coupling between the scalar curvature and the Dirac field with a
coupling coefficient of 1

4 . This coupling is a result of the action of the derivatives on the Dirac field in a general
spacetime. It is interesting to note that it is impossible to make the coefficients for the different spin cases match
for any number of dimensions.

After we concluded the first approach with similar results to Tagirov, we investigated the second approach in chap-
ter 3. The second approach of quantization of the non-relativistic motion of a spinless particle moving along a
geodesic line was investigated thoroughly and a few different conclusions can be drawn from this investigation.
First of all, we verified the method of using integrals to implement Weyl ordering and Rivier ordering for a random
function of operators working on a state function.

Secondly, we found the same integrals as Tagirov did in [2] except for a different sign for the phase. This had no
impact on our calculations since Ĥ0 contains two momentum operators and we arrived at the same expression for
Ĥ0 as Tagirov. However, it is important to use the correct sign in any future research, especially when working with
an odd number of momentum operators.

Finally, we separated Ĥ0 into a kinetic and a potential term and arrived at a distinctly different expression com-
pared to Tagirov in [2]. After we used Riemannian normal coordinates, the potential term was proportional to the
scalar curvature. The resulting coefficient agreed with the calculations of DeWitt if we take ν = 2 for the ordering
parameter in our calculation, but we have not found a compelling reason to prefer this choice for the rule of order-
ing, nor any other choice. For ν = 2, the coefficient became 1

6 which corresponds to the coefficient found in the
first approach for a massless spin-0 field in four dimensions. However, it is still unclear whether this similarity is
a fingerprint of the underlying conformal symmetry of the massless theory, or merely a coincidence. Even though
Tagirov uses the same method of using Riemannian normal coordinates, we find a different coefficient for his po-
tential term than he does. Inexplicably, the coefficient he arrives at becomes the same as that of DeWitt for ν= 2.

These conclusions, of course, give rise to some interesting areas for future research. The first is to investigate
whether there is a guiding principle that tells us which rule of ordering we should choose. An argument could
be made for taking ν = 4, which coincides with minimal coupling, because the Hamiltonian would be purely ki-
netic in that case. However, we do not have a compelling reason to set this requirement yet. If a clear reason arises
for choosing ν = 2, resulting in the same coefficient for the two approaches in four dimensions, it would also be
interesting to investigate whether an underlying reason for the correspondence can be determined or not.
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Another interesting area for future research is to follow the second approach of quantization of geodesic motion
but for a spin- 1

2 particle. Of course, this changes Ĥ0 and the spin- 1
2 character of the particle needs to be taken

into account throughout the calculations. It would be interesting to see whether a similar coupling with the scalar
curvature arises, and whether this corresponds to the coupling found in the QFT approach.

Regardless of the direction of future research, we hope that this thesis can serve as a solid foundation.
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A Conformal transformations

In this appendix, the derivations of the conformal transformations can be found. It has been split into four parts.
The first section contains metric related quantities such as the Christoffel symbol, the Ricci curvature scalar, and
the spinor connection. The second section contains n-bein related quantities such as the n-bein itself, the Dirac
gamma matrix and the connection. The third section contains equations containing the scalar field such as the
Klein-Gordon equation and the scalar Lagrangian. The fourth section contains equations containing the Dirac
field such as the Dirac equation and the Dirac Lagrangian.

A.1 Metric gµν

In this section, the derivation of conformal transformations of metric related quantities can be found.

A.1.1 Christoffel symbol Γλµν

Γ′λµν =
1

2
g ′λρ

(
∂µg ′

νρ +∂νg ′
µρ −∂ρg ′

µν

)
= 1

2
Ω−2gλρ

(
∂µ(Ω2gνρ)+∂ν(Ω2gµρ)−∂ρ(Ω2gµν)

)
= 1

2
Ω−2gλρ

(
2Ω∂µΩgνρ +Ω2∂µgνρ +2Ω∂νΩgµρ +Ω2∂νgµρ −2Ω∂ρΩgµν−Ω2∂ρgµν

)
= Γλµν+Ω−1gλρ

(
gνρ∂µΩ+ gµρ∂νΩ− gµν∂ρΩ

)
= Γλµν+Ω−1∂σΩ

(
δλµδ

σ
ν +δλνδσµ − gµνgλσ

)
(68)

A.1.2 Ricci curvature scalar R

R ′ = g ′βδ
(
∂δΓ

′α
βα−∂αΓ′αβδ+Γ′αδλΓ′λβα−Γ′ααλΓ′λβδ

)
=Ω−2gβδ

[
∂δΓ

α
βα+∂δ

(
Ω−1∂λΩ(δαβδ

λ
α+δααδλβ− gβαgαλ)

)
−∂αΓαβδ−∂α

(
Ω−1∂λΩ(δαβδ

λ
δ +δαδδλβ− gβδgαλ)

)
+ΓαδλΓλβα+ΓαδλΩ−1∂µΩ(δλβδ

µ
α+δλαδµβ− gβαgλµ)+Ω−1∂µΩ(δαδδ

µ

λ
+δαλδ

µ

δ
− gδλgαµ)Γλβα

+Ω−1∂µΩ(δαδδ
µ

λ
+δαλδ

µ

δ
− gδλgαµ)Ω−1∂νΩ(δλβδ

ν
α+δλαδνβ− gβαgλν)

−ΓααλΓλβδ−ΓααλΩ−1∂µΩ(δλβδ
µ

δ
+δλδδ

µ

β
− gβδgλµ)−Ω−1∂µΩ(δααδ

µ

λ
+δαλδ

µ
α− gαλgαµ)Γλβδ

−Ω−1∂µΩ(δααδ
µ

λ
+δαλδ

µ
α− gαλgαµ)Ω−1∂νΩ(δλβδ

ν
δ+δλδδνβ− gβδgλν)

]

(69)

With clarity and conciseness in mind, we examine the terms in between the square brackets proportional to Ω0,
∂µ

