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Abstract

A numerical study of curvature in quantum gravity is presented. Specifically, the quantum Ricci cur-
vature is studied in two-dimensional Euclidean dynamical triangulations (2D EDT), using Monte Carlo
simulations. Recent measurements suggested that the curvature properties of 2D EDT are best approx-
imated by those of a five-sphere. The present work aims to improve upon this analysis, by eliminating
finite-size effects. In addition to the usual combinatorial triangulations, the measurements are also per-
formed on two ensembles of degenerate triangulations, which are part of the same universality class.
We find that the curvature properties of 2D EDT are best approximated by those of a four -sphere.
Additionally, measurements of the Hausdorff dimension are performed for the three ensembles.
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Chapter 1

Introduction

General relativity has been successful in describing gravity at large scales. It has provided verified
predictions of planetary orbits [1], black holes [2], and gravitational waves [3, 4]. However, there are
strong indications that it cannot be the whole story. A prevalent feature of general relativity is the
occurrence of singularities in its solutions, like at the centers of black holes or the big bang. A theory
of quantum gravity is expected to allow us to understand the physics at these short length scales. The
length scale at which such a theory must certainly be taken into account is given by the Planck length

lp =

√
ℏGN

c3
≈ 1.616× 10−35m , (1.1)

with ℏ being the (reduced) Planck constant, GN Newton’s constant, and c the speed of light. The
corresponding energy scale is far out of reach for any experimental setup currently available. Of course,
the effects of quantum gravity may still be felt at lower energy scales, but nonetheless experimental and
observational guidance for how to construct a theory of quantum gravity is not available presently.

A plethora of candidates for a theory of quantum gravity have been proposed. In order to make
progress in this discussion, extraction of results from these candidates is needed. Obtaining predictions
for physical observables makes it possible to compare the different approaches to quantum gravity, and
is crucial for eventual verification through experiment.

A central quantity in General Relativity is curvature. In the classical situation, information about
curvature is captured in the Riemann tensor, and is straightforward to compute from the metric tensor
gµν and its derivatives. However, in a nonperturbative quantum gravity setting the derivatives of gµν
may not be available, and as a consequence it is not clear how to go about measuring curvature. Recently,
a prescription for defining curvature called Quantum Ricci Curvature (QRC) was introduced[5]. A key
feature of this quantity is that it does not rely on tensor calculus, but instead relies on distances and
volumes. This property makes it particularly suitable for application to (Causal) Dynamical Triangu-
lations. In this setting the gravitational path integral is defined as the continuum limit of a sum over
piecewise flat manifolds. Due to their non-smoothness, these manifolds provide a good example of a case
where the classical approach to curvature is not applicable, and a prescription like the QRC is useful.[6]

Quantum Ricci Curvature measurements have been performed on a variety of spaces. Namely, on
constantly curved smooth spaces and well-behaved lattices [5], on 2D Euclidean Dynamical Triangulations
(2D EDT) [7], and on 2D CDT [8]. Additionally, two-point functions based on QRC are being studied
[9]. A rather striking conclusion was drawn from the 2D EDT measurements. The QRC measurements
on the quantum geometry were compared to that of a D-sphere, for D = 2, . . . , 5. It was concluded
that the constantly curved space best approximating the curvature in 2D Euclidean quantum gravity is
the 5-sphere. While there is no analytic prediction for this dimension, 5 is at odds with other notions
of dimension that are known for this geometry, namely, its topological dimension of 2, the Hausdorff
dimension dH = 4[10, 11], and the spectral dimension ds = 2[12]. This disagreement warrants a further
investigation.

In this work, a refinement of the previous work concerning curvature in 2D EDT is presented. Improve-
ments to the fitting procedure are implemented. Furthermore, three triangulation classes, or ensembles,
with the same continuum limit are studied numerically using Monte Carlo methods. It turns out that the
different triangulation classes provide an additional tool in helping to distinguish discretization effects
from physically relevant results. Gaining understanding of the influence of the choice of ensemble on the
evaluation of quantum gravity observables also has intrinsic value. For example, it may reveal whether
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a specific choice of ensemble causes the continuum limit to be reached faster.
Chapter 2 provides the necessary theoretical background on the following: quantum gravity, and

in particular 2D EDT, is introduced. Furthermore, the different triangulation ensembles are defined,
as well as the average sphere distance, from which the QRC is obtained. Finally, the algorithm for
sampling triangulations is presented. The practical considerations that come with the Markov chain
Monte Carlo method are presented in chapter 3. Measurements, along with a discussion, of the Hausdorff
dimension and average sphere distance are given in chapters 4 and 5 respectively. Finally, a conclusion
and suggestions for further research are given in chapter 6.
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Chapter 2

Theoretical background

2.1 From classical to quantum gravity

In general relativity, gravity is a consequence of spacetime curvature. Light and matter follow geodesics
in this spacetime, and the curvature is a consequence of its matter (and energy) contents. The metric
properties of spacetime are encoded in the Lorentzian metric gµν . Given the matter and energy contents
in the form of the stress-energy tensor Tµν , the equations of motion for gµν , the Einstein equations, are
given by,

Rµν − 1

2
Rgµν = κTµν − Λgµν , (2.1)

where Rµν is the Ricci tensor, R = gµνRµν the Ricci scalar, and Λ the cosmological constant. The
constant κ relates to Newton’s gravitational constant GN as κ = 8πGN

c4 . Interpreting the cosmological
constant term as a vacuum energy, one can interpret equation (2.1) as follows; curvature, the left-hand
side, is generated by the universe’s matter content, the right-hand side. These equations of motion can
be obtained using the principle of least action. The action needed is the following:

S =
1

2κ

∫
d4x

√
|g|(R− 2Λ) +

∫
d4x

√
|g|LM . (2.2)

Here, g denotes the determinant of the metric, such that
∫
d4x

√
|g| is a spacetime volume integral.

Furthermore, LM is the matter Lagrangian. The first part of (2.2), without matter, will from now on be
referred to as the Einstein-Hilbert action SEH .

A non-perturbative quantum theory of gravity is obtained using the Feynman path integral formalism
[13]. The quantity of interest is the gravitational path integral,

Z =

∫
D[gµν ]e

iSEH [gµν ] . (2.3)

Note the usage of natural units, i.e., ℏ = c = 1. Furthermore, the integral is over equivalence classes
of Lorentzian metrics under diffeomorphisms, [gµν ]. This can be understood as follows. The physics is
determined by the geometry of spacetime, and metrics related to each other by a spacetime diffeomor-
phism describe the same geometry. In the path integral, one assigns a phase factor to each physically
inequivalent configuration. It is therefore necessary to integrate over geometries, and these are uniquely
captured by diffeomorphism equivalence classes of the metric. Stating this prescription for the configu-
ration space is easy, working with it is not. In fact, the path integral stated above is ill-defined for a host
of reasons. For a brief overview, see [14], and specifically question 24 therein. A key feature is that the
complex nature of the path integral of eq. (2.3) poses difficulties when employing numerical methods.
The usual quantum field theory approach to this problem is by using a Wick rotation. While that works
well in a fixed Minkowski background, there is no Wick rotation for general smooth metrics.

