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Introduction

The existence of Dark Matter (DM) is one of the most puzzling challenges that contemporary physics

faces. Its existence was proposed due to the observation of unexpected astrophysical behaviour.

For example, the rotational velocities of galaxies do not follow the distribution as expected from

Newtonian mechanics [1]. From this, one can conclude that we must either adjust Newtonian

mechanics, or that we are yet to discover a type of matter than can explain the atypical dynamics.

The latter approach leads to the particle interpretation of Dark Matter, which states that DM must

be a neutral, non-luminous and weakly interacting particle that is stable, or at least stable on the

time scales of the universe. Besides this, the properties of DM are remarkably unconstrained. Many

different theories and hypotheses exist, and widely differing masses are proposed.

Although many astrophysical and cosmological observations point us towards the existence of

Dark Matter, all this proof remains of indirect nature. The existence of Dark Matter is understood

through its effects on gravity, rather than detection of the matter itself. Nowadays, multiple exper-

iments try to probe the nature of DM in a more direct manner. Note that this type of research

assumes that DM is also subject to a force other than gravity.

In this thesis, we shall focus on direct detection methods. Direct detection experiments search

for recoil signals, induced by DM particles scattering off nuclei or electrons in a detector material.

Such scattering signals could allow us to better constrain the mass and cross section of DM particles.

Theoretical physics can aid in this experimental search for DM by predicting what kind of

signals may be expected in a detector. Making individual experimental predictions for every DM

candidate is quite inefficient, though. This is where the Effective Field Theory (EFT) framework

becomes advantageous. EFTs allow one to make a good approximation of a theory that is valid

at up to a specific energy scale. The EFT is given by a set of effective interactions, where all

higher energy effects are encoded into the coupling constants of the new, lower energy theory. A

low energetic effective interaction can be realised by multiple higher energy effects. By searching

for DM signals predicted by effective interactions, one can thus probe multiple high energy models

at once. In addition, EFTs provide a consistent framework to connect physics at different energy

scales, allowing one to relate high-energy DM models to the lower-energy models relevant for direct

detection experiments.
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This brings us to the subject of this thesis, where we intend to contribute to the research that

makes experimental predictions for sub-GeV DM in direct detection experiments. Sub-GeV DM is

too light to generate properly measurable nuclear recoil signals, but it can induce electron recoils.

At this level, only relatively small energy scales are relevant. The DM particle is of sub-GeV mass,

the electron mass is in the MeV range, and the momentum exchange between the DM particle and

electron is of sub-MeV order generally. In this scenario, one can use EFTs to separate the high-energy

scale, where DM and electron interactions are generated, from the lower-energy scale relevant for

direct detection. The relevant low-energy EFT can then be used to make experimental predictions.

This makes the application of EFTs a natural fit for electron-scattering direct detection experiments.

We thus propose a Dark Matter EFT with a sub-GeV scalar DM particle. We start from an

adapted version of the Standard Model Effective Field Theory, where we add our proposed DM

scalar. This is our Dark Standard Model EFT (DSMEFT). Our goal is to match this theory onto

a lower energy theory, where all particles with masses above the weak scale are integrated out.

Despite the fact that DM EFTs are not new, such matching procedures are almost always performed

at leading order, or tree level[2, 3]. The novelty of this research is that we extend the matching

procedure to include the next to leading order (NLO) effects. Such NLO effects may provide non-

negligible corrections to the leading order matching coefficients, which in turn could influence the

experimental predictions one makes. To achieve this, we will calculate all relevant one-loop diagrams

in our DSMEFT, which allows us to determine the one-loop matching coefficients. In this study, our

interest lies in studying the Wilson coefficients that contribute first at one-loop order. Such NLO

coefficients would be quite unconstrained, and this could thus open up interesting possibilities for

experimental searches.

Before we move forward to the loop calculations and matching, we shall first discuss some theo-

retical background in chapter 1. The basics of Dark Matter and Direct Detection will be discussed

in respectively sections 1.1 and 1.2. We shall then move to EFTs and their applications in DM

research in section 1.3, before finishing with a brief discussion on loop integration in 1.4. In chap-

ter 2 we shall outline our DSMEFT Lagrangian and its corresponding Feynman rules relevant for

DM-electron scattering in sections 2.1 and 2.2. After explaining the techniques used to obtain the

loop amplitudes in 2.3, we examine the renormalisation needed to obtain finite amplitudes in 2.4.

Finally, we discuss the results of matching the proposed DSMEFT to a lower energy theory, DLEFT

in section 2.6.
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Chapter 1

Theory

1.1 Dark Matter

One of the main questions of fundamental physics nowadays is to understand the nature of so-called

Dark Matter. The regular, luminous and baryonic matter that is described by the known laws of

physics cannot account for important astrophysical and cosmological observations. Dark Matter

is the main proposed entity to explain the occurrences of the above anomalies. In the standard

cosmological model, the ΛCDM model, the contribution of regular matter to the matter-energy

content of the universe is merely 5%. The vast majority of the matter-energy content of our universe

is either Dark Energy or Dark Matter, with the former contributing 69% to the energy budget, and

the latter 26%.

More specifically, Dark Matter (DM) contributes to 85% of the matter content of our current

universe. In light of the research of this thesis, we shall focus on the topic of Dark Matter. First,

we will discuss what specific observations induced the need to include Dark Matter in cosmological

models. We shall then take a brief look at possible DM candidates and specify which ones will be

relevant for the research done in this thesis.

1.1.1 Observational Evidence

There are many empirical examples that demonstrate the need to include Dark Matter in our physical

framework, or, more generally, include a modification of or addition to our current knowledge of the

laws of physics. In this section, we shall focus on two of such observational arguments in favour of

Dark Matter: the rotational velocities of galaxies and gravitational lensing.

The most well-known example in support of Dark Matter, is the observation of galactic rotational

curves. From Newtonian mechanics, one would expect the rotational velocity of stars, dust and gas
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Figure 1.1: Rotational velocities measured in galaxy NCG 3198 compared to the velocities expected

by Newtonian mechanics. The velocity is given as a function of the radial distance r to centre of the

galaxy. [1]

of galaxies to vary with the radial distance r to the centres of these galaxies with

v(r) =

√
GM(r)

r
(1.1)

Here, v(r) corresponds to the rotational velocity of the galaxy as a function of r, the radial distance

to the centre of the galaxy, whereas M(r) is the mass of the galaxy contained within r. G refers

to the Newtonian gravitational constant. At the outskirts of the galaxy, where very little luminous

mass is located, we can assume M(r) ≈ M , with v(r) ∝ r−1/2 at these regions. This indicates

that the expected velocities at the fringe should be lower than velocities closer to the centre of the

galaxy. In reality, observations show that the rotational velocities are approximately constant as the

distance increases, as illustrated in Figure 1.1.

To account for the fact that v(r) is approximately constant, Newtonian mechanics implies that

M(r) ∝ r. The observations of galaxies do not support such a matter distribution of luminous

matter, though. From this deviation of the expected radial velocity, one can infer two possible

explanations. Either Newtonian mechanics is incorrect, or unobserved, non-luminous mass could

account for the observed dynamics. If one assumes the former position, a modification of Newto-

nian mechanics called Modified Newtonian Dynamics (MOND) can be used to try to explain the
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unexpected observations. The latter position is more mainstream though, and we shall pursue this

option. From the proportionality M(r) ∝ r we can then deduce that the unobserved matter is clus-

tered in halos extending beyond the peripheries of galaxies. The proposed matter that is missing

and non-luminous, is named ‘Dark Matter’. [4].

Another example of observational evidence for the existence of Dark Matter stems from gravitational

lensing. This phenomenon originates from the effects of General Relativity (GR). In GR, massive

objects influence the curvature of spacetime. By influencing the curvature of spacetime, a massive

object will influence the path of other objects in its vicinity as well. Planets orbiting the sun in a

elliptical motion are a well-known example of this. The bending of spacetime can affect the path

of light as well, and this effect is named ‘gravitational lensing’. The consequences are best observed

when observing a galaxy located directly behind another galaxy. In that case, the light emitted by

the more distant galaxy appears in the shape of a ring around the galaxy in front. The radius of

this ring is the ’Einstein radius’ θE . Through the effect of this lensing, it is possible to determine

the mass of the gravitational lens when one knows the Einstein radius [1]:

θE =

√
4GM

c2
dLS

dLdS
(1.2)

G refers to the gravitational constant, c to the speed of light, M to the mass of the lens. dL, dS , dLS

are the distances respectively to the lens, to the source and from lens to source. Observations of

gravitational lensing show that the lensing in many constellations of galaxies is stonger than what

can be inferred from the mass of the luminous matter of galaxies. If we again assume that GR is

correct, this indicates that galaxies should contain Dark Matter to correctly account for the observed

amount of gravitational lensing.[1, 5]

1.1.2 Dark Matter Candidates

We have now identified some examples in favour of Dark Matter. The existence of unexpected

dynamics in our universe is strongly established, but the feature that causes these dynamics is still

very much unexplained. If we take the Dark Matter avenue, where we assume that Newtonian

mechanics and GR are correct, this still leaves us with the important question to understand the

nature of such matter. The research in this thesis focuses on detection of particle-like DM. Non-

particle candidates do exist, for example in the form of astrophysical objects such as black holes or

brown dwarfs. Such candidates are classified as Massive Compact Halo Objects (MACHOs). For

brevity, we shall limit ourselves to the discussion of particle-like DM in this section. [1, 6]

Some constraints can be made, but most properties of Dark Matter are unknown. What we do

know about DM, is that it is non-luminous. For particle-like DM this means that it does not interact

with photons, indicating that DM candidates should be electrically neutral. DM particles should

also be stable, or at least very long lived. [7] In addition, observations of the Cosmic Microwave
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Background (CMB) also put constraints on the nature of DM. More specifically, CMB data has

provided restrictions to the total cosmological baryon density of the universe, which puts constraints

on the possibility that DM is of baryonic nature. The current data leads to the conclusion that less

than about 20% of the matter content of the universe is of baryonic nature.[8, 9] A proper dark

matter candidate is thus of non-baryonic nature. Finally, DM should interact only weakly with

regular matter.