(
Ω−1∂λΩ

)
,Ω−1∂µΩ, andΩ−2∂µΩ∂νΩ separately. We start with the term proportional toΩ0,

Ω−2gβδ
[
∂δΓ

α
βα−∂αΓαβδ+ΓαδλΓλβα−ΓααλΓλβδ

]
=Ω−2R. (70)
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Next, we examine the term proportional to ∂µ
(
Ω−1∂λΩ

)
,

Ω−2gβδ
[
∂δ

(
Ω−1∂λΩ(δαβδ

λ
α+δααδλβ− gβαgαλ)

)
−∂α

(
Ω−1∂λΩ(δαβδ

λ
δ +δαδδλβ− gβδgαλ)

)]
=Ω−2gβδ

[
∂δ(nΩ−1∂βΩ)−∂β(Ω−1∂δΩ)−∂δ(Ω−1∂βΩ)+∂α(Ω−1∂λΩgβδgαλ)

]
=Ω−2

[
(n −2)gβδ∂δ(Ω−1∂βΩ)+n∂α(Ω−1gαλ∂λΩ)+Ω−1gβδgαλ∂λΩ∂αgβδ

]
=Ω−2

[
(n −2)gβδ∂δ(Ω−1∂βΩ)+n

(
gαλ∂α(Ω−1∂λΩ)+Ω−1∂λΩ∂αgαλ

)
+Ω−1gβδgαλ∂λΩ∂αgβδ

]
=Ω−2

[
2(n −1)gβδ∂δ(Ω−1∂βΩ)+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ

]
=Ω−2

[
2(n −1)Ω−1gβδ∂β∂δΩ−2(n −1)Ω−2gβδ∂βΩ∂δΩ+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ

]
.

(71)

Then, we examine the term proportional toΩ−1∂µΩ,

Ω−2gβδ
[
ΓαδλΩ

−1∂µΩ(δλβδ
µ
α+δλαδµβ− gβαgλµ)+Ω−1∂µΩ(δαδδ

µ

λ
+δαλδ

µ

δ
− gδλgαµ)Γλβα

−ΓααλΩ−1∂µΩ(δλβδ
µ

δ
+δλδδ

µ

β
− gβδgλµ)−Ω−1∂µΩ(δααδ

µ

λ
+δαλδ

µ
α− gαλgαµ)Γλβδ

]
=Ω−3∂µΩgβδ

(
Γ
µ

δβ
+Γααδδ

µ

β
−Γαδλgβαgλµ+Γµ

βδ
+Γααβδ

µ

δ
− gδλgαµΓλβα−Γααβδ

µ

δ
−Γααδδ

µ

β
+Γααλgβδgλµ−nΓµ

βδ

)
=Ω−3∂µΩ

(
(2−n)gβδΓµ

βδ
−Γααλgλµ−Γβ

βα
gαµ+nΓααλgλµ

)
=Ω−3∂µΩ(2−n)

(
gβδΓµ

βδ
−Γααλgλµ

)
=Ω−3∂µΩ(2−n)

(
1

2
gβδgµλ(∂βgδλ+∂δgβλ−∂λgβδ)− 1

2
gλµgαν(∂αgνλ+∂λgνα−∂νgαλ)

)
=Ω−3∂µΩ(2−n)gβδgµλ(∂δgβλ−∂λgβδ)

=Ω−3∂µΩ(2−n)
(
2gβδΓµ

βδ
− gβδgµλ∂βgδλ

)
.

(72)

Finally, we examine the term proportional toΩ−2∂µΩ∂νΩ,

Ω−2gβδ
[
Ω−1∂µΩ(δαδδ

µ

λ
+δαλδ

µ

δ
− gδλgαµ)Ω−1∂νΩ(δλβδ

ν
α+δλαδνβ− gβαgλν)

−Ω−1∂µΩ(δααδ
µ

λ
+δαλδ

µ
α− gαλgαµ)Ω−1∂νΩ(δλβδ

ν
δ+δλδδνβ− gβδgλν)

]
=Ω−4∂µΩ∂νΩgµν(n2 −3n +2).

(73)

Now, we gather all the terms again and use □Ω= gµν∂µ∂νΩ−Γλµν∂λΩgµν:

R ′ =Ω−2
[

R +Ω−2∂µΩ∂νΩgµν(n2 −3n +2)+Ω−1∂µΩ(2−n)
(
2gβδΓµ

βδ
− gβδgµλ∂βgδλ

)
+2(n −1)Ω−1gβδ∂β∂δΩ−2(n −1)Ω−2gβδ∂βΩ∂δΩ+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ

]
=Ω−2 [

R +Ω−2∂µΩ∂νΩgµν(n2 −5n +4)+2(n −1)Ω−1□Ω

+2Ω−1∂µΩgβδΓµ
βδ

− (2−n)Ω−1∂µΩgβδgµλ∂βgδλ+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ
]

(74)

Focussing on the last four terms, we can show that they amount to 0.
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2Ω−1∂µΩgβδΓµ
βδ

− (2−n)Ω−1∂µΩgβδgµλ∂βgδλ+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ

=Ω−1∂µΩgβδgµλ(∂βgδλ+∂δgβλ−∂λgβδ)− (2−n)Ω−1∂µΩgβδgµλ∂βgδλ

+nΩ−1∂λΩ∂αgαλ+Ω−1gβδgαλ∂λΩ∂αgβδ

= nΩ−1∂λΩ(gβδgµλ∂βgδµ+∂αgαλ)

= nΩ−1∂λΩ
(
∂β(gβδgλµgδµ)− gβδgδµ∂βgλµ− gλµgδµ∂βgβδ+∂αgαλ

)
= nΩ−1∂λΩ(2∂αgαλ−δβµ∂βgλµ−δλδ∂βgβδ)

= nΩ−1∂λΩ(2∂αgαλ−2∂αgαλ)

= 0

(75)

In the before last step, we used that ∂βδ
λ
δ
= 0. The transformation of R then results in

R ′ =Ω−2 [
R + (n −1)(n −4)Ω−2gµν∂µΩ∂νΩ+2(n −1)Ω−1□Ω

]
. (76)

A.2 n-bein ea
µ

In this section, the derivation of conformal transformations of n-bein related quantities can be found.