To sidestep this problem, a different theory is often considered, namely that of Euclidean quantum
gravity. While there is no obvious way to relate its results to the Lorentzian theory, the path integral of
the Euclidean theory has the computational advantage of being a real quantity. It is given by

ZEU =

∫
D[gEU

µν ]e−SEH [gEU
µν ] , (2.4)
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with

SEH [gEU
µν ] =

1

2κ

∫
d4x

√
g(−R+ 2Λ) . (2.5)

Now, [gEU
µν ] denotes a diffeomorphism equivalence class of Euclidean metrics, in contrast to the Lorentzian

ones of before. As can be seen, all constituents of this path integral are now real, making it much more
suitable for numerical approaches. However, other problems still persist. The action is not quadratic in
the metric gEU

µν and consequently, the functional integral is not Gaussian. Furthermore, the action is not
bounded from below. A possible approach of making sense of this path integral nonperturbatively is to
define it as a continuum limit of a sum over piecewise flat geometries. The details of such a discretization
are presented in section 2.2. In this thesis, a 2D variant of the Euclidean theory is considered. The
treatment will focus on the two-dimensional theory, unless specified otherwise.

2.2 Discretization in 2D

As mentioned at the end of section 2.1, the two-dimensional path integral can be solved by viewing it as a
continuum limit of a sum over piecewise flat geometries. To this end, a suitable discretization is chosen.
The approach of studying a quantum theory in non-perturbative way by discretization is historically
well-motivated. The non-perturbative regime of quantum chromodynamics (QCD) has been successfully
studied by putting in on a lattice [15]. This method cannot be directly copied to the quantum gravity
path integral. In lattice QCD, the dynamical fields are put on the edges between discrete points of space.
In contrast, in quantum gravity the geometry of space is the dynamical field. Consequently, there exists
no obvious background to put it on.

An approach used to discretize the classical theory of gravity is that of Regge calculus [16, 17]. The
smooth solutions to equation (2.1) are approximated by piecewise flat ones: a “gluing” of simplices, or
triangulation. An approximate solution is obtained by varying the edge lengths such that the action is
extremized. The details of how one evaluates the gravitational action on a piecewise flat geometry, and
particularly how one assigns curvature in the case of equilateral triangulations, is presented in section
2.2.2. An important feature of this discretization is the absence of a need for coordinates. The redundant
degrees of freedom that originate from the choice of coordinates are eliminated.

In the theory of Dynamical Triangulations (DT) the path integral is performed by considering tri-
angulations of equilateral simplices. The action is evaluated using the Regge calculus prescription. The
edge length a serves as a cut-off scale. By fixing the edge length, the geometry is completely specified
by the simplex connectivity. The path integral over equivalence classes of metrics now becomes a sum
over inequivalent abstract triangulations. Which triangulations are exactly included in this summation
still needs to be addressed. There exists no clear best choice a priori. In 2D, a common choice is that
of combinatorial manifolds, the details of which are presented in section 2.2.1. Two alternative classes
of triangulations are presented in section 2.3. It should be noted that these three are by no means
an exhaustive list of the possible discretization schemes that can be successfully used. The continuum
limit of the theory can be obtained using a variety of different, discrete ingredients: the theory exhibits
universality. A more detailed discussion of the continuum limit is presented in section 2.2.3.

2.2.1 Combinatorial manifolds

A complete treatment of combinatorial manifolds is outside the scope of the present work. Fortunately,
the 2D case lends itself well to a more basic introduction, which will be the approach taken in this section.
Consequently, the following is not an exhaustive treatment of the subject. Unless mentioned otherwise,
the treatment only considers combinatorial manifolds without boundaries, and of spherical topology. For
a complete and well-illustrated treatment of combinatorial manifolds, see chapter 10 of [18].

Let us begin with the definition of a simplex. Given points x0, . . . , xn in Rm, the simplex σ is defined
as the convex hull of these points, i.e., all points x for which holds

x =

n∑
i=0

λixi , (2.6)

where
∑n

i=0 λi = 1, and λi ≥ 0. The dimension of σ is n; the points xi are the vertices of σ. A face of σ
is a simplex defined by a subset of the vertices of σ. If a face is a simplex of dimension n− 1, it is called
a facet. Simplices of dimensions 0, 1, 2 are called vertices, edges, and triangles, respectively.
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By gluing simplices of dimension d, one can make a simplicial complex of dimension d1. This requires
that the simplices are glued “nicely”: the intersection of two simplices is either empty, or a face of both
simplices. In 2D, this means that the intersection of two triangles is either empty, a vertex, or an edge.

The star st of a simplex σ is the union of all simplices that have σ as a face. The link lk of a simplex
σ is the union of the simplices τ in st(σ) with τ ∩ σ = ∅. An example showing the star and link of a
vertex is shown in Fig. 2.1.

Figure 2.1: Example of the link (in red) and star (in blue) of a vertex (marked with a cross).

Let us now restrict ourselves to complexes built by gluing triangles, and only consider the case of no
boundaries, i.e., no edge is left unglued. The dimension d of such a complex is 2. A face σ of dimension
n of a d-dimensional complex is nonsingular if its link satisfies

lk(σ) ∼= Sd−n−1 , (2.7)

given n ≤ d− 1, and where Sd is the unit d-sphere.
These definitions finally allow for the definition of a combinatorial manifold. A simplicial complex is

a combinatorial manifold if every vertex and edge is nonsingular. That means that for a combinatorial
2-manifold, the link of every vertex is homeomorphic to the unit 1-sphere and the link of every edge is
homeomorphic to the 0-sphere: it consists of two distinct vertices. This method of defining combinatorial
manifolds is from now on referred to as the link picture. The absence of nonsingular edges, together with
the aforementioned restriction of nice gluings, it follows that triangles are always glued pairwise along
edges, e.g., exactly two triangles meet at every edge.

Alternative definitions and their equivalence

In literature related to Dynamical Triangulations, combinatorial manifolds are often presented under
different names, and with differently worded definitions. For example, they may be called simplicial
manifolds [19], or combinatorial triangulations [20]. In [20], the author also provides a different definition:
A pairwise gluing of triangles without boundary is a combinatorial triangulation if:

1. The vertices of any simplex are distinct from each other, and

2. each edge and triangle is uniquely defined by the list of its vertices.

This method of defining combinatorial manifolds is from now on referred to as the vertex picture. It can
be shown that this prescription is equivalent to the link picture. The equivalence of these prescriptions
is presented in appendix A.

Furthermore, this class of triangulations is often specified by stating restrictions on the dual graph.
The dual graph is obtained by placing a vertex on the interior of every triangle, and connecting these

1Note that the distinction of a simplicial complex and its geometric realization has been omitted from the present
treatment. This distinction is also absent from the definitions of the star and link later on. For the current discussion, this
distinction is not needed. However, note that this shortcut does lead to some slight abuse of the terminology used in [18].
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whenever their corresponding triangles share an edge. Consequently, vertices of degree q in the triangu-
lation become faces with q sides in the dual graph. For triangulations, the dual graphs are ϕ3 diagrams.
Specifically, the dual graphs of triangulations of spherical topology are planar ϕ3 diagrams without ex-
ternal lines. Combinatorial triangulations are those triangulations that have no self-energies or tadpoles
in their dual graph. This way of defining combinatorial manifolds is from now on referred to as the dual
graph picture.