The Standard Model contains only one type of particle that agrees with the above mentioned

properties: the neutrino. The lightest SM neutrino is stable, massive and weakly interacting. The

SM neutrino is not an adequate DM candidate though. Firstly, neutrinos are not abundant enough to

account for all DM. Secondly, neutrinos as DM cannot properly account for the large scale structures

that are observed in the universe. Neutrinos that to a large extent interact only through gravity, so-

called ‘sterile neutrinos’, have been proposed as an alternative neutrino-like DM candidate. Sterile

neutrinos with a mass around the keV scale do not run into the same issues as regular neutrinos,

making them a possible DM candidate. [9, 10]

We can now conclude that no SM particle can elucidate the nature of dark matter. This indicates

that we have to search for new physics beyond the Standard Model (BSM). Nowadays, many models

are created with the goal to propose a DM candidate, but it is noteworthy that DM candidates

may also be a byproduct of BSM theories. In quite some circumstances BSM theories contain new

particles that may be promising DM candidates.

A well-known class of BSM dark matter candidates are the Weakly Interacting Massive Particles

(WIMPs). Generally speaking, WIMPs are stable, neutral and weakly interacting particles with a

mass in the GeV to TeV range. WIMPs often follow naturally from BSM theories, making them

sensible DM candidates. Furthermore, WIMPs with a weak-scale mass naturally produce a relic

abundance that agrees with observations. This is the so-called ‘WIMP miracle’ and this seeming

coincidence has been a motivation to search for WIMP dark matter.[11] Recent experiments are

placing lower and lower upper limits on the DM-nucleon cross section, though. These stringent

demands on the DM parameter space have ruled out quite some candidates and models that agree

with the WIMP miracle.[12, 13]

Non-WIMP dark matter candidates are also common subjects of inquiry. For example in the

form of axions. These particles were originally proposed as a candidate to explain the strong CP

problem of Quantum Chromodynamics. Many axion models have masses much smaller than WIMPs,

although not necessarily so.[10] The scientific field of DM is certainly wider than the particles that

have been discussed here and many more DM candidates have been proposed.

In the remainder of this work, we shall concentrate on WIMP dark matter. The search for

WIMPs is an active field of research, with many experimental efforts being made to identify the

nature of dark matter. In the next section, we shall delve into the methods that are currently being
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used to search for DM.

1.2 Direct Detection

Experiments that aim to measure signals of dark matter particles are a crucial component of the

search for dark matter. We have seen that our knowledge of dark matter is based on its gravitational

effects. This type of indirect measurement does not always discern between the many different types

of DM candidates that have been suggested. Ultimately experimental verification is needed to probe

the nature of dark matter. Three main experimental methods exist in the search for DM. Firstly,

one can aim to produce it in particle colliders such as the Large Hadron Collider. In this context,

DM could appear as a type of missing energy that is not of neutrino origin. Secondly, it is possible

to search for the annihilation or decay products of DM candidates. DM is present in astrophysical

objects and environments and when propagating through the universe, self annihilation or decay

into SM particles could lead to measurable signatures. These methods are referred to as indirect

detection. Finally, one can try to detect DM by measuring DM induced atomic recoils.

This latter option is commonly named ‘direct detection’. In the classic conception of direct

detection, the goal is to identify nuclear recoils induced by DM - nucleus scattering. An incoming

DM particle can scatter off a nucleus and the nucleus will in turn recoil. This recoil signal can be

measured, for example by measuring a photon that is emitted. Generally speaking, DM with a mass

of about mDM ≈ 10-103 GeV will lead to a nuclear recoil in the order of 10 keV, although higher and

lower recoil energies are possible as well. By identifying which recoil signals point to DM-nucleus

scattering, one can determine if a recoil is caused by DM. Direct detection of this type is well suited

for WIMPs. These particles have the correct mass range to induce measurable recoils.[14]

The expected rate of WIMPs with mass mDM scattering off a nucleus of mass mN in a detector

with a total target mass of M is given by

dR

dENR
=

ρ0M

mNmDM

∫ vesc

vmin

vf(v)
dσ

dENR
dv (1.3)

ENR refers to the nuclear recoil energy, v the DM velocity in the detector’s reference frame and

σ stands for the scattering cross section. In addition, ρ0 and f(v) are astrophysical parameters,

respectively the local DM mass density and the normalised DM velocity distribution. Finally, vmin

is the minimal DM velocity required to induce a nuclear recoil, and vesc is the DM milky way escape

velocity.

The DM observables one can extract from this rate are the cross section σ and the DM mass

mDM . Direct detection experiments can thus search a mass-cross section parameter space for signals.

It is also possible to utilise possible temporal, energetic or directional dependencies to discern the

DM signals against background.[15]
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Figure 1.2: Illustration of a dual-phase time projection chamber. On the left hand side, S1, a

xenon atom is ionised by an incoming particle. Upon de-excitation, the atom emits a photon that

is measured by the photomultiplier tube (PMT) arrays at the top and bottom of the detector. On

the right hand side, S2, electrons are produced as a passing particle ionises xenon atoms. If these

electrons do not recombine and produce scintillation light, a strong electric field will cause them to

drift towards the top PMT array, where the electrons are measured. [18]

The usage of nuclear recoil does pose a disadvantage, due to the fact that DM candidates with

sub-GeV mass cannot generate nuclear recoils that are sizable enough to be measured in general.

The recoils of bound electrons can be used to study the effects of keV-GeV DM, though. Due to the

fact that electrons are of much lower mass, lighter DM candidates can transfer enough momentum to

the electron to generate a detectable recoil signal in the range of keV, or smaller. Here one needs to

take into account that these electrons are bound in an atomic system, they are thus not on-shell.[16]

This requires some extra care when determining the expected detector response, see for example

[17].

For this work, it is sufficient to know that we can express both electron and nucleus recoils

in terms of the transferred momentum q = p − k, where p, k are respectively the outgoing and

incoming momenta of the electron or nucleus in center of mass frame. This momentum transfer

causes the nucleus to recoil. This recoil can be measured with different detection methods, using

either phonons, charge, light or a combination as means of detection.

Liquid noble gas detectors are a common example. In such detectors, the nuclear or electronic

targets consist of noble gas atoms. Signals are generated by photons that are released upon de-

excitation of nuclei or electrons after a recoil. Modern detectors often combine two measurement

methods, though. The XeNON detector is a liquid noble gas dual-phase time projection chamber

(TPC), which combines photon detection with charge measurements. An illustration of this type
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of detector is given in Figure 1.2. In the latter case, the xenon atoms can be ionised by a passing

DM particle. The ionised electrons drift away from the atom as a consequence of a strong electric

field that is implemented. If the ionised atoms are not removed from the atom, they will recombine,

resulting in an excited xenon atom that will again emit scintillation light.[14]

In this work we will be researching a model with sub-GeV DM mass. As we have seen, such light

DM candidates can be researched with direct detection through the measurement of electron recoils.

Along with the DM mass, the electron mass and the momentum transfer are relevant parameters.

Note that this scenario thus deals with relatively low energy scales. Rather than taking into account

all high energy effects, it may be more convenient to use a model that only needs to consider lower

energy parameters. Effective Field Theories (EFTs) provide a consistent framework to implement

such a model.

1.3 Effective Field Theories

We shall now make the switch from experiment to theory. Direct detection methods provide us with

a very precise method to search for dark matter, but theoretical predictions are needed to guide

this research. What signals can be expected, what parts of parameter space are of main interest?

Particle phenomenology is thus of key importance to bridge the gap between particle dark matter

theory and experimentation.

Earlier, we have seen that the nature of DM is still subject to large uncertainties, making it

difficult to determine precise definitive guiding principles with regards to mass or cross section. Many

particle DM candidates exist within varying mass ranges, which increases the difficulty of research.

Focusing on a very specific DM model or candidate seems rather unfruitful in such conditions.

Chances are that strict experimental predictions will not cast the net wide enough to detect the rare

signals that we are seeking.

This is where the usage of Effective Field Theories (EFTs) in the context of DM may be advan-

tageous. EFTs allow one to make predictions for observables from a theory that is valid at a specific

energy range. For direct detection experiments lower energy scales are of main relevance. An EFT

can provide a framework to make observation predictions relevant at the energy scale of direct detec-

tion. The key idea here is that one does not need to take into account degrees of freedom, or fields,

at energies above a certain cutoff scale, greatly increasing the ease of calculation. EFTs additionally

have the benefit of being able to probe multiple high energy theories, through the framework of one

lower energy theory.

To fully grasp and appreciate the relevance of using Effective Field Theories in DM research,

it is vital to discuss the properties of EFTs. Firstly, I shall generally introduce the properties of

EFTs and signify the motivation to use such a theory. Then some more technical and mathematical
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background will be given. We shall finally discuss how EFTs exactly fit into DM direct detection

research. We shall base ourselves on the discussions of [19–21].

1.3.1 Effective Field Theories and their Advantages

Simply put, an Effective Field Theory is a theory that incorporates the relevant fields and degrees

of freedom to describe phenomena that are relevant at a specific energy scale. The usage of EFTs

makes it possible to make theoretical predictions without the need to know the exact underlying

theory. This concept is broadly used in the physical sciences. An architect designing a building

needs to incorporate Newtonian mechanics rather than Quantum Electrodynamics (QED). At the

energy scale relevant to the architect, other parameters, laws and quantities are relevant.

Newtonian mechanics provides us with successful experimental predictions, but its applicability

breaks down at a certain energy scale. In the EFT framework, this upper limit is often referred to

as the cutoff scale Λ. At energies E > Λ the predictions of the EFT break down, due to the fact

that new physics appears which needs to be included in the theoretical framework.

When working with physics at energy scales E � Λ, the advantages of using an EFT are often

numerous. Firstly, it allows one to calculate observables without the need for a very detailed theory

that explains all short distance, high energy physics. Effects from short scale physics can complicate

calculations a lot. In some cases, the knowledge of a shorter scale theory may simply not be present.

Leaving out high energy degrees of freedom can thus tremendously increase the ease of calculation,

which in turn allows one to focus on the physics that provides a relevant contribution to the calculated

observables.

EFTs also provide a method to describe new physics. Operators with dimension DM > 4 can be

used to describe the effects of currently unknown small scale physics on lower energy phenomena.