A.2.1 n-bein ea
µ

We use the definition of ea
µ, given in equation 8, and the transformation of the metric.

g ′
µν =Ω2gµν = e ′aµ e ′bν ηab g ′µν =Ω−2gµν = e ′µa e ′νb η

ab (77)

This means that the n-bein transforms as

e ′aµ =Ωea
µ e ′µa =Ω−1eµa . (78)

A.2.2 Dirac gamma matrix γµ

We use that
{γµ,γν} = 2gµν, (79)

which results in
γ′µ =Ω−1γµ (80)

A.2.3 Connectionωa
µb

ω′a
µb =−e ′b

ν(∂µe ′aν −Γ′λµνe ′aλ )

=−Ω−1eνb

(
∂µ(Ωea

ν )−
(
Γλµν+Ω−1∂σΩ(δλµδ

σ
ν +δλνδσµ − gµνgλσ)

)
Ωea

λ

)
=−Ω−1eνb

(
ea
ν∂µΩ+Ω∂µea

ν −ΓλµνΩea
λ−∂σΩ(δλµδ

σ
ν +δλνδσµ − gµνgλσ)ea

λ

)
=ωa

µb −Ω−1
(
eνbea

ν∂µΩ−eνb∂σΩ(δλµδ
σ
ν +δλνδσµ − gµνgλσ)ea

λ

)
=ωa

µb −Ω−1
(
eνbea

ν∂µΩ−eσb ea
µ∂σΩ−eνb ea

ν∂µΩ+ gµρgλσeρb ea
λ∂σΩ

)
=ωa

µb −Ω−1
(
gµρgλσeρb ea

λ∂σΩ−eσb ea
µ∂σΩ

)
(81)
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Here, we used the transformation of the Christoffel symbol from section A.1.1.
We are also interested in the transformation of ωab

µ [γa ,γb], where we will use the transformation of ωa
µb described

above:

ω′
µ

ab[γa ,γb] =ω′a
µcη

cb[γa ,γb]

= ηcb
(
ωa
µc −Ω−1

(
gµρgλσeρc ea

λ∂σΩ−eσc ea
µ∂σΩ

))
[γa ,γb]

=ωab
µ [γa ,γb]−Ω−1ηcb

(
gµρgλσeρc ea

λ∂σΩ−eσc ea
µ∂σΩ

)
[γa ,γb]

=ωab
µ [γa ,γb]−Ω−1

(
gµρgλσ∂σΩ[γλ,γρ]−∂σΩ[γµ,γσ]

)
=ωab

µ [γa ,γb]−Ω−1
(
∂σΩgλσ[γλ,γµ]−∂σΩgλσ[γµ,γλ]

)
=ωab

µ [γa ,γb]−2Ω−1∂σΩgλσ[γλ,γµ].

(82)

A.3 Scalar field φ

In this section, the conformal transformations of the Klein-Gordon equation and the scalar Lagrangian can be
found.

A.3.1 Klein-Gordon equation □φ+ξRφ= 0

First, we focus on the d’Alembertian of the scalar field, □φ:

□′φ′ = 1√−g ′ ∂µ
(√

−g ′g ′µν∂νφ′
)

= 1√
−Ω2n g

∂µ

(√
−Ω2n gΩ−2gµν∂ν(Ω1− n

2 φ)

)
= 1p−g

Ω−n∂µ

(p−gΩn−2gµν
(
Ω1− n

2 ∂νφ+ (1− n

2
)φΩ− n

2 ∂νΩ
))

= 1p−g
Ω−n∂µ

(
Ω

n
2 −1p−g gµν∂νφ+Ω n

2 −2p−g gµνφ(1− n

2
)∂νΩ

)
= 1p−g

Ω−n
(
Ω

n
2 −1∂µ(

p−g gµν∂νφ)+p−g gµν∂νφ(
n

2
−1)Ω

n
2 −2∂µΩ+ (

n

2
−2)Ω

n
2 −3∂µΩ

p−g gµνφ(1− n

2
)∂νΩ

+Ω n
2 −2φ(1− n

2
)∂µ(

p−g gµν∂νΩ)+Ω n
2 −2p−g gµν(1− n

2
)∂νΩ∂µφ

)
=Ω− n

2 −1
(
□φ−Ω−2 (n −2)(n −4)

4
gµνφ∂µΩ∂νΩ− n −2

2
Ω−1φ□Ω

)
.

(83)

22



Conformal symmetry versus quantization of geodesic motion, July 2023

Then, we implement this and the transformation of R into the full Klein-Gordon equation:

□′φ′+ξR ′φ′ =Ω− n
2 −1

(
□φ−Ω−2 (n −2)(n −4)

4
gµνφ∂µΩ∂νΩ− n −2

2
Ω−1φ□Ω

)
+ξΩ− n

2 −1 (
Rφ+ (n −1)(n −4)Ω−2gµνφ∂µΩ∂νΩ+2(n −1)Ω−1φ□Ω

)
=Ω− n

2 −1(□φ+ξRφ)+Ω− n
2 −1

[(
ξ(n −1)(n −4)− (n −2)(n −4)

4

)
Ω−2gµνφ∂µΩ∂νΩ

+
(
ξ2(n −1)− n −2

2

)
Ω−1φ□Ω

]
=Ω− n

2 −1 (
□φ+ξRφ

)= 0

(84)

Here, the last equation only holds for ξ= ξc = n−2
4(n−1) .