The equivalence between the dual graph picture and the vertex picture is straightforward to show,
by considering the dual graphs that are forbidden when applying the conditions of the vertex picture.
Condition (1) is violated when an edge’s endpoints coincide, or equivalently when multiple vertices of a
triangle coincide. The dual graph of such an edge, as well as its general neighborhood, is presented in
Fig. 2.2. The hatched area denotes any planar ϕ3 diagram with one leg, i.e., a planar ϕ3 tadpole diagram
of any loop order. The edge e that connects the vertex v to itself is represented in the dual graph as the
face v, that meets itself at the edge e. From the illustration, it follows immediately that the existence
of such an edge corresponds to the existence of tadpoles in the dual graph. Since condition (1) forbids
edges with coinciding endpoints, it follows that it also forbids tadpoles in the dual graph.

v ve

Figure 2.2: The ϕ3 tadpole diagram in the dual lattice.

For condition (2) a similar argument is made. In general, it is violated when multiple distinct edges
share the same pair of vertices as their endpoints, or if two distinct triangles share the same three
vertices. The dual of the general case of two edges sharing their endpoints is shown in Fig. 2.3. The
dotted area denotes any ϕ3 diagram with two legs, but excluding the single edge2, i.e., a planar ϕ3

self-energy diagram of any loop order. It immediately follows that condition (2) forbids the existence of
self-energies in the dual graph.

v1

v2

Figure 2.3: The ϕ3 self energy diagram in the dual lattice.

2.2.2 Applying gravitational action to triangulations

Now that the necessary details of the triangulations have been established, let us consider what it
means to calculate the Einstein-Hilbert action on them. Note that the following again only considers
combinatorial man without boundary. First, consider the Λ term in the action:

SΛ =
1

2κ

∫
d2x

√
g2Λ . (2.8)

The cosmological constant Λ is a constant and can be brought in front of the integral. The remaining
integral is the volume integral over the entire manifold. The volume is easily calculated for an equilateral
triangulation. Remember that the edge-lengths are set to a, and therefore the volume of each triangle is

2The exclusion of the single edge is to avoid the trivial case where v1 and v2 do uniquely describe an edge, which is
exactly a situation that this illustration is not meant to represent.
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set to
√
3
4 a2. The volume of the manifold is then

√
3
4 a2N , where N denotes the number of triangles that

make up the manifold.
The curvature term in the action,

SR = − 1

2κ

∫
d2x

√
gR , (2.9)

is less straightforward to apply to triangulations. To make sense of the integral, consider where the
Gaussian curvature is located. Since we only consider two-dimensional manifolds, the scalar curvature
in the integrand is twice the Gaussian curvature, and it fully captures the curvature of the manifold.
The curvature is clearly not located at the interior of the triangles, as they are flat by construction.
Furthermore, the curvature is also not located at the edges. To realize this one can employ the fact that
bending a surface without stretching leaves the Gaussian curvature unchanged. That leaves the vertices,
and the question of what determines the curvature there. A few examples should provide some insight.
Consider a vertex, and six triangles meeting at it. Since the triangles are equilateral these together form
a hexagon, which is flat. If now less than six triangles meet at a vertex, say four, the resulting shape will
be a pyramid with an open base. It is easy to convince oneself that it is impossible to let the pyramid lie
in a single plane by only bending along an edge. Consequently, the shape is not flat. A similar argument
holds for the case of more than six triangles meeting at a vertex.

The examples above indicate that the curvature, located at the vertices, is related to the degree3

of that vertex. That is indeed the case. A detailed but entry-level exposition of why this is the case
can be found in [21], starting at page 62 therein. For completeness, the key points of the argument are
reiterated here. Consider a closed curve around a vertex v, enclosing a sufficiently small area dA. Place
a vector on the curve, and perform a parallel transportation along the curve. The angle between the
parallel transported vector and the original vector is called the deficit angle ϵ. Since all triangles are
equilateral, the deficit angle is fully determined by the degree deg(v) of vertex v:

ϵv = 2π − π

3
deg(v) . (2.10)

Remember that our goal, SR, is a surface integral of curvature. Due to the argument before, it is clear
that R = 0 everywhere apart from the vertices. Thus, to find SR, one only needs to sum the deficit angle
ϵv over all vertices in the triangulation T :∫

d2x
√
gR =

∑
v∈T

ϵv =
∑
v∈T

(
2π − π

3
deg(v)

)
= 2πV − π

3

∑
v∈T

deg(v) , (2.11)

where V is a shorthand for |V (T )|, the number of vertices in the triangulation. To find the sum of
degrees, consider the following argument. Vertex degree is defined as the number of triangle corners
meeting in a vertex. Since each triangle has three corners, as its name suggests, each has three ”units”
of degree to distribute. Consequently, the sum of degrees is equal to three times the number of triangles:∑

v∈T

deg(v) = 3F , (2.12)

with F the number of faces (read: triangles) in the triangulation. Finally, it will turn out to be useful to
establish a relation between the number of edges E and the number of triangles F . Before gluing, each
triangle has three edges. After gluing every edge is associated with exactly one other edge. The result is
that after gluing the number of edges is half the number of edges before gluing, providing the following
relation:

E =
3

2
F . (2.13)

Combining (2.11), (2.12), and (2.13) gives∑
v∈T

ϵv = 2π
(
V − π

3
F
)
= 2π (V − E + F ) = 2πχ , (2.14)

3A comment on nomenclature is in order. In graph theory, the degree of a vertex denotes the number of vertex neighbors
it has. This is closely related to the definition of degree used in this work, namely the number of distinct triangles meeting
at a vertex. In physics literature, order is also a common name for this quantity. However, this clashes with the meaning
of order in graph theory, denoting the total number of vertices in a graph. Neither is ideal, but degree is deemed to be the
lesser of the two evils.
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where in the last step the formula for the Euler characteristic, V − E + F = χ, was used. This result
is not too surprising, since the Gauss-Bonnet theorem states that the l.h.s. of (2.11) should equal 2πχ.
This serves as a check on the arguments presented before.

Combining the simplifications for SΛ and SR one finds for the Einstein-Hilbert action applied to a
two-dimensional triangulation T :

SEH [T ] = SΛ[T ] + SR[T ] =
1

2κ

(
2

√
3

4
a2NTΛ− 2πχT

)
= λNT − χT /G , (2.15)

where in the last step the bare dimensionless cosmological constant λ and gravitational constant G
are introduced. The action is fully determined by the triangulation size and its topology, since χ is a
topological invariant. The discretized path integral is then

Za =
∑
T∈T

1

CT
e−λNT+χT /G , (2.16)

where CT denotes the number of elements in the automorphism group of T . Furthermore, T is the
ensemble of triangulations that is considered. Its choice is not unique, and it will be addressed in more
detail in 2.3. Recall that the present work only considers triangulations of spherical topology, for which
χT = 2.

2.2.3 Continuum limit and universality

The continuum limit of (2.16) is obtained by taking the limit of NT → ∞, a → 0, such that the volume√
3
4 a2NT is conserved. At that point the theory exhibits universality. It is part of a collection of statistical
systems characterized by a set of critical exponents. Other theories in the same universality class are
the Brownian sphere [22] and Liouville Quantum Gravity [23]. Some notable universal properties are its
Hausdorff dimension, dH = 4 [10, 11], and its spectral dimension, ds = 2 [12]. This universality has a
practical consequence: any reasonable discretization results in the same continuum limit. The following
examples all result in the same continuum limit as the discretization scheme above: quadrangulations,
minimal dynamical triangulations [24], and degenerate triangulations [20]. This freedom in discretization
does not mean that the choice of discretization scheme is irrelevant when it comes to solving the model
analytically or numerically. For example, in the case of quadrangulations, there exists a tree-bijection,
making them easy to generate [25]. Furthermore, numerical methods do not operate at the continuum
limit, and the nature of the discretization choice may influence how numerical results differ from the
continuum limit. Different discretization schemes may have varying sensitivity to discretization and
finite-size effects [26, 24]. Consequently, comparing numerical results from various approaches can help
disentangle properties of the continuum theory from discretization artifacts in numerical results. This
property is leveraged in this work, by comparing three triangulation ensembles, each with different local
gluing rules. The details of these ensembles are presented in the following section.