Such an effective interaction may be caused by a possible new mediator particle. The EFT itself is

agnostic to the exact nature of the possible mediator, though. This allows one to use EFT predictions

and measurements at lower energies to seek physics in a bottom-up style. If rare, anomalous events

are observed, one can try to extrapolate new, short scale physics from these measurements. [19].

EFTs also provide other benefits, such as the possibility to include nonpertubative effects, but the

above mentioned advantages are of special importance to this research.

1.3.2 The Effective Field Lagrangian

An effective field theory is a quantum field theory in itself, with its own dimensional regularisation

and renormalisation schemes. Due to this, one can calculate effective Feynman rules and amplitudes

without needing to invoke another high energy theory. The fields used in an EFT are also distinct.

So, even if an EFT and a more UV complete theory both use a field named φ, it does not signify
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the same field. The definitions of fields and operators in both theories are linked through a so-called

matching procedure. We shall later return to the topics of renormalisation and matching.

To understand the mathematical methodology underlying the EFT approach, one has to un-

derstand the EFT Lagrangian LEFT . A general EFT Lagrangian is expressed as an infinite sum

of dimension four local operators Oi, consisting of light fields. These operators are multiplied by

dimensionless Wilson coefficients Ci. This gives the most general expression for our EFT Lagrangian.

LEFT =
∑
i

CiOi (1.4)

Two things are noteworthy here. Firstly, it is crucial that the EFT incorporates local operators.

Locality ensures that a separation of scales can be realised in EFTs. The operators represent the

low energy scale, as they only include those fields that are relevant below the threshold Λ. The high

energy effects are in turn fully encoded in the Wilson coefficients. The low energy operators are

independent from these coefficients and thus independent from effects at high energy.

Secondly, any operator that is admissible by the relevant symmetries of the EFT can be included

in this sum. This still leaves one with an infinite sum of operators, vastly too much to be of any

practical relevance. This is the reason that EFTs are supplemented with a power counting argument.

We define the ratio δ = E
Λ , with E being the energy scale one is working with and E � Λ. If the

goal is to make predictions with an error at δn+1 order of magnitude, the Lagrangian needs to be

expanded up to δn. This accuracy can be reached with a finite amount of terms in the Lagrangian.

In this manner an EFT can be adjusted to be more or less accurate, depending on the application.

The parameters in the EFT Lagrangian can then be determined by performing a set of measurements

at the relevant energy scale.

If we apply this power counting argument to LEFT , we can interpret our Lagrangian as an

expansion over 1
Λ [19]:

LEFT = L4 +
∑

DM>4

LDM

ΛDM−4
(1.5)

= L4 +
∑

DM>4

CDM−4
i ODM−4

i

ΛDM−4
(1.6)

= L4 +
L5

Λ
+

L6

Λ2
+O(

1

Λ3
) (1.7)

The EFT Lagrangian can thus be organised as a sum of operators with increasing mass dimensions

DM , divided by the high energy cutoff scale Λ. An EFT can thus include operators higher than

dimension 4, a feature that does not occur in regular, renormalisable quantum field theories.1 The

operators withDM > 4 can be interpreted as corrections of the order δ = E
Λ in observables. Operators

1The occurence of operators with DM > 4 does not mean that EFTs are fundamentally unrenormalisable. A

diagram including two insertions of a L5 term can be renormalised by a L6 term, and so on.

12



with higher dimensions are thus suppressed by a factor of δDM−4. Higher dimensional operators are

nevertheless still of interest in EFTs. On the one hand due to the fact that they increase the accuracy

of the EFT’s predictions, which is especially relevant when performing high precision experiments.

On the other hand, higher dimensional operators can inform us about new physics that may occur

above the cutoff scale, unless lower dimensional operators have already described the effects of new

physics. We shall illustrate this last point, as well as the relevance of EFTs in general, by means of

an example.

1.3.3 Fermi’s Theory and Matching

The most often used example of an EFT is probably Fermi’s theory. Its success stems from the fact

that this theory allowed physicists to perform calculations involving weak decays even before the W

and Z boson were known. Let us look at the decay of the muon for an example. Figure 1.3a shows

the Feynman diagrams corresponding to the decay of the muon in terms of the Standard Model,

whereas Figure 1.3b describes the decay in terms of the effective Fermi theory. Note that the latter

is a four fermion interaction, with DM = 6. Using (1.7), we instantly recognise that the effective

coupling must have a mass dimension of -2, originating from the factor Λ−2. This effective coupling

is historically named GF .

(a) Decay of a muon in the full theory, including

the W boson mediator

(b) Decay of a muon as an effective, four fermion

interaction in Fermi’s theory

Figure 1.3: The decay of a muon.

Both the Standard Model and Fermi’s theory should produce the same amplitude, as they are

different methods to calculate the same object. This is due to the fact that the muon mass is much

smaller than the W boson mass, as we will see. To ensure that both theories agree, one has to

perform a so-called matching procedure. Matching relates the couplings of the EFT to those of the
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higher energy theory. The Fermi Lagrangian for the effective interaction is written as

LFermi = −4GF√
2
(eγρPLνe)(νµγ

ρPLµ) (1.8)

with e, µ, νµ and νe denoting the electron, muon and neutrino fields, and PL = 1
2 (1− γ5) being the

left-handed projection operator. We thus have to relate the coefficient 4GF√
2

to the amplitude of the

Standard Model description of muon decay. This amplitude is

ASM = −g2

2
(ueγρPLvνe

)
−igρσ

p2 −M2
W

(uνµ
γσPLuµ) (1.9)

with the electroweak SU(2)W coupling constant g, and the spinors uµ, ue, vνe
and uνµ

. We now use

the fact that we are in a regime where all momenta are much smaller than MW , so that p2/M2
W �

1. This allows us to expand the propagator of the W boson
1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

m2
W

+ ...
)

(1.10)

≈ − 1

M2
W

(1.11)

The propagator can thus be approximated to be constant in the energy regime relevant for Fermi’s

theory. If we plug (1.11) back into the amplitude of (1.9), we find

ASM = −i
g2

2M2
W

(ueγρPLvνe
)(uνµ

γρPLuµ) (1.12)

This amplitude originates from the local Lagrangian

L = − g2

2M2
W

(eγρPLνe)(νµγ
ρPLµ) (1.13)

Combining (1.8) with (1.13) allows us to relate the coefficients of both Lagrangians to one another
GF√
2
=

g2

8M2
W

(1.14)

The value of GF can be established by performing measurements on the muon lifetime and one can

then use Fermi’s theory to make parameter-free predictions for decay distributions of the muon. We

also recognize that the expansion made in (1.11) breaks down once p ≈ MW . At this scale, the

effects of the W boson propagator cannot be ignored anymore.

Fermi’s constant also has predicted the range where new physics should appear, causing the EFT

to break down. We can relate GF to the vacuum expectation value v = 2MW

g , obtaining

GF√
2
=

1

2v2
(1.15)

(
√
2GF )

−1/2 = v (1.16)

= 246 GeV (1.17)

Higher dimensional effective operators can thus indicate where new physics may appear. In the case

of Fermi’s theory, the determination of GF allowed one to predict at what scale possible new physics

may arise. This promise was fulfilled when the W and Z boson were later identified to have masses

of respectively about 80 and 91 GeV.
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1.3.4 Dark Matter Effective Field Theories

Now that we have finished our general discussion of Effective Field Theories, we switch to the

application of EFTs in dark matter research, which is becoming more and more prevalent. We shall

focus our discussion on the usage of EFTs in direct detection searches for DM.

Remember that direct detection experiments work at typical energy scales in the MeV range for

DM and nucleus/electron momentum transfer, giving recoils in the keV range. These relatively low

energies make direct detection experiments a natural candidate to invoke the use of EFTs. One

can ignore heavy particles, such as the W±, Z and Higgs bosons by including their effects in the

Wilson Coefficients. The electron mass and momentum are of the same order of magnitude in this

experimental context, and they can explicitly not be ignored when working with an EFT at lower

energies.

The applications of EFTs can increase the ease of calculations, as one does not need the more

complicated higher energy theory to make experimental predictions. By proposing a type of particle

and its properties, the relevant symmetries and the energy range, an effective DM Lagrangian can

be constructed. This Lagrangian can then be used to model the interactions between DM and SM

particles, without the need to invoke a more UV complete theory.

In addition to this, EFTs also offer the possibility to search for DM in a more model independent

manner. DM experiments are often model driven. A theory with a specific DM candidate can

be used to make experimental predictions. The obvious downside is that such searches are quite

narrow, a large inconvenience when searching for something as unknown as DM. EFTs meanwhile

only describe an effective interaction between DM and SM particles at a lower energy. The idea is

that an effective interaction can be realised by multiple mediators or types of interactions at higher

energies. The EFT itself is agnostic to such interactions, though, and it can probe the effective

interactions without the need to know the higher energy theory. One can then work either top-

down, by deriving an EFT that probes multiple types of mediators simultaneously, or bottom-up,

by searching for anomalous signals.

The research field of DM EFTs is very lively. On the theory side, predictions for direct detection

experiments are made by taking a high energy model and deriving the relevant EFTs [3, 22, 23]. Well

known direct detection experiments, such as XENON, are also performing nuclear recoil experiments

to study different DM EFTs [24].

An idea that is often invoked in DM EFT research is the Higgs portal. As we have seen, DM

should only be weakly interacting with SM particles. The Higgs boson could perhaps be a mediator

between DM and SM particles. In other words: the Higgs boson could be the ‘portal’ between the

DM and SM sectors. EFTs relevant for direct detection work well below the mass scale of mH .

One could thus reduce the tree level diagram with a Higgs boson mediating the SM-DM interaction

to an effective SM-DM interaction. A general example is given in Figure 1.4. Such simple Higgs
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portal models are becoming more and more constrained though [25]. The increasing precision of

direct detection has thus ruled out the most simple Higgs portal models, in addition to ruling out the

simplest WIMP models. This signifies the need for more advanced DM-SM interactions, for example

at one-loop level. DM EFTs that include one-loop corrections have not been studied extensively yet,

and they could open a new type of portal to DM. To study the effect of loop corrections on EFTs,

one needs to implement less than trivial loop calculations. We shall now shift our discussion to a

method that allows us to perform loop calculations.

(a) Effective DM and SM particle interaction

(b) Interaction between DM and SM particles

through the Higgs portal

Figure 1.4: A general sketch of the interaction between Standard Model particles SM and a generic

DM particle φ.