A.3.2 Scalar Lagrangian L

L ′ = 1

2

√
−g ′ (g ′µν∂µφ′∂νφ′−ξR ′φ′2)

= 1

2
Ωnp−g

[
Ω−2gµν∂µ(Ω1− n

2 φ)∂ν(Ω1− n
2 φ)−ξΩ−2 (

R + (n −1)(n −4)Ω−2gµν∂µΩ∂νΩ+2(n −1)Ω−1□Ω
)

(Ω1− n
2 φ)2

]
= 1

2
Ωnp−g

[
Ω−2gµν

(
(1− n

2
)Ω− n

2 φ∂µΩ+Ω1− n
2 ∂µφ

)(
(1− n

2
)Ω− n

2 φ∂νΩ+Ω1− n
2 ∂νφ

)
−ξ(

R + (n −1)(n −4)Ω−2gµν∂µΩ∂νΩ+2(n −1)Ω−1□Ω
)
Ω−nφ2]

= 1

2

p−g

[
gµνΩn−2

(
(1−n + n2

4
)Ω−nφ2∂µΩ∂νΩ+ (1− n

2
)Ω1−nφ∂µΩ∂νφ+ (1− n

2
)Ω1−nφ∂νΩ∂µφ+Ω2−n∂µφ∂νφ

)
−ξ(

R + (n −1)(n −4)Ω−2gµν∂µΩ∂νΩ+2(n −1)Ω−1□Ω
)
φ2]

= 1

2

p−g
(
gµν∂µφ∂νφ−ξRφ2)+ 1

2

p−g

[(
(1−n + n2

4
)−ξ(n −1)(n −4)

)
Ω−2gµνφ2∂µΩ∂νΩ

+(2−n)Ω−1gµνφ∂µΩ∂νφ−2(n −1)ξΩ−1φ2□Ω
]

(85)

Now, we plug in ξ= ξc = n−2
4(n−1) :

L ′ = 1

2

p−g
(
gµν∂µφ∂νφ−ξRφ2)+ 1

2

p−g
(
(

n

2
−1)Ω−2gµνφ2∂µΩ∂νΩ+ (2−n)Ω−1gµνφ∂µΩ∂νφ− (

n

2
−1)Ω−1φ2□Ω

)
= 1

2

p−g
(
gµν∂µφ∂νφ−ξRφ2)+ 1

2
(

n

2
−1)

(p−gΩ−2gµνφ2∂µΩ∂νΩ−2
p−gΩ−1∂µΩ∂νφgµνφ−Ω−1p−gφ2□Ω

)
= 1

2

p−g
(
gµν∂µφ∂νφ−ξRφ2)+ 1

2
(

n

2
−1)

(p−gΩ−2gµνφ2∂µΩ∂νΩ−2
p−gΩ−1∂µΩ∂νφgµνφ−Ω−1φ2∇µ(

p−g gµν∂νΩ)
)

= 1

2

p−g
(
gµν∂µφ∂νφ−ξRφ2)+∇µ

(
−p−g (

n

2
−1)

1

2
Ω−1gµνφ2∂νΩ

)
=L +∇µ

(
−p−g (

n

2
−1)

1

2
Ω−1gµνφ2∂νΩ

)
,

(86)

which is the same as the original scalar Lagrangian up to a total four-divergence.
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A.4 Dirac fieldψ

In this section, the conformal transformations of the Dirac equation and the Dirac Lagrangian can be found.

A.4.1 Dirac equation iγµ∇µψ= 0

iγ′µ∇′
µψ

′ = iγ′µ
(
∂µ+ 1

8
ω′
µ

ab[γa ,γb]

)
ψ′

=Ω 1−n
2 −1iγµ

(
∂µ+ 1

8
ωab
µ [γa ,γb]− 1

4
Ω−1∂σΩgλσ[γλ,γµ]+ 1−n

2
Ω−1∂µΩ

)
ψ

=Ω 1−n
2 −1

(
iγµ∇µψ− i

4
Ω−1∂σΩgλσγµ[γλ,γµ]ψ+ i

1−n

2
Ω−1γµ∂µΩψ

)
=Ω 1−n

2 −1
(
iγµ∇µψ+ i

n −1

2
Ω−1∂σΩgλσγλψ+ i

1−n

2
Ω−1γµ∂µΩψ

)
=Ω 1−n

2 −1
(
iγµ∇µψ− i

1−n

2
Ω−1γµ∂µΩψ+ i

1−n

2
Ω−1γµ∂µΩψ

)
=Ω 1−n

2 −1iγµ∇µψ= 0

(87)

Here, we used γµ[γλ,γµ] =−(2n −2)γλ and the transformations described in section A.2.

A.4.2 Dirac Lagrangian LD

L ′
D = i

2

√
|g ′|

(
ψ̄′γ′µ∇′

µψ
′− ψ̄′γ′µ

←−∇ ′
µψ

′
)

= i

2
Ωn

√|g |
(
Ω

1−n
2 Ω

1−n
2 −1ψ̄γµ∇µψ−Ω 1−n

2 Ω
1−n

2 −1(ψ̄γµ
←−∇µ)ψ

)
=Ω(1−n)−1Ωn i

2

√|g |
(
ψ̄γµ∇µψ− ψ̄γµ←−∇µψ

)
=LD

(88)
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B Rivier ordering in integral form

In this section, we describe the method of implementing the Rivier ordering for a random polynomial function
f̂R (q̂ , p̂) using integrals.

As with Weyl ordering we start with the general description of f̂R ,

f̂R (q̂ , p̂) = ∑
σα,σβ≤m

c
α⃗β⃗

1

2

(
(q̂1)α1 ...(q̂n−1)αn−1 p̂β1

1 ...p̂βn−1
n−1 + p̂β1

1 ...p̂βn−1
n−1 (q̂1)α1 ...(q̂n−1)αn−1

)
, (89)

where σα =α1+ ...+αn−1, σβ =β1+ ...+βn−1, m is the maximum degree of the polynomial, and c
α⃗β⃗

is a coefficient.