2.3 Triangulation Ensembles

The first of the three ensembles that is considered has already been introduced. This ensemble is the
combinatorial ensemble TC , consisting of the combinatorial triangulations of section 2.2.1. Let us restate
its three equivalent definitions, since they serve as a useful contrast to the two other ensembles that will
be introduced. For a combinatorial triangulation T ∈ TC , it holds that:

1. All edges and vertices of T are nonsingular, that is, their links are homeomorphic to S0 and S1

respectively. This formulation is referred to as the link picture.

2. The edges and triangles of T are uniquely described by lists of distinct vertices. This formulation
is referred to as the vertex picture.

3. The dual graph of T contains no tadpoles or self-energies. This formulation is referred to as the
dual graph picture.

The following two sections define two other ensembles, namely the restricted degenerate ensemble TRD,
and the maximally degenerate ensemble TMD. Both follow the definitions presented in [20].
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2.3.1 Restricted degenerate ensemble

The restricted degenerate ensemble TRD is defined using the vertex picture as follows: edges and triangles
are described by lists of distinct vertices, but these lists are no longer necessarily unique. By removing
the uniqueness restriction, two distinct edges can share the same pair of endpoints, and two distinct
triangles can meet at all three corners. An example of what such a situation might look like is given in
Figure 2.4. To illustrate why the aforementioned definition allows this situation, let us go through the
vertex lists contained in the edges and triangles, using the (arbitrary) labelling introduced on the right
side of Figure 2.4. Both triangles t1 and t2 contain the vertices {v1, v2, v3}. Furthermore, the edges e1,
e2 both contain {v2, v3}. Clearly, the vertex lists do not uniquely describe the edges and triangles, but
vertices within these lists are distinct.

Glue

Glue
e1

v1

v2

e4v3

t1

t2

v1v1

v2v2

v3
v3

e1 e2t1 t2

Figure 2.4: An example of a gluing that is possible in TRD. Coloring is for clarity only.

Consider now what removing the uniqueness restriction means in the link picture. To this end, the
example of Figure 2.4 is pictured again in Figure 2.5, now from a top-down view, carrying over the
labelling. Additionally, some surrounding triangles are added. Every face is still homeomorphic to the
equilateral triangle, even though the edges are bent to make it embeddable in the plane. The link of the
cross-marked vertex v2, lk(v2), is depicted in red. It is not homeomorphic to S1, due to it including v1,
and the edge connecting it to v3. The cause of this additional edge in the link is the double gluing of
triangles t1 and t2. If one were to remove these triangles and glue e1 to e2, the resulting link would be
homeomorphic to S1. Reversing this argument gives a way to explore what the general link of a vertex
in the TRD ensemble looks like. This exploration is presented in appendix B.

e1

v1

v2

e2

v3

t1 t2

Figure 2.5: Top-down view of the gluing given in Figure 2.4, carrying over its labelling but not its coloring, and
with added surrounding triangles. Vertex v2 is marked with a cross, and its link lk(v2) is depicted in red.

The degenerate ensemble TRD is straightforward to formulate in the dual graph picture. Restricted
degenerate triangulations are those triangulations whose dual graphs may contain self-energies, but
may not contain tadpoles. The equivalence to the vertex picture has been illustrated in section 2.2.1.
The distinctness of vertices within the lists ensures the absence of tadpoles. The uniqueness of vertex
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lists ensured the absence of self-energies. Consequently, the removal of this restriction allows for the
occurrence of self-energies in the dual graph.

2.3.2 Maximally degenerate ensemble

The maximally degenerate ensemble TMD is characterized in the vertex picture as follows: the lists of
vertices describing edges and triangles are not necessarily unique, and the vertices within these lists are
not necessarily distinct. Dropping the restriction of distinctness of the vertices allows an edge to have
the same vertex on both endpoints. A gluing where such an edge arises is shown in Figure 2.6. Similar
to before, an arbitrary labelling is introduced. Using this labelling, let us go through the lists of vertices
contained in the edges and triangle of this example. Particularly, notice that edge e1 contains the vertices
{v2, v2}, and the triangle t contains the vertices {v1, v2, v2}. Evidently, v2 appears twice in both, so the
lists do not contain only distinct vertices.

Glue

v1

e1

e2

t

v2

e1
v2 v2

v1

t

e2e2

Figure 2.6: An example of a gluing that is possible in TMD. Coloring is for clarity only.

To see what a situation like this might do to the link, consider again a top-down view. This perspective
is shown in Figure 2.7, carrying over the labels of Figure 2.6. Again, the link lk(v2) is not homeomorphic
to S1. Furthermore, it is also not connected. Similar to the TRD case, an exploration of what a general
TMD link looks like is presented in appendix B.

v2

v1

e1

e2
t

Figure 2.7: Top-down view of the gluing given in Figure 2.6, carrying over its labelling but not its coloring, and
with added surrounding triangles. Vertex v2 is marked with a cross, and its link lk(v2) is depicted in red.

Again, the TMD is straightforward to formulate in the dual graph picture. Maximally degenerate
triangulations are those triangulations whose dual graphs may contain both self-energies and tadpoles.
Just like for the restricted degenerate ensemble, the equivalence to the vertex picture has been illustrated
in section 2.2.1. The distinctness and uniqueness requirements prevented tadpoles and self-energies
respectively. Consequently, removing both restrictions on the vertex lists allows for both tadpoles and
self-energies.
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2.4 Observables

In section 2.1 it was stated that the path integral is the quantity of interest. More specifically, the aim of
this work is to obtain expectation values for observables from the path integral. The expectation value
of a quantum observable O is given by

⟨O⟩ = Z−1

∫
D[gEU

µν ]O[gµν ]e
iSEH [gEU

µν ] . (2.17)

Applying all the simplifications for 2D DT presented in section 2.2, and rotating to Euclidean signature,
one obtains

⟨O⟩ = Z−1
∑
T∈T

O[T ]
1

CT
e−λNT , (2.18)

where T may be any one of the three triangulation ensembles that are given in section 2.3. As mentioned
before, the present work only considers triangulations of fixed (spherical) topology, and therefore the
χ-term of the action cancels in expectation values, and is not written.

What observable would be of interest? First, let us consider the following requirement, which is
already present in the classical theory. Physics must be invariant under diffeomorphisms. In pure gravity,
in the absence of physical reference systems, a point in space is not a diffeomorphism-invariant notion,
and as such it follows that a field evaluated at a point is not a diffeomorphism-invariant observable.
This problem can be addressed by not looking at a single point, but instead considering integrals over
the whole manifold. Additionally, the piecewise linear manifolds considered present more hurdles to
overcome. Say, one is interested in curvature. One may be tempted to turn to the classical approach
of constructing the Riemann tensor and contractions using the metric and its derivatives. However, this
approach breaks down when applied to piecewise linear manifolds. They are not differentiable, so there
is no access to the usual tensor calculus tools. This motivated the approach to curvature in section
2.2. Does this mean that the question of defining curvature on piecewise linear manifold is solved? The
answer is no. One must be careful when trying to apply the deficit angle prescription to piecewise linear
manifolds of higher dimensions. While that case is not directly considered in this work, it is part of the
bigger picture, namely working with the full 4D theory. In 2D, equation (2.14) evaluates to a constant.
However, in dimensions higher than 2 the integrated scalar curvature does not, and it diverges in the
continuum limit, with no obvious renormalization prescription [6].