1.4 One-Loop Integrals and Passarino-Veltman Reduction

We have seen how EFT’s and Direct Detection experiments allow us to search for signals of dark

matter. As experimental precision has increased, some DM hypotheses have been ruled out. This

development signifies the need for new theoretical predictions. It also points towards direct detection

experiments becoming more and more precise, though.

In order to properly cater to these developments, one needs to include the effects of next to leading

order (NLO) diagrams when working with DM EFTs. To achieve this, one needs to comprehensively

research what DM and SM interactions emerge at one-loop level. This study aims to contribute

to that goal. One-loop calculations are an important aspect in the search for better theoretical

predictions. Such calculations are not trivial and multiple methods have been developed to properly

assess them.

One of those methods is Passarino-Veltman reduction, which reduces a one-loop tensor integral

to scalar integrals[26, 27]. Despite the fact that Passarino-Veltman reduction has its limitations [28],

it is still widely used and very useful due to its well-defined procedure. In this work we shall later

on implement Passarino-Veltman reduction to calculate one-loop DM-electron scattering diagrams.
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Figure 1.5: Conventions for the N point loop integral, where p21 refers to the notation p21 = p2−p1,

and q is the loop momentum.[29]

To grasp this method, let us first give a general definition of a one-loop integral in D spacetime

dimensions with N propagator factors in the denominator and loop momentum l. Here, p1 to pN−1

denote the independent external momenta and µ1 to µP refer to the open Lorentz indices of the

tensor integral [29]. In addition we introduce µ, a parameter with mass dimension that is meant to fix

the mass dimension of the integral when varying the spacetime dimensionality D. These conventions

are also summarised in Figure 1.5.

TN
µ1...µP

(p1, ..., pN−1,m0, ...,mN−1) =
(2πµ)4−D

iπ2

∫
dDl

lµ1
...lµP

D0D1...DN−1
(1.18)

D0 = l2 −m2
0 + iε (1.19)

Di = (l +

i∑
k=1

pk)
2 −m2

i + iε (1.20)

The goal is to reduce (1.18) to a set of known scalar integrals. A four-point tensor integral

for example can ultimately be reduced to the scalar integrals that involve one, two, three or four

propagator factors in the denominator. In the application of our scalar DM EFT, we only need the

first three, which are defined as follows

A0(m
2) =

(2πµ)4−D

iπ2

∫
dDl

1

(l + p)2 −m2
(1.21)

B0(p
2,m2

1,m
2
2) =

(2πµ)4−D

iπ2

∫
dDl

1

(l2 −m2
1)((l + p)2 −m2

2)
(1.22)

C0(p
2
1, p

2
2, (p1 + p2)

2,m2
1,m

2
2,m

2
3) =

(2πµ)4−D

iπ2

∫
dDl

1

(l2 −m2
1)((l + p1)2 −m2

2)((l + p1 + p2)2 −m2
2)

(1.23)
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The analytical results of these scalar integrals are known, which allows us to find the full result of

the one-loop tensor integral after Passarino-Veltman reduction. We shall illustrate the reduction of

a tensor integral to scalar Passarino-Veltman integrals by means of a simple example. Let us take

a look at a two-point function with open Lorentz index µ and masses of the loop particles m1 and

m2:

Bµ =
(2πµ)4−D

iπ2

∫
dDl

lµ
(l2 −m2

1)((l + p)2 −m2
2)

(1.24)

The Lorentz decomposition of this term is given by

Bµ = B1(p
2,m2

1,m
2
2)pµ (1.25)

and we note that pµ is the only momentum four-vector, and p2,m2
1 and m2

2 are the only scalar

invariants that the integral can produce after intgrating over l. The scalar tensor coefficient B1 can

be determined by projecting onto pµ and using the fact that (l+ p)2 = p2 + l2 +2l · p+(m2
1 +m2

2)−

(m2
1 +m2

2).

pµBµ = B1(p
2,m2

1,m
2
2)p

2 (1.26)

=
(2πµ)4−D

iπ2

∫
dDl

l · p
(l2 −m2

1)((l + p)2 −m2
2)

(1.27)

=
(2πµ)4−D

iπ2

∫
dDl

2

(l + p)2 −m2
2 − (l2 −m2

1)− (p2 +m2
1 −m2

2)

(l2 −m2
1)((l + p)2 −m2

2)
(1.28)

=
(2πµ)4−D

iπ2

∫
dDl

2

[
1

l2 −m2
1

− 1

(l + p)2 −m2
2

− p2 +m2
1 −m2

2

(l2 −m2
1)((l + p)2 −m2

2)

]
(1.29)

where we have used l · p = 1
2 [(l + p)2 −m2

2 − (l2 −m2
1) − (p2 +m2

1 −m2
2)] to rewrite the integral.

We recognize the scalar integrals A0(m
2
1), A0(m

2
2) and B0(p

2,m2
1,m

2
2) when combining (1.29) with

(1.21) and (1.22)

B1(p
2,m2

1,m
2
2) =

1

2p2

[
A0(m

2
1)−A0(m

2
2)− (p2 +m2

1 −m2
2)B0(p

2,m2
1,m

2
2)
]

(1.30)

This example illustrates how one can calculate a loop integral by reducing it to a combination of

scalar integrals, where the Passarino-Veltman scalar integrals are the coefficients of the decomposed

tensor integral. Most realistic loop calculations are much more difficult to work out by hand,

stressing the need for automation of the procedure. For example, when the numerator of a loop

integral contains two loop momenta that each carry a Lorentz index, lµlν , one must project onto

the metric tensor gµν in addition to projecting onto all symmetric tensors pµqν that are constructed

from the independent external momenta featuring in the loop integral.

Nowadays Passarino-Veltman reduction is performed by software packages, such as the Mathe-

matica package FeynCalc [30]. The explicit expressions of the scalar integrals can be found with

additional packages [31, 32]. In this work we shall extensively make use of Passarino-Veltman re-

duction by means of these packages to perform one-loop calculations.
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Chapter 2

Method

In the previous chapter we have discussed how the framework of Effective Field Theories can be

of use in the search for dark matter, especially in direct detection experiments. In the area of DM

EFTs, we noted that the simplest Higgs portal models have been strongly constrained already. This

signifies the need for two things. Firstly, the addition of loop effects to the tree level Higgs portal

may provide new, unexplored channels in the search for DM. So, even if the DM-SM interaction

through the Higgs portal is strongly constrained, this does not yet properly inform us about the

relevance of DM-SM interactions at one-loop order, highlighting the need to include loop calculations

when researching DM-SM interactions.

Secondly, DM EFTs should include operators with DM > 4 as these higher dimensional operators

can generate additional corrections. The addition of next to leading order effects remains a relatively

unexplored field though. Current DM EFTs are mainly matched on tree level, leaving out the possible

effects that next to leading order effects may have on the relations between the respective high and

low energy couplings. In this work, we aim to perform exactly such a matching at one-loop level for

a DM EFT. The focus will be on electron-DM scattering in noble gas direct detection experiments,

such as XENON.

To achieve this, several steps must be taken. We shall commence by specifying the definition of

our high energy DM EFT Lagrangian, which is used to determine all Feynman rules relevant for

electron-DM scattering. Then we discuss the computation of the loop diagram amplitudes, and the

techniques and relations that were used. Thereafter the renormalisation procedure of our DM EFT

shall be outlined, which is needed to obtain non-divergent amplitudes. Finally, we identify the low

energy DM EFT Lagrangian, allowing us to determine the one-loop matching between the high and

low energy DM EFTs.
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2.1 The DSMEFT Lagrangian

Let us start by defining the general form of our effective dark matter Lagrangian. This Lagrangian is

defined by a cutoff scale of ΛEW = v, with v being the SM vacuum expectation value of approximately

246 GeV. The Lagrangian thus contains all SM particles and interactions, and it is supplemented by

DM scalars, denoted with φ. We shall refer to this Lagrangian as the DSMEFT Lagrangian.

Our proposed DM particle φ is a stable singlet under SM symmetries with spin 0. We additionally

implement that φ is odd under a Z2 symmetry, whereas all SM particles are even. This symmetry

guarantees that our DM scalar is stable. Our DM scalar is of sub GeV mass, which is the mass range

where electron-DM scattering is relevant, as we have seen in section 1.2.

The DSMEFT Lagrangian consists of all SM interactions, with additional dimension 6 SM-DM

interactions. The operators written here are given by [2], and only operators including solely scalar

DM particles are selected. Dimension 5 operators are omitted, as our goal is to match onto the eeφφ

effective scattering interaction at lower energies. This requires our interactions to contain operators

with two scalar DM insertions, which are only realised by the dimension 6 operators given in [2].

We then obtain the DSMEFT Lagrangian given by (2.1), where we use a summation convention for

I, a, i such that W I
µνW

I,µν refers to
∑

I W
I
µνW

I,µν , and so on.

LDSMEFT =
CH4φ2

Λ2
(H†H)2φ2 +

CH2φ4

Λ2
(H†H)φ4 +

CBφ2

Λ2
BµνB

µνφ2

+
CWφ2

Λ2
W I

µνW
I,µνφ2 +

CGφ2

Λ2
Ga

µνG
a,µνφ2

+
CB̃φ2

Λ2
B̃µνB

µνφ2 +
CW̃φ2

Λ2
W̃ I

µνW
I,µνφ2

+
CG̃φ2

Λ2
G̃a

µνG
a,µνφ2 +

C(DH)2φ2

Λ2
(DµH)†(DµH)φ2

+ Y ii
d

Cdφ2

Λ2
(Q

i

LHdiR)φ
2 + h.c.+ Y ii

u

Cuφ2

Λ2
(Q

i

LH̃ui
R)φ

2 + h.c

+ Y ii
e

C
eφ2

Λ2 (L
i

LHeiR)φ
2 + h.c+ LSM (2.1)

In this Lagrangian, H refers to the Higgs doublet, and Bµν ,W
I
µν , G

a
µν are the gauge field tensors,

with B̃µν , W̃
I
µν , G̃

a
µν being the corresponding dual tensors. Qi

L and Li
L are the left handed quark

and lepton doublet with generation label i, whereas diR, ui
R and eiR are the right handed down and

up quark and lepton singlets. Note that we use mass eigenstates for all the fermions. Finally, Dµ

is the covariant derivative that pertains to the Higgs doublet. Exact definitions are given below in

2.2. Here we have defined the Yukawa couplings Yf =
√
2
mf

v as a diagonal matrix with index ii. By

this definition, no additional mixing between fermion generations occurs at tree level.
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2.2 DSMEFT Feynman Rules

It is now possible to directly determine the DSMEFT Feynman rules based on (2.1). As our goal is

to apply the DSMEFT to electron scattering in direct detection, we stress two points. Firstly, all

DM scalars φ are identical. Secondly, we are interested in those Feynman rules that are relevant for

the one-loop eeφφ scattering amplitudes. All operators that include gluons and quarks can be left

out, for example, as these will only contribute at two loop level or higher. There is one exception:

the top quark can contribute at one-loop order. Due to time constraints, the calculation of one-loop

top quark contributions was excluded. 1We adopt the following conventions, consistent with [29].