A reminder of the notation, with (q̂k )αk we mean that every operator q̂k has its own corresponding power αk ,
where the latter are integers and the repeated k-indices are not summed over. Generally, Rivier ordering groups
all operators of the same type, as mentioned in chapter 3. All position operators are grouped on one side and all
momentum operators on the other side, supplemented by the reversed expression and a weight of 1

2 . For example,

xp2 Q−→ 1
2 (q̂ p̂2 + p̂2q̂). More generally, we can write

f̂R = 1

2
( f̂l + f̂r ), (90)

where f̂l and f̂r have all position operators to the left and right of all momentum operators respectively. Since the
two parts are easily separable and very similar, the following description of the integral method is done for the first
half of Rivier ordering, f̂l .

First, we define the kernel K in the following way

K (x,y) = 〈x| f̂ |y〉. (91)

In our case, we will only be working with f̂l so we will use

K (x,y) = 〈x| f̂l |y〉. (92)

Then, we write the symbol f as a Fourier transformation (FT) of the kernel

f (q, p) =
∫

L(q, p|x,y)K (x,y)dxdy. (93)
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In order to determine L(q, p|x,y), a few steps are needed as well as some ingredients. The first ingredients are the
following four kernels:

〈x|p̂ j f̂l |y〉 =
∫
〈x|p̂ j |z〉〈z| f̂l |y〉dz

=
∫

(−iħ)

(
∂

∂x j
+ 1

4

∂

∂x j
lnω(x)

)
δ(x−z)K (z,y)dz

=−iħ
(
∂

∂x j
+ 1

4

∂

∂x j
lnω(x)

)
K (x,y) (94a)

〈x| f̂l p̂ j |y〉 =
∫
〈x| f̂l |z〉〈z|p̂ j |y〉dz

=
∫

K (x,z)(−iħ)

(
∂

∂z j
+ 1

4

∂

∂z j
lnω(z)

)
δ(z−y)dz

=+iħ
(
∂

∂y j
− 1

4

∂

∂y j
lnω(y)

)
K (x,y) (94b)

〈x|q̂ j f̂l |y〉 = x j 〈x| f̂l |y〉 = x j K (x,y) (94c)

〈x| f̂l q̂ j |y〉 = y j 〈x| f̂l |y〉 = y j K (x,y). (94d)

The next ingredients are the following operators and their corresponding symbols.

p̂ j f̂l →
(

p j − iħ ∂

∂q j

)
f (95a)

f̂l p̂ j → p j f (95b)

q̂ j f̂l → q j f (95c)

f̂l q̂ j →
(

q j − iħ ∂

∂p j

)
f . (95d)

Note that we can only translate the operators to their corresponding symbols once they are in the right ordering,
for which we used the commutation relations of equation 26. To determine L(q, p|x,y), we first use equation 93 in
combination with equations 94a and 95a,(

p j − iħ ∂

∂q j

)
f (q, p) =

∫ (
p j − iħ ∂

∂q j

)
L(q, p|x,y)K (x,y)dxdy

=
∫

L(q, p|x,y)(−iħ)

(
∂

∂x j
+ 1

4

∂

∂x j
lnω(x)

)
K (x,y)dxdy

=
∫

(+iħ)K (x,y)

(
∂

∂x j
− 1

4

∂

∂x j
lnω(x)

)
L(q, p|x,y)dxdy,

(96)

to arrive at (
p j − iħ ∂

∂q j

)
L(q, p|x,y) =+iħ

(
∂

∂x j
− 1

4

∂

∂x j
lnω(x)

)
L(q, p|x,y). (97)

Then, we do the same thing, using equations 94b and 95b,

f (q, p)p j =
∫

p j L(q, p|x,y)K (x,y)dxdy

=
∫

L(q, p|x,y)iħ
(
∂

∂y j
− 1

4

∂

∂y j
lnω(y)

)
K (x,y)dxdy

=
∫

(−iħ)K (x,y)

(
∂

∂y j
+ 1

4

∂

∂y j
lnω(y)

)
L(q, p|x,y)dxdy,

(98)
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to arrive at

p j L(q, p|x,y) =−iħ
(
∂

∂y j
+ 1

4

∂

∂y j
lnω(y)

)
L(q, p|x,y). (99)

Similarly, we use equations 94c and 95c,

q j f (p, q) =
∫

q j L(q, p|x,y)K (x,y)dxdy =
∫

L(q, p|x,y)x j K (x,y)dxdy, (100)

to arrive at
q j L(q, p|x,y) = x j L(q, p|x,y). (101)

And finally, we use equations 94d and 95d,(
q j − iħ ∂

∂p j

)
f (p, q) =

∫ (
q j − iħ ∂

∂p j

)
L(q, p|x,y)K (x,y)dxdy

=
∫

y j L(q, p|x,y)K (x,y)dxdy,

(102)

to arrive at (
q j − iħ ∂

∂p j

)
L(q, p|x,y) = y j L(q, p|x,y). (103)

We have acquired a set of differential equations, formed by equations 97, 99, 101, and 103, and now we solve these
to find L(q, p|x,y). We begin by using equation 99(

i

ħp j − 1

4

∂

∂y j
lnω(y)

)
L(q, p|x,y) = ∂

∂y j
L(q, p|x,y), (104)

which results in
L(q, p|x,y) = e

i
ħ p j y j − 1

4 lnω(y)L1(q, p|x) = e i p j y j /ħω− 1
4 (y)L1(q, p|x). (105)

Then, we use equation 97 (
− i

ħp j + 1

4

∂

∂x j
lnω(x)

)
L(q, p|x,y) =

(
∂

∂x j
+ ∂

∂q j

)
L(q, p|x,y)

⇒
(
− i

ħp j + 1

4

∂

∂x j
lnω(x)

)
e i pk yk /ħω− 1

4 (y)L1(q, p|x) =
(
∂

∂x j
+ ∂

∂q j

)
e i pk yk /ħω− 1

4 (y)L1(q, p|x)

⇒
(
− i

ħp j + 1

4

∂

∂x j
lnω(x)

)
L1(q, p|x) =

(
∂

∂x j
+ ∂

∂q j

)
L1(q, p|x).