Despite the aforementioned challenges, there is still a multitude of interesting observables to study.
To name some examples, measuring return probabilities in diffusion processes provides an estimate for
the spectral dimension, and likewise ball volume measurements provide an estimate for the Hausdorff
dimension [27]. When it comes to curvature, one could turn to the recently introduced Quantum Ricci
Curvature (QRC) [5]. Since measurements of this quantity are central to this work, its details are
presented in the following section.

2.4.1 Quantum Ricci Curvature

The quantum Ricci curvature is based on a comparison of the distance between spheres to the distance
between their centers. This ratio captures curvature quasi-locally4. This quantity is first introduced in
the setting of smooth Riemannian manifolds, but one should keep the eventual application to piecewise
flat manifolds in mind. The construction, presented in Figure 2.8, is as follows. Consider a Riemannian
manifold (M, g) of dimension D, and two nearby points p, p′ on it, separated by a geodesic distance δ.
These points serve as the centers of two geodesic spheres of radius ϵ, Sϵ

p, and Sϵ
p′ . Let q denote a point

on Sϵ
p, and likewise q′ on Sϵ

p′ . A notion of distance between the spheres is needed. One could make
use of parallel transport to uniquely associate a point q′ to each q in the following way: consider the
initial vector of the unique geodesic from p to q. Parallel transport it to p′, and let q′ be the point that
lies a distance ϵ along the unique geodesic with the parallel transported vector as initial vector. The
sphere distance is then the average distance between such point pairs. This prescription is well-suited
to smooth applications with sufficiently small ϵ and δ, where the explicit computation of geodesics and
parallel transport is feasible. However, this parallel transport prescription is not suited for piecewise
flat manifolds. The natural choice here is to only consider distances between vertices on the spheres.
Generally, one cannot make a one-to-one pairwise association between the vertices on the sphere, as the

4Quasi-local in the sense that the QRC is sensitive to the curvature in the neighborhood involved in the construction.
In a typical application this area is not a single point.
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number of vertices in the spheres is not necessarily equal. This problem can be circumvented by using
a slightly different prescription. Instead of incorporating the distance to one unique q′ for each q in the
average, the distance between each q and every point on Sϵ

p′ is considered in the average. This average
sphere distance between a pair of spheres is then defined as

d(Sϵ
p, S

ϵ
p′) =

1

vol(Sϵ
p)

1

vol(Sϵ
p′)

∫
Sϵ
p

dD−1q
√
h

∫
Sϵ
p′

dD−1q′
√
h′d(q, q′) , (2.19)

where h, h′ denote the determinants of the induced metrics on the spheres, and d(q, q′) the geodesic
distance between points q and q′. Using this prescription, the quantum Ricci curvature Kq(p, p

′) is
defined by

d(Sϵ
p, S

ϵ
p′)

δ
= cq(1−Kq(p, p

′)) , (2.20)

where cq is a non-universal constant. For simplicity, ϵ is hereafter set equal to δ. Consequently, Kq now
captures the curvature at a certain coarse-graining scale δ. The left-hand side of (2.19), or Kq(p, p

′),
does not fit the criteria for a diffeomorphism-invariant observable, which were laid out in the previous
section. It is evaluated at a given pair of points, which is not a diffeomorphism-invariant notion. To make
a diffeomorphism-invariant observable, d(Sδ

p , S
δ
p′) is averaged over all point pairs p, p′ on the manifold,

subject to the constraint d(p, p′) = δ. The resulting quantity

dav(δ)

δ
= cav(1−Kav(δ)) , (2.21)

as a function of δ, is called the curvature profile [28]. The constant cav is given by limδ→0 dav(δ)/δ.
In [5], the curvature profile is determined for, among others, smooth constantly curved 2D manifolds5.
Here, Kav showed the qualitative behavior expected for scalar curvature. Namely, Kav > 0 (< 0) for
positively (negatively) curved spaces, and Kav = 0 in flat space.

δ

ϵ

ϵ

p′

p

q

q′

Sϵ
p Sϵ

p′

M

Figure 2.8: The construction needed to determine quantum Ricci curvature. This is obtained by comparing the
distance between the ϵ-spheres Sϵ

p, S
ϵ
p′ to the distance δ between their centers p, p′.

Application to smooth spheres

An expression for the curvature profile for a smooth constantly curved space of any dimension D can
be given in terms of an exact integral. These curves form a useful benchmark for curvature profiles
of non-smooth settings, such as the dynamical triangulations that are the subject of the present work.
Of particular interest to us are the curvature profiles of D-spheres with radius ρ. Motivated by the
anomalous fractal dimension of 2D EDT, curvature profiles of D-spheres with D ≥ 2 are considered.
Specifically, the curvature profiles of D-spheres of dimensions D = 2, 3, 4, 5 have been determined in [7].
No closed form for these curves was found, and additionally the exact integral expressions were not given

5On smooth constantly curved spaces no manifold averaging is needed. The curvature profile is equal to the normalized
average sphere distance d(Sδ

p, S
δ
p′ )/δ between any δ-separated point pair p, p′.

12



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

δ/ρ

d
/
δ

Average sphere distance on D-dimensional spheres

D = 2
D = 3
D = 4
D = 5

Figure 2.9: Curvature profiles for D-spheres as a function of δ rescaled by the curvature radius ρ, with D =
2, 3, 4, 5. Results are numerical estimates of the exact integral expressions found in appendix C.

in [7] for D ≥ 3. Therefore, the derivation of the exact integral expressions for these curves is repeated.
Details of this derivation are presented in appendix C. The numerical estimates for these curves are
presented in Figure 2.9. These curves are shown as a function of δ/ρ, since the curvature profile for
a sphere of any radius ρ can be obtained from the curvature profile of the unit sphere by a rescaling
δ → δ/ρ.

Application to triangulations

Up to this point, the quantum Ricci curvature has been introduced and applied only on smooth manifolds.
Let us now consider the piecewise flat implementation. Note that the construction of the average sphere
distance in equation (2.19) is purely geometric. This property makes it relatively straightforward to
implement in a piecewise flat setting. To make this adaptation the following identifications are made:

� Points p, p′, q, q′ are vertices of the triangulation,

� d(p, p′) is the link distance6, the shortest distance along edges from p to p′,

� Sδ
p is the collection of vertices at link distance δ from p,

� vol(Sδ
p) is the number of vertices in Sδ

p ,

� and integrals over the spheres
∫
Sδ
p
dD−1q

√
h become sums over the sphere’s vertices

∑
v∈Sδ

p
.