Firstly, we use the following definition of the gauge fields:

Bµν = ∂µBν − ∂νBµ (2.2)

W I
µν = ∂µW

I
ν − ∂νW

I
µ + gεIKLWK

µ WL
ν (2.3)

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν (2.4)

with indices a = 1, ..., 8 and I = 1, 2, 3. The dual field strength tensors are given by B̃µν =

1
2εµναβB

αβ , and so on.

The covariant derivative corresponds to:

Dµ = ∂µ − igIIWW I
µ + ig′

YW

2
Bµ − i

gs
2
λaG

a
µ (2.5)

Applied to the Higgs doublet, this covariant derivative takes the following shape, using YW = 1 for

the Higgs doublet:

Dµ = ∂µ − igIIWW I
µ + i

g′

2
Bµ (2.6)

IIW refers to the weak isospin generator IIW = σI

2 , YW to weak hypercharge and λa to the Gell-Mann

matrices. This is the most general definition of the covariant derivative, but note that depending on

the field that Dµ is applied to, only part of it may be of relevance

The gauge eigenstates and physical mass eigenstates of electroweak bosons are related by:

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
(2.7)Zµ

Aµ

 =

 cos(θW ) sin(θW )

− sin(θW ) cos(θW )

W 3
µ

Bµ

 (2.8)

(2.9)

1The quark one-loop diagrams that are possible, are suppressed by a factor of mf/v. Thus only the one-loop

diagram containing two top quarks can be relevant.
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The mass eigenstates on the left hand side correspond to the physical bosons, the W±, Z and γ.

Here, θW refers to the Weinberg or weak mixing angle, which can be expressed in the SU(2)L and

U(1)Y couplings, respectively g and g′:

cos(θW ) =
g√

g2 + g′2
(2.10)

sin(θW ) =
g′√

g2 + g′2
(2.11)

(2.12)

One can relate the electrical charge e =
√
4πα to these couplings and mixing angles by g =

e/ sin(θW ).

The fermion fields ocurring in the Lagrangian refer to physical mass eigenstate left handed quark

doublets Qi
L and lepton doublets Li

L with generation label i:

Qi
L =

ui
L

diL

 (2.13)

Li
L =

νiL

eiL

 (2.14)

diR, u
i
R and eiR in turn denote right handed physical mass eigenstate singlets .

We implement ’t Hooft-Feynman gauge when working with the Higgs field. The Higgs doublet

and its conjugate are given by:

H =

 G+

v+h+iG0√
2

 (2.15)

H̃ =

 v+h−iG0√
2

−G−

 (2.16)

where G±, G0, h all correspond to fields, with the former two being the Goldstone boson fields and h

the physical Higgs boson field. Additionally, v = 2mW

g ≈ 246 GeV is the vacuum expectation value.

When implementing ’t Hooft-Feynman gauge, the Z and W boson propagators are given by:

p
Wµ Wν =

−igµν
p2 −m2

W

(2.17)

p
Zµ Zν =

−igµν
p2 −m2

Z

(2.18)

For G = G0, G+, G−, the Goldstone boson propagator is given by

p
G G =

i

p2 −m2
G

(2.19)

Finally, the masses of the W and Z boson are mW = 1
2vg and mZ = 1

2v
√

g2 + g′2, and the

photon A is massless. The Goldstone boson masses are given by mG0
= mZ and mG+/− = mW
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By convention, we multiply the vertices originating from the Lagrangian by i to obtain the

final Feynman rules for the DSMEFT vertices. Two approaches have been taken to verify the

Feynman rules. Firstly, the Feynman rules were calculated manually. Afterwards the calculation

was automatised by the usage of FeynRules [33]. We then obtain the following Feynman Rules.

= 2igµν
C(DH)2φ2

Λ2

mZg

cos(θW )

(2.20)

= 2i
Ceφ2

Λ2
me (2.21)

= 2igµν
C(DH)2φ2

Λ2
mW g

(2.22)

= 2i
CH4φ2

Λ2

(
2mW

g

)3

(2.23)
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=
− 8i

CWφ2

Λ2

(
gµνp · q − pνqµ

)
+ 2i

C(DH)2φ2

Λ2
gµνm

2
W

(2.24)

=

− 8igµν

(
CBφ2

Λ2
sin2(θw)p · q

+
CWφ2

Λ2
cos2(θw)p · q

)
+ 8i

(
CBφ2

Λ2
sin2(θw)pνqµ

+
CWφ2

Λ2
cos2(θw)pνqµ

)
+ 2i

C(DH)2φ2

Λ2
gµνm

2
Z

(2.25)

=
i
6CH4φ2

Λ2

(
2mW

g

)2

− 2i
C(DH)2φ2

Λ2
p · q

(2.26)

=
2i
CH4φ2

Λ2

(
2mW

g

)2

− 2i
C(DH)2φ2

Λ2
p · q

(2.27)

=
2i
CH4φ2

Λ2

(
2mW

g

)2

− 2i
C(DH)2φ2

Λ2
p · q

(2.28)

= 2
C(DH)2φ2mW

Λ2 cos(θW )
pµ (2.29)

= 2i
C(DH)2φ2mW

Λ2
pµ (2.30)

= − 2i
C(DH)2φ2mW

Λ2
pµ (2.31)
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Note that these are all effective interactions, originating from an EFT. Typically one would

denote this with a striped bubble at the vertex. We omit this, to avoid confusion with the notation

of the lower energy EFT we will define later.

2.3 Loop Calculations

Now we have determined the Feynman rules needed for eeφφ scattering at one-loop level, we can

identify the relevant diagrams and amplitudes. Three generic structures can be identified, triangle

one-loops diagrams, lollipop loop diagrams and tree level diagrams with an additional bubble.

A = νe, (B,C) =



(W+,W−)

(G+,W
−)

(W+, G−)

(G+, G−)

A = e, (B,C) =



(Z,Z)

(Z,G0)

(G0, G0)

(G0, Z)

(H,H)

(2.32)

D = H, (E,F ) =



(H,H)

(Z,Z)

(Z,G0)

(G0, G0)

(W+,W−)

(W+, G−)

(W−, G+)

(G+, G−)

(2.33)
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H = H, G =

Z

W
(2.34)

These diagrams together form a complete set to match the Wilson coefficients C(DH)2φ2 , CWφ2

and CBφ2 onto the lower energy DM EFT. In the first set, the particles (B,C) are defined as outgoing

of the φφ vertex at the bottom. Note that only lollipop diagrams with D = H contribute, diagrams

with D = G0, Z vanish upon evaluation and hence will not contribute to the matching.

We also do not consider diagrams of type (2.34) for G = G+, G0,H, as these diagrams are only

proportional to one Wilson coefficient: CH4φ2 . Later, we will see that there is a CH4φ2 contribution

at tree level. As our aim is to research what terms arise first at one-loop order, we are not interested

in NLO corrections to CH4φ2 , and such corrections would also not be complete in our study. Later

we will discard the CH4φ2 contributions, so this would mean that the amplitudes of all diagrams

with G = G+, G0,H would be removed anyway. We thus opt to not calculate these diagrams.

When performing the loop calculations, we first export the DSMEFT Feynman rules from Fey-

nArts, to create a custom model for the Mathematica package FeynArts [34]. We then use FeynArts

to generate the loop diagrams and amplitudes of (2.32,2.33,2.34). Note that one must explicitly

define that vertices with an adjacency of 5 are allowed when generating the diagrams. Otherwise,

the diagrams of the third type are not generated in FeynArts.

Further computations are performed by Mathematica Package FeynCalc [30]. The electrons are

not set on-shell, as they are bound in noble gas atoms in direct detection experiments. These bound

electrons are not close to momentum-eigenstates, with typical momentum scales of p0 ≡ 1/a0 =

3.73 keV, a0 being the Bohr radius. The ionisation energy of electrons in the outer shell of noble gas

atoms are in the order of 10 eV. From this, one can infer that
−→
|k|,

−→
|p| � me for electron excitations.

Even in this situation, one cannot set the electrons on-shell, as this does not correspond to the reality

of the experimental context, where the framework of individual excitations does not apply. One can

for example possibly encounter double excitations [35]. For generality, it is thus appropriate to work

in a scenario with off-shell electrons.

Additionally, we note both the external momenta and me are much smaller than the mass of the
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heavy loop particles with M = mZ ,mW ,mH . We can thus use the fact that me, p, k� M , with M

being any of the heavy loop particles. The goal is now to calculate the loop amplitudes of the above

diagrams up to the leading order of me/M . Higher orders of me/M are discarded.