(106)

This results in
L1(q, p|x) = e−i p j x j /ħ+ 1

4 lnω(x)L2(q −x, p) =ω 1
4 (x)e−i p j x j /ħL2(q −x, p), (107)

which means L(q, p|x,y) becomes

L(q, p|x,y) =ω 1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħL2(q −x, p). (108)

Using equation 101, we arrive at

q jω
1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħL2(q −x, p) = x jω
1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħL2(q −x, p)

⇒ q j L2(q −x, p) = x j L2(q −x, p).
(109)
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This implies
L2(q −x, p) = δ(x−q)L3(p), (110)

resulting in the following for L(q, p|x,y),

L(q, p|x,y) =ω 1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħδ(x−q)L3(p). (111)

Finally, we use equation 103(
q j − iħ ∂

∂p j

)
ω

1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħδ(x−q)L3(p) = y jω
1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħδ(x−q)L3(p)

⇒
(
x j − iħ ∂

∂p j

)
e−i p j (x j −y j )/ħL3(p) = y j e−i p j (x j −y j )/ħL3(p)

⇒ ∂

∂p j
L3(p) = 0,

(112)

so L3(p) is a constant. We know that for f = 1, K (x,y) = 〈x|y〉 = δ(x−y) and thus equation 93 becomes

1 =
∫
ω

1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħδ(x−q)L3(p)δ(x−y)dxdy. (113)

This is correct if L3(p) = 1 and we finally arrive at

L(q, p|x,y) =ω 1
4 (x)ω− 1

4 (y)e−i p j (x j −y j )/ħδ(x−q). (114)

Now we know L(q, p|x,y), we can insert it into equation 93 to get

f (q, p) =
∫
ω

1
4 (x)ω− 1

4 (y)K (x,y)e−i p j (x j −y j )/ħδ(x−q)dxdy

=
∫
ω

1
4 (q)ω− 1

4 (y)K (q,y)e−i p j (q j −y j )/ħ dy.
(115)

The inverse FT is given by

ω
1
4 (x)ω− 1

4 (y)K (x,y) = (2πħ)1−n
∫

e i p j (x j −y j )/ħ f (x, p)d p, (116)

which can be written as

K (x,y) = (2πħ)1−n
∫

e i p j (x j −y j )/ħω− 1
4 (x)ω

1
4 (y) f (x, p)d p. (117)

Like before with Weyl ordering, we want to know f̂lΨ(x)

f̂lΨ(x) = 〈x| f̂l |Ψ〉
=

∫
〈x| f̂l |y〉〈y|Ψ〉dy

=
∫

K (x,y)Ψ(y)dy

= (2πħ)1−nω− 1
4 (x)

∫
f (x, p)ω

1
4 (y)e i p j (x j −y j )/ħΨ(y)dyd p.

(118)
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For f̂r , we can follow the same method as for f̂l and arrive at

f̂rΨ(x) = (2πħ)1−nω− 1
4 (x)

∫
f (y, p)ω

1
4 (y)e i p j (x j −y j )/ħΨ(y)dyd p. (119)

If we then add f̂l and f̂r with weight 1
2 , we arrive at our Rivier ordering in integral form

f̂RΨ(x) = (2πħ)1−nω− 1
4 (x)

∫
1

2

(
f (x, p)+ f (y, p)

)
ω

1
4 (y)e i p j (x j −y j )/ħΨ(y)dyd p. (120)

As with the Weyl ordering, this integral differs from that of Tagirov in [2] in that the phase has a different sign. Again,
this was checked with an odd number of momentum operators, where our phase gives the correct expression. In
the case described in chapter 3 this difference is inconsequential since we are dealing with an even number of
momentum operators.
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C Quantization of H0 using the integral method

In this appendix, the derivation of equation 52, the quantization of H0 using the integral method, can be found.
Before quantization, H0 is

H0 = 1

2m
piω

i j (x)p j = f . (121)

Of course, this is also our symbol f . To get the Weyl ordering, we use the integral of equation 48 with the above
symbol as input and fully work it out along the lines of the example in equation 49:

f̂WΨ(x) = (2πħ)1−nω− 1
4 (x)

∫
e i pk (xk−yk )/ħ 1

2m
piω

i j (
x+y

2
)p jΨ

′(y)d p dy

= (2πħ)1−n 1

2m
ω− 1

4 (x)
∫ [

(iħ)2 ∂

∂yi

∂

∂y j
e i pk (xk−yk )/ħ

]
ωi j (

x+y

2
)Ψ′(y)d p dy

= (2πħ)1−n (−ħ2)

2m
ω− 1

4 (x)
∫ [

∂

∂yi

∂

∂y j
(2πħ)n−1δ(x−y)

]
ωi j (

x+y

2
)Ψ′(y)dy

= −ħ2

2m
ω− 1

4 (x)
∫
δ(x−y)

∂

∂yi

[
∂

∂y j

(
ωi j (

x+y

2
)Ψ′(y)

)]
dy

= −ħ2

2m
ω− 1

4 (x)

[
ωi j (x)

(
∂

∂xi

∂

∂x j
Ψ′(x)

)
+ 1

2

(
∂

∂xi
ωi j (x)

)(
∂

∂x j
Ψ′(x)

)
+ 1

2

(
∂

∂x j
ωi j (x)

)(
∂

∂xi
Ψ′(x)

)
+ 1

4

(
∂

∂xi

∂

∂x j
ωi j (x)

)
Ψ′(x)

]
= −ħ2

2m
ω− 1

4 (x)

[
1

4
ωi j (x)