Similar to the smooth prescription, the curvature profile of a triangulation T is defined by a manifold
average:

dT (δ)

δ
=

1

δ

1

nT (δ)

∑
p∈T

∑
p′∈T

d(Sδ
p , S

δ
p′)δd(p,p′),δ , (2.22)

where δa,b is the Kronecker delta, and nT (δ) =
∑

p∈T

∑
p′∈T δd(p,p′),δ a normalization factor equal to

the number of point pairs separated by link distance δ in the triangulation T . It should be noted that
extracting Kav(δ), similar to (2.21), is not completely straightforward. The limit δ → 0 is not meaningful
in this discrete piecewise flat implementation, and as a consequence it is not immediately clear how one
should define cav. Details on how to address this issue are presented in chapter 5. An application of
curvature profiles on regular lattices, and triangulations that do not deviate too much from smooth spaces
can be found in [5]. Application to 2D Causal Dynamical Triangulations (CDT) can be found in [8]. The

6This usage of the word link clashes with the definition of link given in section 2.2.1. However, in physics literature,
the definition of distance as the length of the shortest path between vertices along edges is commonly referred to as link
distance. Where context does not suffice, any ambiguity will be clarified.
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original application to 2D EDT [7] is of particular interest for the present work. These measurements are
replicated in the present work, their details are reiterated in chapter 5. Briefly summarizing the content
of [7]: a comparison of curvature profiles of 2D EDT to the profiles of smooth D-spheres of Figure 2.9,
resulted in the conclusion that the 2D EDT curvature profile has the closest resemblance to the curvature
profile of a 5-sphere. This result was not necessarily conclusive, due to the qualitative similarities of the
aforementioned D-sphere curves. Furthermore, while there is not an a priori expectation of what the
best fit D should be, 5 is not in line with either the topological, Hausdorff, or spectral dimension, thus
warranting the deeper investigation in the present work.

2.5 Sampling triangulations

This section will explain how one goes about evaluating an expression like (2.18) in practice. The
expectation value ⟨O⟩ of some observable O is approximated by sampling the ensemble T at hand n
times at random, with repetition. These sample triangulations are labelled T1, . . . , Tn

7. The average of
the observable O evaluated on these samples,

On =
1

n

n∑
i=1

O[Ti] , (2.23)

approximates the expectation value ⟨O⟩, such that

lim
n→∞

On = ⟨O⟩ . (2.24)

This equality only holds if the triangulations are sampled with the correct distribution.
The triangulations are difficult to sample directly, that is, by generating them individually from a set

of random numbers. A more efficient way of sampling triangulations is by using a Markov chain Monte
Carlo (MCMC) algorithm. The general idea here is to generate each new sample from the last sample,
by applying random updates to it. A clear introduction to MCMC is found in [29], an extensive overview
of applications of Monte Carlo techniques in physics can be found in [30].

First, the updates that are applied to the triangulations are presented. Subsequently, the method for
ensuring the correct distribution of the samples is given. The triangulations are updated by performing
an edge flip. How this update acts locally on a triangulation is shown in Fig. 2.10. It has been shown that
the edge flip is ergodic when applied to combinatorial triangulations. In other words, any triangulation
Ta in the combinatorial ensemble can be obtained from any Tb in the combinatorial ensemble by applying
a finite number of edge flips, where all triangulations that are obtained during this process are also in
TC . The chosen update being able to fully explore the space of states is a requirement for obtaining the
correct distribution. Thus, to be able to use the edge flip to sample the degenerate ensembles, it needs
to be ergodic in these ensembles as well. In appendix D it is shown that the edge flip is indeed ergodic
in the degenerate ensembles.

Figure 2.10: The edge flip update.

Next, let us turn to the matter of ensuring the samples are correctly distributed. To this end,
the Metropolis-Hastings algorithm is used [31, 32]. An update is proposed at random, and accepted
or rejected with a certain acceptance probability. This acceptance probability depends on the desired
probability distribution of the samples and the probability of proposing the update. If the edge that is to

7The subscript here identifies the sample, but does not refer to a specific triangulation. As such, it is perfectly fine for
the number of samples n to exceed the number of triangulations in the ensemble. This is relevant when triangulation size
N is fixed, in which case the ensemble is finite.
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be flipped is chosen uniformly at random from the edges of the triangulation, the acceptance probability
that gives the desired distribution of the samples is remarkably simple for all three ensembles. If T

is one of the three ensembles considered in the present work, an edge flip is accepted if the resulting
triangulation is in T, and rejected otherwise.

At this point, the method for how to obtain a new triangulation sample from an existing one has
been established. However, there are still practical matters that need to be addressed. First, the process
of creating a new sample from an old one needs to start somewhere. A method for constructing an initial
triangulation is needed. Second, this initial triangulation may be atypical, that is, observables measured
on it may be far away from their expectation value. If one starts sampling the chain of triangulations
here, a bias could be present in the averages of observables. Therefore, a number of edge flips is performed
before samples are taken from the chain. This number of edge flips is referred to as the equilibration
time. Lastly, two triangulations related by a single edge flip are highly correlated. To avoid this, a
fixed number of edge flips are performed between every triangulation sample. This number of edge flips
is referred to as the autocorrelation time. The methods used to address these issues are presented in
chapter 3.
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Chapter 3

Monte Carlo practicalities

In section 2.5, the use of Markov chain Monte Carlo methods to sample triangulations was presented.
At the end of this section, three practical considerations were noted:

1. Initialization: The chain of triangulations has to start somewhere. One must choose a method of
constructing an initial triangulation.

2. Equilibration: The initial triangulation may be atypical. To avoid bias from sampling these atypical
triangulations, a number of updates must be performed before sampling triangulations from the
chain.

3. Autocorrelation: Subsequent triangulations, that is, those related by a single edge flip, are almost
identical. As a consequence, there likely are large correlations between measurements on subsequent
triangulations.

This chapter addresses these three matters.

3.1 Initialization

As mentioned before, the chain of triangulations has to start somewhere. The present section provides
a method to create an initial state.

Any combinatorial triangulation of the correct size will be a valid initialization in all three ensembles.
This conclusion follows from the ergodicity of the edge flip in the three ensembles, and the fact that TC

is a subset of both TRD and TMD.
The following procedure for constructing initial triangulations is chosen for its ease of implementation.

Start with four triangles, glued together such that they form the surface of a tetrahedron.
If the current triangle number is lower than the desired triangle number, pick a triangle randomly,

and perform the (1,3)-move as presented in Fig. 3.1. This move inserts three triangles in the place of the
selected triangle. As a consequence of this move, the triangle number is increased by two. The random
insertions are repeated until the triangulation is of the correct triangle number.

Figure 3.1: The (1,3)-move in two dimensions.

Using this procedure, only triangulations of even triangle number can be created. However, this lim-
itation is not problematic. It follows from the formula for the Euler characteristic that any triangulation
in the ensembles that are considered must have an even number of triangles. Therefore, only being able
to initialize a triangulation of even triangle number is sufficient.
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3.2 Equilibration

The initial triangulations described in the previous section may be atypical. That is, observables mea-
sured on these triangulations may be far from their ensemble expectation value. In that case, if one
were to start sampling triangulations directly after initialization, a large bias may be imparted on the
average of observables measured on these sample triangulations. This bias is avoided by simply waiting
with sampling triangulations until a certain number of updates has been performed. The number of
updates is called the equilibration time τe. The equilibration time is not universal, and may depend on
triangulation size and ensemble. The present section aims to estimate sufficient equilibration times for
the various ensembles and triangulation sizes that are considered in the present work.