Before performing the loop integration by means of Passarino-Veltman tensor integral reduction,

we expand the propagators. Recall that a general denominator for loops such as those given by

(2.32) is
1

(l2 −m2
A)((l − k)2 −M2

B)((l − p)2 −M2
C)

(2.35)

This expansion is again motivated by the fact that the energy scales of the internal loop particles

are much higher than the energy scales of me and the external momenta k, p. To obtain the full

result up to the leading order in me, one needs to carefully assess this expansion. The triangle loops

with internal particles (e,G0, G0), (e,H,H) and (νe, G+, G−) already contain at least two insertions

of me, due to two occurences of the Higgs to electron coupling. In these cases the propagaors thus

only need to be expanded up to the zeroeth order in p and k:

1

((l − k)2 −M2)((l − p)2 −M2)(l2 −m2)
≈ 1

l2
1

(l2 −M2)2
(2.36)

For the remaining triangle loops, we must expand the propagator one step deeper to obtain all

the leading order me terms:

1

(l2 −m2)((l − k)2 −M2)((l − p)2 −M2)
=

1

(l2 −m2)

1

(l2 −M2)

[ 1

1− 2l·k−k2

(l2−M2)

]
· 1

(l2 −M2)

[ 1

1− 2l·p−p2

(l2−M2)

]
(2.37)

≈ 1

l2(l2 −M2)2

[
1 + 2

l · p+ l · k
(l2 −M2)

]
(2.38)

where we have used the geometric series
∑∞

n=0 x
n = 1

1−x for x < 1 in the final line. We only retain

terms up to order 1 in p and k in the numerator. Note that we only denote two masses in this

expansion: m and M . Here m refers to particle A in the triangle loop, such that either m = me or

m = 0, for A = νe. We only need to introduce one additional heavy mass M , rather than distinguish

between MB and MC , due to the fact that all the calculated triangle loops contain only one heavy

mass in their loop integrand.

In the cases where we do not obtain two identical particles in the loop, we have a gauge boson

and its corresponding longitudinal mode, the Goldstone boson. The propagators of these Goldstone

bosons contain the mass corresponding to its respective gauge boson, giving two insertions of M =

mZ for (A,B,C) = (e, Z,G0) for example. Similar expansions can be made for the lollipop loops.

Note that, again, we need to distinguish between only two masses, mH and M in this case.

1

((p− k)2 −m2
H)(l2 −M2)((l − k + p)2 −M2)

≈ 1

(−m2
H)

1

(l2 −M2)

1

(l2 −M2)

[ 1

1− 2(l·k−l·p)
(l2−M2)

]
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≈ −1

(m2
H)(l2 −M2)2

[
1 + 2

l · k − l · p
(l2 −M2)

]
(2.39)

Finally, the third type of loop diagram given in (2.34) can be rewritten as:

1

(l2 −M2)((k − p)2 −m2
H)

≈ −1

m2
H(l2 −M2)

(2.40)

with M being the mass of the heavy loop particle. We do not need to expand this denominator

further, as furter expansion would only give us terms of order two in p, k, which are not relevant for

our calculations

After we have implemented the expansion of the amplitudes, we perform the Passarino-Veltman

reduction in D dimensions. This leaves us with solely the scalar functions A0(M
2), B0(0,M

2,M2)

and C0(0, 0, 0,M
2,M2,M2), with M being the heavy loop particle mass. The analytical expressions

for these scalar functions are easily obtained and can be cross-checked with the Mathematica package

Package-X [31, 32]. We rewrite the amplitude by using the following relations.

A0(M
2) = M2(B0(0,M

2,M2) + 1) (2.41)

(D − 4)B0(0,M
2,M2) = −2 (2.42)

C0(0, 0, 0,M
2,M2,M2) = − 1

2M2
(2.43)

Note that B0(0,M
2,M2) contains a UV divergence. Before being able to set D = 4, we must apply

(2.42).

The rewritten amplitude contains a finite, scalar part and, if present, a divergent part propor-

tional to B0. The goal is to find the leading order contributions, by expanding the amplitude up to

order one in me. Contributions proportional to mN
e , with N > 1, are discarded. It is important to

note that both the external momenta p and k, and me are of the same order of magnitude. If we

were to expand all three terms separately, the order of expansion would influence the final results.

To prevent this from happening, we introduce the following ratios:

RP =
p2

m2
e

(2.44)

RK =
k2

m2
e

(2.45)

RPK =
p · k
m2

e

(2.46)

RM =
me

M
(2.47)

with M being the relevant heavy loop particle mass for the amplitude in question. The ratios RP, RK

and RPK are of order 1 for typical momentum transfers in DM-electron scattering. The amplitude

is then expanded only in RM, as RM � 1. We expand RM up to order 1 to obtain the leading order

terms up to order me.
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2.3.1 DSMEFT Loop Amplitude Results

We now summarise the results of the loop amplitudes given by (2.32,2.33) after applying the pro-

cedure described above. Earlier on, we have stated that the electrons that are scattered in direct

detection are bound in atoms, making them off-shell. To obtain more realistic results, one should

find the amplitudes of the loop diagrams for the off-shell scenario, so without applying the Dirac

equation.

We here give both the off-shell and on-shell amplitudes. When calculating the off-shell amplitudes,

we find that only the (νe,W
+,W−) and (e, Z, Z) triangle loop amplitudes are altered by imple-

menting the on-shell condition. Both results are given for completeness, with (2.50,2.52) giving the

off-shell amplitudes and (2.51,2.53) giving the on-shell amplitudes. In the results of the off-shell

amplitudes, γ̄6, γ̄7 refer to the right and left handed projection operators:

γ̄6 =
1

2
(1 + γ5) (2.48)

γ̄7 =
1

2
(1− γ5) (2.49)

Note that all other types of diagram amplitudes are identical for the on and off-shell cases, as

the Higgs boson yields a scalar interaction. The amplitudes given below thus give the full result for

off-shell electrons.

off-shell
= i

e2 tan2(θW )e2

64π2Λ2

{[
(CBφ2 − CWφ2) cos(2θW )− CBφ2 − CWφ2

]
·

[
3 cos2(2θW )

(
�p+ �k

)
.γ̄7

sin(θW )4

+ 12
(
�p+ �k

)
.γ̄6 − 8(3B0(0,m

2
Z ,m

2
Z)− 2)me

(
cos(θW )2

sin(θW )2
− 1

)]

− C(DH)2φ2

[
cos2(2θW )

(
�p+ �k

)
.γ̄7

sin(θW )4
+ 4

(
�p+ �k

)
.γ̄6

+ 16me

(
cos(θW )2

sin(θW )2
− 1

)]}
(2.50)

= i
e2me

64π2Λ2 sin(θW )2 cos(θW )2

{[(
2− 12B0(0,m

2
Z ,m

2
Z)
)
cos(2θW )

+ (6B0(0,m
2
Z ,m

2
Z)− 1) cos(4θW ) + 6B0(0,m

2
Z ,m

2
Z) + 2

]
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·
[
(CBφ2 − CWφ2) cos(2θW )− CBφ2 − CWφ2

]
+ C(DH)2φ2

(
− 6 cos(2θW ) + 3 cos(4θW ) + 2

)}
(2.51)

off-shell
= −i

e2

32π2Λ2 sin(θW )2

(
C(DH)2φ2 + 6CWφ2

)( (
�p+ �k

)
.γ̄7
)

(2.52)

= −i
e2me

32π2Λ2 sin(θW )2

(
C(DH)2φ2 + 6CWφ2

)
(2.53)

= −i
C(DH)2φ2 e2 me

16π2Λ2 sin(θW )2
B0(0,m

2
W ,m2

W )

(2.54)

= −i
C(DH)2φ2 e2 me

8π2 Λ2 sin(2θW )2
B0(0,m

2
Z ,m

2
Z)

(2.55)
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+ = 0 (2.56)

= 0 (2.57)

= 6i
C(DH)2φ2e2mem

2
H

16π2 sin(2θW )2m2
Z

(
B0(0,m

2
H ,m2

H) +
1

2

)
+ 9i

CH4φ2m2
Z

16π2Λ2m2
Z

B0(0,m
2
H ,m2

H)

(2.58)
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=− ie2mem
2
Z

8π2 cos(θW )2Λ2 sin(θW )2m2
H

(
CBφ2 sin(θW )2 + cos(θW )2CWφ2

)
(6B0(0,m

2
Z ,m

2
Z)− 1)

+
iC(DH)2φ2e2me

64π2 cos(θW )2Λ2 sin(θW )2m2
H

(
(2B0(0,m

2
Z ,m

2
Z) + 1)m2

H + 2(3− 2B0(0,m
2
Z ,m

2
Z))m

2
Z

)
+

iCH4φ2me

16π2Λ2
B0(0,m

2
Z ,m

2
Z) (2.59)

=
iC(DH)2φ2e2me

32π2Λ2 sin(θW )2m2
H

(
2(3− 2B0(0,m

2
W ,m2

W )) cos(θW )2m2
Z + (2B0(0,m

2
W ,m2

W ) + 1)m2
H

)
+

iB0(0,m
2
W ,m2

W )CH4φ2me

8π2Λ2
(2.60)

−
i cos(θW )2CWφ2e2mem

2
Z

4π2Λ2 sin(θW )2m2
H

(6B0(0,m
2
W ,m2

W )− 1) (2.61)

32



=− i
e2meC(DH)2φ2

16π2Λ2 sin(θW )2m2
H

[
4m2

W

(
B0(0,m

2
W ,m2

W ) +
1

2

)
+

2m2
Z

cos(θW )2

(
B0(0,m

2
Z ,m

2
Z) +

1

2

)]
(2.62)

The scalar integral B0(0,M
2,M2) is given by

B0(0,M
2,M2) ≡

(
log

(
µ2

M2

)
− γ + log(4π) +

1

ε

)
(2.63)

where we define ε = (4−D)/2. All amplitudes contain only Lorentz scalar structures, with the excep-

tion of the off-shell amplitudes (2.52,2.50). We shall now continue with only the scalar amplitudes,

indicating that we are implementing on-shell conditions for the scattered electrons.

We can now combine all the loop amplitudes into one expression, collecting all terms per Wilson

coefficient. This gives us the following result for the next to leading order (NLO) amplitude for loop

induced DM-electron interactions with on-shell electrons:

ANLO = i
me

128π2Λ2

[
4e2

m2
Hm2

Z

{
6(2B0(0,m

2
H ,m2

H) + 1)C(DH)2φ2m4
H

sin(2θW )2

+m4
Z

(
−

3(4B0(0,m
2
W ,m2

W ) + 2B0(0,m
2
Z ,m

2
Z)− 1)(C(DH)2φ2 + 4CWφ2)

sin(θW )2

+ 2(6B0(0,m
2
W ,m2

W )− 1)(C(DH)2φ2 + 4CWφ2)−
(6B0(0,m

2
Z ,m

2
Z)− 1)(4CBφ2 + C(DH)2φ2)

cos(θW )2

)

+m2
Hm2

Z

(
−24B0(0,m

2
Z ,m

2
Z)CBφ2 + CBφ2 + 6C(DH)2φ2

cos(θW )2
− 8CBφ2 − 12C(DH)2φ2

− 4(6B0(0,m
2
Z ,m

2
Z)− 1)(CBφ2 − CWφ2) cos(2θW ) + 48B0(0,m

2
Z ,m

2
Z)CBφ2 −

9CWφ2

sin(θW )2

)}

+ 8CH4φ2

(
9B0(0,m

2
H ,m2

H) + 2B0(0,m
2
W ,m2

W ) +B0(0,m
2
Z ,m

2
Z)
)]

(2.64)

This amplitude still contains an insertion of CH4φ2 . As we will see, this Wilson coefficient already

contributes at tree level. Our interest lies in the Wilson coefficients that first contribute at one-loop
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level. For completeness, we have thus given the first result of ANLO with the inclusion of CH4φ2 ,

but it shall from now on be removed from the total amplitude. Additionally, we notice that these

amplitudes are divergent, due to the inclusion of the B0 terms. It is thus necessary to renormalise

our DSMEFT Lagrangian so that the obtained loop amplitudes are finite. We shall discuss this in

section 2.4.