(
∂

∂xi

∂

∂x j
Ψ′(x)

)
+ 1

4

∂

∂xi

(
ωi j (x)

∂

∂x j
Ψ′(x)

)
+ 1

4

∂

∂x j

(
ωi j (x)

∂

∂xi
Ψ′(x)

)
+ 1

4

∂

∂xi

∂

∂x j

(
ωi j (x)Ψ′(x)

)]
= −ħ2

2m
ω− 1

4 (x)

[
1

4
ωi j (x)

(
∂

∂xi

∂

∂x j
Ψ′(x)

)
+ 1

2

∂

∂xi

(
ωi j (x)

∂

∂x j
Ψ′(x)

)
+ 1

4

∂

∂xi

∂

∂x j

(
ωi j (x)Ψ′(x)

)]
= 1

2m

(
1

4
ωi j (q̂)p̂i p̂ j + 1

2
p̂iω

i j (q̂)p̂ j + 1

4
p̂i p̂ jω

i j (q̂)

)
Ψ(x)

(122)

In the before last step we have used the symmetry in the indices i , j . We combine this with equation 51 for the
Rivier ordering according to the rule ‘ν·Weyl ordering+(1−ν)·Rivier ordering’ and arrive at

Ĥ0Ψ(x) = 1

2m

(
ν

4
ωi j (q̂)p̂i p̂ j + ν

2
p̂iω

i j (q̂)p̂ j + ν

4
p̂i p̂ jω

i j (q̂)+ 1−ν
2

ωi j (q̂)p̂i p̂ j + 1−ν
2

p̂i p̂ jω
i j (q̂)

)
Ψ(x)

=
(

2−ν
8m

ωi j (q̂)p̂i p̂ j + ν

4m
p̂iω

i j (q̂)p̂ j + 2−ν
8m

p̂i p̂ jω
i j (q̂)

)
Ψ(x).

(123)
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D Taylor expansion ofωi j

In this appendix, we use the Taylor expansion of the metricωi j to investigate the ordering of quantum observables
belonging to H0 = 1

2mωi j (x)pi p j , equation 23. This is done to verify the results of the integral method, equation 52.

First, we take the Taylor expansion of ωi j (x) with respect to the reference point x̄,

ωi j (x) =
∞∑

s=0

1

s!

(
∂k1 ...∂ksω

i j (x̄)
)

(xk1 − x̄k1 )...(xks − x̄ks ). (124)

Here, we used that ∂k1 ...∂ksω
i j (x̄) ≡ ∂

∂xk1
... ∂
∂xks

ωi j (x)|x=x̄. We will make use of the following series

s∑
l=0

1 = s +1

s∑
l=0

l = 1

2
s(s +1)

s∑
l=0

l 2 = 1

6
s(s +1)(2s +1)

s∑
l=0

l 3 = 1

4
s2(s +1)2.

(125)

Next, we implement Rivier ordering,
1

4m

(
ωi j (q̂)p̂i p̂ j + p̂i p̂ jω

i j (q̂)
)

, (126)

and Weyl ordering,

1

2m

∞∑
s=0

1

s!

2!s!

(s +2)!

(
∂k1 ...∂ksω

i j (x̄)
) s∑

l=0

s−l∑
r=0

(q̂k1 − x̄k1 )...(q̂kl − x̄kl )p̂i ·

(q̂kl+1 − x̄kl+1 )...(q̂kl+r − x̄kl+r )p̂ j (q̂kl+r+1 − x̄kl+r+1 )...(q̂ks − x̄ks ).

(127)

Here, we have separated the s position operators in 3 parts, each divided by a momentum operator. Because of
symmetry in the indices k1, ...,ks , the order of the operators within the different parts does not matter, resulting

in a factor
(s+2

2

)−1
. The order of the momentum operators does not matter either because of the symmetry in the

indices i , j . The resulting factor 2!s!
(s+2)! is the expected weight associated with Weyl ordering and is in agreement

with the one dimensional example of equation 28 for xp2, where we have one position operator and for s = 1 the
above factor becomes 1

3 .

We then combine the expressions using the rule ‘ν·Weyl ordering+(1−ν)·Rivier ordering’ and bring p̂i to the left
and p̂ j to the right using the commutation relations of equation 26, the series described above, and the symmetry
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in the indices k1, ...,ks and i , j :

Ĥ0 = 1

2m
p̂i

(
(1−ν)ωi j (q̂)+

∞∑
s=0

2ν

(s +2)!

(
∂k1 ...∂ksω

i j (x̄)
) s∑

l=0

s−l∑
r=0

(q̂k1 − x̄k1 )...(q̂ks − x̄ks )

)
p̂ j

+ 1

2m

∞∑
s=0

1

s!

(
∂k1 ...∂ksω

i j (x̄)
)[

iħsδk1
i (q̂k2 − x̄k2 )...(q̂ks − x̄ks )p̂ j

1−ν
2

− iħsδks
j p̂i (q̂k1 − x̄k1 )...(q̂ks−1 − x̄ks−1 )

1−ν
2

+ 2ν

(s +1)(s +2)

s∑
l=0

s−l∑
r=0

(
iħlδk1

i (q̂k2 − x̄k2 )...(q̂kl+r − x̄kl+r )p̂ j (q̂kl+r+1 − x̄kl+r+1 )...(q̂ks − x̄ks )

−iħ(s − l − r )δks
j p̂i (q̂k1 − x̄k1 )...(q̂ks−1 − x̄ks−1 )

)]
= 1

2m
p̂iω

i j (q̂)p̂ j +Q̂.

(128)

The term on the first line is responsible for the first term at the end, which means the rest of the terms are collected
in Q̂. The latter is worked out by bringing all q̂ operators to the right-hand side of the remaining p̂ operator, giving
rise to additional non-zero commutators.

Q̂ =1−ν
4m

∞∑
s=0

1

s!