To this end, triangulations are sampled from triangulation Markov chains at regular intervals, starting
at the initial triangulation. More precisely, triangulations are sampled for all three ensembles and sizes
N = 10k, 100k, 500k, and 1000k. Starting with the initial triangulation, 200 samples are taken from
each chain, where a sweep of updates is performed between each sample. One sweep corresponds to a
number of edge flips equal to the number of triangles in the triangulation at hand. The histogram of
vertex degrees of each sample triangulation is measured, and normalized to obtain the vertex degree
distribution.

The results for triangulations with N = 500k triangles are presented in Fig. 3.2 as follows. The
initial vertex degree distribution of the initial triangulation is shown in blue. Additionally, the average
of the vertex degree distributions of the last 150 samples is shown in orange. Finally, the vertex degree
distribution is known analytically in the limit of the triangle number N → ∞ for the combinatorial
ensemble:

P (q) = 16

(
3

16

)q
(q − 2)(2q − 2)!

q!(q − 1)!
, (3.1)

where q denotes the vertex degree [33]. This distribution is shown in Fig. 3.2a. For all three ensembles, the
initial distribution is markedly different from the average distribution taken from the later triangulation
samples. Furthermore, for the combinatorial ensemble, the average vertex distribution of the later
triangulation samples matches the theoretical large triangulation distribution of equation (3.1).

Next, the evolution of the vertex degree distribution with simulation time is studied in more detail.
It is useful to capture the similarity of two distributions in a single number. The Wasserstein 1-distance
W1, also known as the earth mover’s distance, is used for this purpose. In general, the Wasserstein
p-distance is a metric if p ≥ 1 [34]. In the case of 1-dimensional distributions, which is the case at hand,
the Wasserstein 1-distance has a simple formula: given distributions µ1 and µ2, and their respective cu-
mulative distribution functions C1 =

∫ x

−∞ µ1(x
′) dx′ and C2 likewise, the Wasserstein 1-distance between

these distributions is

W1(µ1, µ2) =

∫
R

|C1(x)− C2(x)| dx . (3.2)

Let P1, P2, . . . , P200 denote the vertex degree distributions of the 200 sample triangulations from a
single Markov chain. For each of the aforementioned sizes and ensembles, the distance W1(Pi, P200) is
determined for i = 1, 2, . . . , 200. In other words, each distribution is compared to the final distribution
that is measured. These distances are shown in Fig. 3.3. Two observations are made:

1. The shape of the curves shows that for all sizes and ensembles considered, the initial triangulation is
indeed atypical. The distance to the last vertex degree distribution P200 is initially large. However,
performing edge flips eventually provides triangulations whose vertex degree distributions are close
to P200.

2. The curves for different sizes overlap in their initial decline. It follows that the number of updates
needed to move away from the atypical initial triangulation, measured in sweeps, does not depend
on triangle number. In other words, the number of edge flips needed for equilibration is proportional
to the triangulation size.

It should also be reiterated that the curves in Fig. 3.3 are each based on a single Markov chain.
To obtain a reliable estimate for the equilibration time, measurements from 20 Markov chains at 500k
are combined, for all three ensembles. From each chain, 100 triangulations are sampled. Between each
sample one sweep of edge updates is performed, and the first sample is the initial triangulation of the
chain. The histogram of vertex degrees is determined for all triangulation samples. As a result, 20 vertex
degree histograms are obtained at each sweep number. These 20 histograms are added and normalized,
giving an average vertex degree distribution at each sweep number ranging from 0 to 100. Again, the
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Figure 3.2: Vertex degree distributions P (q) for the three ensembles, for triangulations of size N = 500k. The
distribution of the initial triangulation is shown in blue, the average distribution of the last 150 samples is
shown in orange. Additionally, in (a), the known vertex distribution for combinatorial triangulations in the limit
N → ∞, given in equation (3.1), is shown in red.

distance to the final distribution is determined at each sweep number. These distances are shown in
Fig. 3.4, for the three ensembles. All three curves reach a plateau near 0 well before 100 sweeps have
passed since initialization. An equilibration time of 100 sweeps is considered sufficient for all sizes and
ensembles that are considered in the present work. Although this is a high estimate, equilibration is
only performed once per Markov chain. Consequently, the penalty in computation time that is caused
by a high estimate for the equilibration time is negligible. Note that despite this choice of 100 sweeps
for the three ensembles, the actual equilibration times observed for the three ensembles are shortest for
the combinatorial ensembles, and longer for the more degenerate ensembles.

3.3 Autocorrelation

A single edge flip leaves a triangulation nearly unchanged. Measurements on triangulations that are
related by a single edge flip are therefore highly correlated. It is not necessarily incorrect to sample after
each edge flip, since the resulting correlations can be addressed properly in error estimation. However, the
approach of sampling after every edge flip is not suitable to the simulations performed in the present work.
The average sphere distance introduced in section 2.4.1 is computationally expensive when compared to
the edge flip. Therefore, thinning is used: sample triangulations are sampled from the Markov chain at
regular, longer intervals, such that each sample can be considered uncorrelated to the other samples. To
determine a suitable interval between samples, the autocorrelation time is studied.
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Figure 3.3: The Wasserstein 1-distance W1 of vertex degree distributions Pi to the vertex degree distribution
P200 measured at 200 sweeps after initialization, for all three ensembles and sizes N = 10k, 100k, 500k, 1000k.

To this end, an observable O, to be specified later in this section, is measured on a series of n
triangulation samples Ti, taken from a single Markov chain. Let Oi denote the observable O, evaluated
on Ti. The sample autocovariance γ(t) is given by

γ(t) =
1

n

n−t∑
i=1

(
Oi −O

) (
Oi+t −O

)
, (3.3)

where O denotes the average of Oi. In principle, t can range from 0 to n−1. However, γ(t) is calculated
using n−t samples for a given t, in practice t should not be too close to n. In the present work, t < 0.8∗n
is deemed to be sufficient. The sample autocorrelation ρ is given by [29]

ρ(t) =
γ(t)

γ(0)
. (3.4)

The autocorrelation time τa is found by assuming ρ(t) decays exponentially, with τa as its time constant.
In the present work, the vertex degree distribution is used to determine the sample autocorrelation.

However, it is not possible to substitute the vertex degree distribution directly for O in equation (3.3),
since it is not a number. Let Pi(q) denote the vertex degree distribution of the triangulation sample
Ti, where q denotes the vertex degree. Furthermore, let Pf (q) be the last measured vertex degree
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Figure 3.4: The Wasserstein 1-distance W1 of average vertex degree distributions to the average vertex degree
distribution measured at 200 sweeps after initialization, at triangulation size N = 500k, and for all three ensem-
bles.

distribution. For each triangulation sample Ti, the distance ∆i of its vertex degree distribution to the
average,

∆i = W1(Pi, Pf ) , (3.5)

is determined. This distance ∆ is substituted for O in equation (3.3). This way, a sample autocorrelation
is found based on the vertex degree distribution.
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Figure 3.5: Sample autocorrelation ρ(t) based on the vertex degree distribution, as a function of simulation time
t in sweeps, for sizes N = 100k, 500k, and the three ensembles.

Triangulation Markov chains are sampled for sizes 100k and 500k, and for all three ensembles. Each
chain is equilibrated first, with the equilibration time found in section 3.2. Afterwards, 1000 sample
triangulations are taken with 1/10 sweep intervals. The sample autocorrelation ρ based on the vertex
degree distribution of these triangulation samples is determined, following the aforementioned prescrip-
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tion. This sample autocorrelation is presented in Fig. 3.5, for the sizes and ensembles considered.1 In
all cases of size and ensemble, ρ shows a sharp initial drop, followed by a noisy plateau around ρ = 0.