2.4 Renormalisation

When we obtained the total amplitude of all diagrams that will be relevant for our DSMEFT

matching, we noticed that ANLO contains UV divergences 1/ε, introduced by the scalar two-point

integrals B0(0,M
2,M2). Before we proceed with the matching of DSMEFT with a lower energy

theory, we need to remove these divergences from the total amplitude by means of renormalisation.

Renormalisation is an analytical procedure that allows one to remove divergences from loop diagram

by introducing a limited amount of redefinitions in the Lagrangian of a theory.

Renormalisation is an application based method, as different approaches can be chosen, based

on the theory at hand. Generally sketched, the procedure is performed as follows. First, the non-

renormalised, bare, Lagrangian L0 is written down. The parameters that need to be renormalised

are then rewritten in terms of the renormalised ones. The exact redefinition is based on the renor-

malisation scheme that is chosen. Depending on the used theory, one needs to renormalise the fields,

masses or couplings, or a combination of these. These renormalised parameters give rise to so-called

counterterms, which introduce additional Feynman rules that absorb the divergences. Note that

renormalisation is always performed at a chosen renormalisation scale µR.

We now rewrite (2.64), in order to obtain an expression that isolates the divergent elements. Note

that the superscript (0) indicates that this is the so-called bare amplitude, as it is not renormalised

yet. Note that we are thus renormalising the DSMEFT.

A(0)
NLO =i

e2me

128π2m2
Hm2

Z cos(θW )2Λ2

[
C(DH)2φ2

(
12B0(0,m

2
H ,m2

H)m4
H

sin(θW )2

− 48B0(0,m
2
W ,m2

W ) cos2(θW ) cos(θW )2m4
Z

sin(θw)2
− 24B0(0,m

2
Z ,m

2
Z)m

4
Z

sin(θW )2

+
6m4

H

sin(θW )2
− 24m2

H cos(2θW )m2
Z +

(4 cos(2θW ) + cos(4θW ) + 7)m4
Z

sin(θW )2

)

+ CWφ2

(
− 192B0(0,m

2
W ,m2

W ) cos2(θW ) cos(θW )2m4
Z

sin(θW )2

+ 96B0(0,m
2
Z ,m

2
Z)m

2
Z

(
m2

H cos2(θW ) cos(2θW )− cos(θW )2m2
Z

sin(θw)2

)
+

4 cos(θW )2m2
Z

(
m2

H(−2 cos(2θW ) + cos(4θW )− 8) + 4(cos(2θW ) + 2)m2
Z

)
sin(θW )2

)

34



+ CBφ2

(
4m2

Z

(
m2

H(−2 cos(2θW ) + cos(4θW )− 2) + 4m2
Z

)
− 96B0(0,m

2
Z ,m

2
Z)m

2
Z

(
m2

Z −m2
H sin2(θW ) cos(2θW )

))]
(2.65)

Due to our choice to set the amplitudes of the triangle loops (νe,W
+,W−) and (e, Z, Z) on-

shell, we obtain a fully scalar amplitude. The counterterm that will absorb the divergent part of

the diagram of (2.65) is of (Li

LHeiR)φφ structure, due to the scalar nature of the total amplitude.

We must thus renormalise our theory in such a way that the Ceφ

Λ2 (L
i

LHeiR)φφ term in our DSMEFT

Lagrangian absorbs the divergent parts of ANLO. Remark that CH4φ2 could in principle absorb

the divergences of the lollipop diagrams through the Hφφ vertex. This would be a different way to

describe the same physics, so here we choose to absorb all divergences, including those originating

from the lollipop diagrams, in the Ceφ2 coefficient. Additionally, we will integrate out the Higgs in

our lower energy theory, DLEFT, so it is more efficient to directly absorb all divergences in the eeφφ

vertex.

So, in this specific case, only a renormalisation of the Wilson coefficient Ceφ2 is necessary. The

self-energies of the Higgs boson and the DM scalar φ do not give a contribution to the wave function

renormalisation factors at one-loop level for the amplitudes we consider, as they do not contain

terms proportional to p2, k2. The DM mass mφ is also not a parameter that occurs in the considered

amplitudes. So, solely the Wilson coefficient Ceφ2 needs to be rewritten in its renormalised terms. We

define our bare Wilson Coefficients as C(0)
X , with subscript X denoting the specific Wilson coefficient.

We can treat the Wilson coefficients as couplings, and renormalise them on a coefficient by coefficient

basis. Notice that we generate a renormalised coefficient Ceφ2 through loop diagrams with insertions

of CH4φ2 , C(DH)2φ2 , CWφ2 and CBφ2 . We are thus dealing with coupling mixing, and we need to

express our renormalisation constant as a matrix ẐC that contains off-diagonal elements.[36]

C
(0)
eφ2

C
(0)
(DH)2φ2

C
(0)
Wφ2

C
(0)
Bφ2


= ẐC



Ceφ2

C(DH)2φ2

CWφ2

CBφ2


(2.66)

Let us now further examine the term in our DSMEFT Lagrangian that will provide the coun-

terterm to absorb the divergences of the NLO contributions. We start from the Lagrangian L with

bare coefficient C
(0)
eφ2 and use (2.66) to rewrite in terms of the renormalised Wilson coefficient. All

renormalised coefficients are defined at the renormalisation scale µR, such that from this point on-

wards, C ≡ C(µR). For readability we do not explicitly write down the µR dependence for every
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Wilson coefficient C, but all renormalised coefficients are defined at this scale.

L(µR) =
C

(0)
eφ2

Λ2
φφL̄HeR

=
Z11Ceφ2 + Z12C(DH)2φ2 + Z13CWφ2 + Z14CBφ2

Λ2
φφL̄HeR

=
Ceφ2 + δ12C(DH)2φ2 + δ13CWφ2 + δ14CBφ2

Λ2
φφL̄HeR (2.67)

Here µR denotes the renormalisation scale. In the last line we have used the relation Z11 = 1, as we

do not need to renormalise the coefficient Ceφ2 , as it does not occur in ANLO. Furthermore, coupling

mixing only occurs at loop level and there is thus no tree-level contribution to the renormalisation

of the remaining wilson coefficients, allowing us to define Zij = δij for all i 6= j.

The goal now is to define δ12 through δ14 such that the divergence of the diagram is absorbed at a

chosen renormalisation scale µR, leaving us with a finite amplitude. In the context of the Dark Matter

EFT used here, we set the renormalisation scale µR to the EFT cutoff scale Λ, which corresponds

to the electroweak scale v ≈ 246 GeV. In addition, we must choose a convenient renormalisation

scheme. In the Minimal Subtraction (MS) scheme, only the divergent pole 1
ε is absorbed. In our

case, the pole is always accompanied by log(µ2), the Euler constant γ and log (4π). We can thus

absorb
1

ε̂
=

1

ε
− γ + log (4π) + log

(
µ2

µ2
R

)
(2.68)

in our counterterm, which is referred to as the MS scheme.[37] We can now combine (2.65) with

(2.66) to identify the counterterms from the divergent parts of the amplitude.

δ12 = −3

4

[
m4

H

sin(θW )2
− 2m4

Z

(
2 cos2(θW ) cos(θW )2 + 1

sin(θw)2

)][
1

ε
− γ + log (4π) + log

(
µ2

µ2
R

)]
(2.69)

δ13 = −6
[
m2

Hm2
Z cos(θW )2 cos(2θW )− (cos(2θW ) + 2) cos(θW )2m4

Z

sin(θW )2

]
·

[
1

ε
− γ + log (4π) + log

(
µ2

µ2
R

)]
(2.70)

δ14 = 6m2
Z

[
m2

Z −m2
H sin(θW )2 cos(2θW )

][1
ε
− γ + log (4π) + log

(
µ2

µ2
R

)]
(2.71)

Here we have pulled out an overall factor e2me

16π2m2
Hm2

Z cos(θW )2Λ2 . We can now determine the new

Feynman rule that contains the counterterms

=
i

2e2me

16π2m2
Hm2

Z cos(θW )2Λ2

(
δ12C(DH)2φ2

+ δ13CWφ2 + δ14CBφ2

) (2.72)
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where we have defined the counterterms δ1j , with j=2,3,4, using (2.69-2.71). This new Feynman

rule absorbs the divergences in our amplitude ANLO(µR). Now we can define the finite total am-

plitude that remains after normalisation. Remember that all Wilson coefficients are defined at the

renormalisation scale µR. Additionally, the undefined scale of µ is now effectively set to our chosen

renormalisation scale µR. So, by performing the renormalisation, we additionally fix the value of

µ to µR. In our case, we set µR to be in the range of the weak scale, which we shall return to in

section 2.6.