(
∂k1 ...∂ksω

i j (x̄)
)

iħs
[

p̂ jδ
k1
i (q̂k2 − x̄k2 )...(q̂ks − x̄ks )

−p̂iδ
ks
j (q̂k1 − x̄k1 )...(q̂ks−1 − x̄ks−1 )+ iħ(s −1)δk1

i δ
k2
j (q̂k3 − x̄k3 )...(q̂ks − x̄ks )

]
+ ν

m

∞∑
s=0

1

(s +2)!

(
∂k1 ...∂ksω

i j (x̄)
)

iħ
s∑

l=0

s−l∑
r=0

[
lδk1

i p̂ j (q̂k2 − x̄k2 )...(q̂ks − x̄ks )

−(s − l − r )δks
j p̂i (q̂k1 − x̄k1 )...(q̂ks−1 − x̄ks−1 )+ iħ(l + r −1)lδk1

i δ
k2
j (q̂k3 − x̄k3 )...(q̂ks − x̄ks )

]
(129)

We use the following series:

s∑
l=0

s−l∑
r=0

l =
s∑

l=0
l (s − l +1) =−1

6
s(s +1)(2s +1)+ 1

2
s(s +1)2 = 1

6
s(s +1)(s +2)

s∑
l=0

s−l∑
r=0

(l + r − s) =1

2

s∑
l=0

(l − s)(s − l +1) =− 1

12
s(s +1)(2s +1)+ 1

4
s(s +1)(2s +1)− 1

2
s(s +1)2

=− 1

6
s(s +1)(s +2)

s∑
l=0

s−l∑
r=0

(l 2 + r l − l ) =
s∑

l=0
(s − l +1)(

1

2
l 2 + 1

2
l (s −2)) =

s∑
l=0

(−1

2
l 3 + 3

2
l 2 + 1

2
l (s +1)(s −2))

=− 1

8
s2(s +1)2 + 1

4
s(s +1)(2s +1)+ 1

4
s(s +1)2(s −2)

=1

8
s(s +1)(−s2 − s +4s +2+2s2 −2s −4) = 1

8
(s −1)s(s +1)(s +2).

(130)
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We implement these in Q̂ and arrive at

Q̂ =−ħ2 1−ν
4m

∞∑
s=2

1

(s −2)!

(
∂k3 ...∂ks (∂i∂ jω

i j (x̄))
)

(q̂k3 − x̄k3 )...(q̂ks − x̄ks )

−ħ2 ν

8m

∞∑
s=2

1

(s −2)!

(
∂k3 ...∂ks (∂i∂ jω

i j (x̄))
)

(q̂k3 − x̄k3 )...(q̂ks − x̄ks )

=− ħ2

4m
(1− ν

2
)∂i∂ jω

i j (q̂).

(131)

At first order in ħ, all orderings are equivalent. This follows from the mirror symmetry of p̂i and p̂ j of every hermi-
tian ordering. At highest order (2nd) in ħ, we see the only differences between the different orderings. Therefore, it
is sufficient to use two representative orderings, and thus one parameter ν, to parametrize the dependence of Ĥ0

on the quantum ordering. If Ĥ0 would have contained more than two momentum operators, one parameter would
not suffice. The ordering of quantum observables belonging to H0 finally results in

Ĥ0 = 1

2m
p̂iω

i j (q̂)p̂ j − ħ2

4m
(1− ν

2
)
(
∂i∂ jω

i j (q̂)
)

. (132)

To show that this is in agreement with equation 52, we rewrite the latter:

Ĥ0Ψ(x) =
(

2−ν
8m

ωi j (q̂)p̂i p̂ j + ν

4m
p̂iω

i j (q̂)p̂ j + 2−ν
8m

p̂i p̂ jω
i j (q̂)

)
Ψ(x)

=− ħ2

2m

[
2−ν

4
ωi j (x)ω− 1

4 (x)
(
∂i∂ jΨ

′(x)
)+ ν

2
ω− 1

4 (x)∂i

(
ωi j (x)∂ jΨ

′(x)
)
+ 2−ν

4
ω− 1

4 (x)∂i∂ j

(
ωi j (x)Ψ′(x)

)]
=− ħ2

2m

[
2−ν

4
ωi j (x)ω− 1

4 (x)
(
∂i∂ jΨ

′(x)
)+ ν

2
ω− 1

4 (x)∂i

(
ωi j (x)∂ jΨ

′(x)
)
+ 2−ν

4
ω− 1

4 (x)
(
∂i∂ jω

i j (x)
)
Ψ′(x)

+ 2−ν
2

ω− 1
4 (x)

(
∂iω

i j (x)
)(
∂ jΨ

′(x)
)+ 2−ν

4
ω− 1

4 (x)ωi j (x)
(
∂i∂ jΨ

′(x)
)]

=− ħ2

2m

[
2−ν

2
ω− 1

4 (x)∂i

(
ωi j (x)∂ jΨ

′(x)
)
− 2−ν

2
ω− 1

4 (x)
(
∂iω

i j (x)
)(
∂ jΨ

′(x)
)+ ν

2
ω− 1

4 (x)∂i

(
ωi j (x)∂ jΨ

′(x)
)

+ 2−ν
4

ω− 1
4 (x)

(
∂i∂ jω

i j (x)
)
Ψ′(x)+ 2−ν

2
ω− 1

4 (x)
(
∂iω

i j (x)
)(
∂ jΨ

′(x)
)]

=− ħ2

2m

[
ω− 1

4 (x)∂i

(
ωi j (x)∂ jΨ

′(x)
)
+ 1

2
(1− ν

2
)ω− 1

4 (x)
(
∂i∂ jω

i j (x)
)
Ψ′(x)

]
= 1

2m
p̂iω

i j (q̂)p̂ jΨ(x)− ħ2

4m
(1− ν

2
)
(
∂i∂ jω

i j (q̂)
)
Ψ(x)

(133)

This is indeed the same as equation 132, which means both methods give the same result.
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