ANLO(µR) = i
e2me

32π2m2
Hm2

ZΛ
2

[
6(2 log

(
µ2
R

m2
H

)
+ 1)C(DH)2φ2m4

H

sin(2θW )2

+m4
Z

(
−

3(4 log
(

µ2
R

m2
W

)
+ 2 log

(
µ2
R

m2
Z

)
− 1)(C(DH)2φ2 + 4CWφ2)

sin(θW )2

+ 2(6 log

(
µ2
R

m2
W

)
− 1)(C(DH)2φ2 + 4CWφ2)−

(6 log
(

µ2
R

m2
Z

)
− 1)(4CBφ2 + C(DH)2φ2)

cos(θW )2

)

+m2
Hm2

Z

(
cos(2θW )(4(6 log

(
µ2
R

m2
Z

)
− 1)CBφ2 − 6C(DH)2φ2)− 3CBφ2

cos(θW )2

− 4(6 log

(
µ2
R

m2
Z

)
− 1)(CBφ2 − CWφ2) cos(2θW )−

9CWφ2

sin(θW )2

)]
(2.73)

(2.74)

The log(µ2
R/M

2) are finite terms originating from B0(0,M
2,M2).
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2.5 DLEFT Operators

Now we have obtained all amplitudes from our DSMEFT Lagrangian, we proceed to our Dark Low

Energy Effective Field Theory (DLEFT). The DLEFT is obtained by integrating out all particles

with electroweak-scale masses, namely the top quark t, the W±,H and Z bosons. When working

with the lower energies relevant for DLEFT, one must keep in mind that the momentum transfer q

and electron mass me cannot be ignored or set to zero. Our DM scalar follows the same conventions

as those stated in Section 2.1 and we again base our DLEFT operators on [2]. First we identify all

relevant operators in Table 2.1.

Name Operator Dimension (dSM , dDM )

Oeφ2 (ēiLe
i
R)φ

2 (3, 2)

OFφ2 FµνF
µνφ2 (4, 2)

OF̃φ2 F̃µνF
µνφ2 (4, 2)

Table 2.1: DLEFT operators relevant for scalar DM scattering off an electron. Here j refers to the

generation label. Additionally, dSM , dDM are the Standard Model and Dark Matter mass dimension.

Here we use

eL/R,j = PL/Rej =
1

2
(1− /+ γ5)ej (2.75)

eL/R,j = ejPR,L = ej
1

2
(1 + /− γ5) (2.76)

p4p3

e−

φ

e−

φ

= 2i
Ceφ2

ΛL
(2.77)
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2.6 Matching DSMEFT with DLEFT

2.6.1 Tree Level Matching

At the start of this chapter, we have stated that our goal is to match the Wilson coefficients of

the higher energy theory (DSMEFT) to the coefficients of the lower energy theory (DLEFT). We

perform the matching by studying eφ → eφ scattering. Before we apply the full one-loop matching,

we describe the matching between our DSMEFT and DLEFT theories at leading order (LO).

At high energies the tree level amplitude of the electron-DM process has contributions of two

diagrams: a eeφφ vertex and a tree diagram with a Higgs boson propagator. The Feynman rule

given in (2.77) gives the amplitude for the effective scattering diagram at energies below the weak

scale. The amplitudes of the following diagrams are relevant for the tree level matching procedure,

with the DSMEFT diagrams on the left hand side, and the DLEFT diagram on the right hand side:

+ = (2.78)

First, we find the the total amplitude of the lefthand side of (2.78).

ALO = i
2Ceφme

Λ2
+ i

8CH4φ2mem
2
W sin(θW )2

e2Λ2(q2 −m2
H)

(2.79)

= i
2Ceφme

Λ2
− i

8CH4φ2mem
2
W sin(θW )2

e2Λ2m2
H

(2.80)

We have used that q ≡ p− k, with k and p respectively being the incoming and outgoing momenta

of the electron. In the second line we have used the fact that q2 � m2
H , as we are working in the

context of direct detection, where q is of sub-MeV order. Note that ANLO is fully scalar, we thus

only need to match onto the scalar part of (2.77), the term that is proportional to Ceφ2 . We can

now combine (2.80) with (2.77) to express the DLEFT Wilson coefficient Ceφ2 in terms of DSMEFT

coefficients:

2Ceφ2

ΛL
=

2Ceφme

Λ2
−

8CH4φ2mem
2
W sin(θW )2

e2Λ2m2
H

(2.81)

CLO
eφ2(µM ) =

ΛLme

Λ2

[
Ceφ2(µM )−

4CH4φ2(µM )m2
W sin(θW )2

e2m2
H

]
(2.82)

CLO
eφ2(µM ) =

ΛLme

Λ2

[
Ceφ2(µM )−

CH4φ2(µM )v2

m2
H

]
(2.83)

where in the last line we have used the relation m2
W = e2v2/4 sin(θW )2. Remark that the coefficients

with a C refer to DSMEFT coefficients, whereas C coefficients apply to the DLEFT coefficients.
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Furthermore, Λ and ΛL refer to the cutoff scale of respectively DSMEFT and DLEFT. These cutoff

scales need not be identical, thus we distinguish them here. In the last line we introduce µM , the

matching scale, the energy scale at which we match both theories. The matching of the Wilson

coefficients occurs at the specified matching scale. In this case, we choose µM such that µM = µR.

Recall that we mentioned that µR should be close to the weak scale in section 2.4. We can choose

µR arbitrarily, but by demanding µR = µM when matching DLEFT to DSMEFT, we only need to

introduce one chosen energy scale. But, while µR can be chosen arbitrarily, µM is determined by

the energy scale where one performs the matching. We know that the predictions of DLEFT break

down above the cutoff energy ΛL, which is near the weak scale. For our purposes, we can thus

set µR = ΛL. A logical energy scale would be ΛL = mW , as all particles with a higher mass are

integrated out of DLEFT. Summarising, we demand that µR = µM , and we identify that muM is

constrained by the energy scale where we perform the matching, which is close to the electroweak

scale in our case.

2.6.2 Matching at one-loop Level

We now expand the tree level matching by including the one-loop amplitudes:

2Ceφ2

ΛL
= ALO(µM ) +ANLO(µM ) (2.84)

Combining the above with (2.73, 2.80) gives us the relation between the DLEFT Wilson coefficient

Ceφ2 and the DSMEFT coefficients at one-loop level.

Ceφ2(µM ) =
ΛLme

Λ2

[
Ceφ2 −

4CH4φ2(µM )m2
W sin(θW )2

e2m2
H

+

e2

64π2m2
Hm2

Z

{
6(2 log

(
µ2
M

m2
H

)
+ 1)C(DH)2φ2m4

H

sin(2θW )2

+m4
Z

(
−

3(4 log
(

µ2
M

m2
W

)
+ 2 log

(
µ2
M

m2
Z

)
− 1)(C(DH)2φ2 + 4CWφ2)

sin(θW )2

+ 2(6 log

(
µ2
M

m2
W

)
− 1)(C(DH)2φ2 + 4CWφ2)−

(6 log
(

µ2
M

m2
Z

)
− 1)(4CBφ2 + C(DH)2φ2)

cos(θW )2

)

+m2
Hm2

Z

(
cos(2θW )(4(6 log

(
µ2
M

m2
Z

)
− 1)CBφ2 − 6C(DH)2φ2)− 3CBφ2

cos(θW )2

− 4(6 log

(
µ2
M

m2
Z

)
− 1)(CBφ2 − CWφ2) cos(2θW )−

9CWφ2

sin(θW )2

)}]
(2.85)

Note that all DSMEFT Wilson coefficients on the right hand side of (2.85) are defined at the

matching scale µM . For readability we write C(µM ) ≡ C for all DSMEFT Wilson coefficients in
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(2.85). Additionally, the matching scale sets the value for µR such that µR ≡ µM , where we follow

the same argumentation that was given in the previous section. In this final definition, we note

that CWφ2 , CBφ2 and C(DH)2φ2 are the Wilson coefficients that arise firstly at one-loop level. In the

previous section we have seen that the leading order coefficient for CH4φ2 is already given by the

tree-level matching. As our aim is to only provide NLO corrections for Wilson coefficients that do not

appear at tree level, our final definition of the matching does not include the terms proportional to

CH4φ2 that arise in our one-loop calculations. The corrections to CH4φ2 are also incomplete, as one

needs to include many more diagrams, including SM corrections, to obtain the complete set of NLO

corrections to the tree level contribution of CH4φ2 . Thus, the leading order matching contributions

for all Wilson coefficients other than Ceφ2 and CH4φ2 are given by the one-loop matching and the

NLO corrections for CH4φ2 are discarded in this definition.
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Conclusion and Discussion

The goal of this research was to provide a one-loop matching between two effective field theories

that include a Dark Matter scalar φ, where we focused on DM-electron scattering. We have seen

that the usage of EFTs in DM research has proliferated over the years, but the matching of DM

EFTs to one another generally remains limited to tree level. We aim to append to this line of

research, by providing a matching procedure at one-loop level. In this thesis, we have given a

complete set of NLO corrections to the tree level matching of the proposed DMSEFT and DLEFT

for the Wilson coefficients CWφ2 , CBφ2 , C(DH)2φ2 . These coefficients do not contribute at tree

level, and as such they can be seen as a truly novel addition to the matching procedure. The

full results for our matching are given by (2.85). By including these NLO effects in the matching

procedure, we open the possibility to research a new portal between the DM and SM sector.

This is especially relevant as the Higgs portal model has become more and more constrained.

The results of the matching procedure as presented in this research show that contributions

from Wilson coefficients that do not occur at tree level may indeed arise when one includes NLO

effects in their matching procedure. One-loop matching procedures may thus provide a promising

avenue in Dark Matter research.

To properly cater to a more realistic experimental context, some additional steps need to be

taken. Firstly, we have taken the decision to perform the matching for on-shell electrons. Note

that at tree level, the on and off-shell amplitudes are identical. It is only at one-loop level that

the difference between on and off-shell electrons comes into play, so when working at next to

leading order, it becomes relevant to study off-shell effects. One needs to take off-shell effects

into account, as one cannot make the on-shell assumption for bound electrons in direct detection

experiments. Although we have identified that the results of only two one-loop amplitudes are

changed by setting the electrons on-shell, we do as of yet not know what effect setting the

electrons on-shell would have on experimental predictions.

Secondly, we have linked DSMEFT, a theory that is valid at SM energies, to DLEFT, a

theory that is valid below the electroweak scale. Direct detection experiments work at even lower

energies, so a second matching procedure linking DLEFT to a non-relativistic EFT is needed to

make proper experimental predictions. Thirdly, we have not studied the contributions of photonic

effects at one-loop order. Such effects may be suppressed, but a more comprehensive study is

needed to make more certain statements. Finally, our proposed DSMEFT only introduces a DM

scalar. Further research could repeat the steps taken for vector or fermion DM, for example.
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