Considering the relative computational inexpensiveness of the edge flips compared to measuring
average sphere distance, one can increase the thinning without a significant increase in computation
time. In other words, the autocorrelation time can safely be overestimated. For the sizes and ensembles
considered in the present work, an interval of 50 sweeps between samples is deemed to be sufficient for
the samples to be considered uncorrelated.

1Even though the simulation time during which samples have been taken covers 100 sweeps, only 80 sweeps are shown
in Fig. 3.5. Due to the nature of eq. (3.3), the value of γ(t) is based on n − t measurements. Therefore, the data points
for later values of t are less reliable. Placing the cut-off for the range of t at t = 80 sweeps is deemed sufficient to remove
these points.
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Chapter 4

Hausdorff Dimension

As mentioned before in section 2.2.3, the Hausdorff dimension of 2D EDT is known, and backed up with
a wealth of evidence from numerical experiments. The methods in this section are not new, they follow
[11] closely. Nevertheless, measurements of the global Hausdorff dimension in 2D EDT are presented
here, since they provide helpful insights. First, they give another validation for the implementation
of the algorithm for sampling the triangulations. Additionally, they provide a direct comparison of
sphere growth-based measurements in the three ensembles. This may give insight into the sensitivity to
discretization effects and finite-size effects, which may not be the same for different ensembles.

4.1 Methods

Recall that the Hausdorff dimension dH describes how the volume |Br| of a ball scales with its radius r:

|Br| ∝ rdH , (4.1)

to leading order in r. Here, a ball of radius r is defined as the set of all points at a distance that is at
most r to the ball’s center. The relation of equation (4.1) holds for 2D EDT with dH = 4 in the limit
r → 0. Contrary to flat 2-dimensional space, the boundary of a ball in 2D EDT is not necessarily one
single connected component. Furthermore, for finite-sized triangulations the scaling of equation (4.1)
is only obtained in the limit N → ∞, where N denotes the number of triangles in the triangulation.
For obvious reasons, this limit cannot be reached by our simulations. Therefore, the finite-size scaling
approach outlined in [11] is used. This approach is briefly presented here.

Let ρTN (r) denote the probability that two randomly chosen vertices are a distance r apart, on a
triangulation of size N and in the ensemble T. Define the renormalized distance x = N−1/dH r. Now,
assume that the following limit holds:

lim
N→∞

N1/dHρTN (N1/dHx) = ρT(x) . (4.2)

Then, the rescaling necessary to let the curves ρTN (r) fall on top of each other should approach that of
eq. (4.2) for large triangle number N . Instead of the entire curve, one could also consider the peak height
or location of ρTN (r), which should follow a similar rescaling. These alternative approaches are discussed
in more detail in section 4.3.

Measuring ρTN (r) is straightforward. It is closely related to the expectation value ⟨|∂Br|⟩ of the
boundary length of a ball of radius r, centered on a randomly chosen vertex on a triangulation of size N
and ensemble T:

ρTN (r) =
⟨|∂Br|⟩N,T

N
, (4.3)

where N is a natural normalization, since
∫∞
0

dr |∂Br| = N . To estimate this expectation value, ball
boundary lengths are measured on triangulations of sizesN = 20k, 40k, 60k, 80k, 100k, 120k, 160k, 250k, 500k,
and 1000k. A total of 104 sample triangulations are used for each size and ensemble. On each triangula-
tion a vertex is chosen uniformly, and centered at this vertex a ball is grown layer by layer. Its boundary
length is measured every time a new layer is added. This is continued until the volume of the ball is
equal to the triangulation volume. The ball boundary length expectation value as function of r is then
approximated by averaging the measurements for each size N and ensemble T.
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4.2 Results

The resulting approximations of the ball boundary length expectation value ⟨|∂Br|⟩N,T are presented in
Fig. 4.1. Results are shown for all sizes considered, and for all three ensembles. Comparing to existing
measurement (for example [35]), the curves are of the expected shape: slightly skewed to the right. Note
also that the curves for the restricted degenerate ensemble are peaked slightly sharper than the curves for
the combinatorial ensemble, and likewise the curves for the maximally degenerate ensemble are peaked
slightly sharper than those for the restricted degenerate ensemble.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

1.2

·104

r

⟨|∂
B

r
|⟩

N = 20k
N = 40k
N = 60k
N = 80k
N = 100k
N = 120k
N = 160k
N = 250k
N = 500k
N = 1000k

(a) Combinatorial ensemble

0 20 40 60 80 100 120 140 160

0

0.5

1

·104

r

⟨|∂
B

r
|⟩

N = 20k
N = 40k
N = 60k
N = 80k
N = 100k
N = 120k
N = 160k
N = 250k
N = 500k
N = 1000k

(b) Restricted degenerate ensemble

0 20 40 60 80 100 120

0

0.5

1

1.5

·104

r

⟨|∂
B

r
|⟩

N = 20k
N = 40k
N = 60k
N = 80k
N = 100k
N = 120k
N = 160k
N = 250k
N = 500k
N = 1000k

(c) Maximally degenerate ensemble

Figure 4.1: Ball boundary length expectation value ⟨|Br|⟩ as a function of radius r. Measurements are presented
for various different triangulation sizes N , and for all three ensembles.

Following [11], the resulting distributions are “collapsed” to a reference distribution. This reference
distribution is chosen to be the distribution ρTN0

(r) measured for the largest triangulation size N0 = 106.

Then, k−1
N ρTN (k−1

N x) can be fitted to k−1
N0

ρTN0
(k−1

N0
x), with kN0

= 1. Note that, following [11], data points

where ρTN (r) lies below one fifth of its maximum are excluded from this fit, as well as any following curve
collapse fits.

To improve the collapse, a fixed shift s in r is introduced: r 7→ r− s. This shift is determined by first
collapsing k−1

N ρTN (k−1
N (x+ sN )− sN ) to ρTN0

(x). For each ensemble, the constant shift s is then found by
averaging sN , weighted by the statistical error σsN :

s =

∑
N sNσ−2

sN∑
N σ−2

sN

. (4.4)

The fixed shifts found this way are given in Table 4.1. The largest shift is found for the combinatorial
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ensemble, the smallest shift is found for the maximally degenerate ensemble, close to 0. Now, the
distributions k−1

N ρTN (k−1
N (x + s) − s) can be fitted to ρTN0

(x). The rescaled curves obtained from this
fit are presented in Fig. 4.2. Note that generally, a collapse of the curves is achieved, confirming the
assumption of (4.2). The collapse of the curves measured in the combinatorial ensemble shows visible
imperfections around the peak of the curves, which are less prominent in the curve collapse of the
degenerate ensembles.
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Figure 4.2: Collapse of the curves k−1
N ρTN (k−1

N (x + s) − s) to ρTN0
(x), with N0 = 1000k, shown for all three

ensembles.

Table 4.1: Fixed shifts found for the three ensembles.

Ensemble s

TC 2.330 85
TRD 0.443 18
TMD 0.006 80

Using (4.2), the scaling factors kN should follow

kN
kN0

= c

(
N

N0

)−1/dH

(4.5)
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in the large N limit, with c ≈ 1. Since the scaling factors have been obtained for all N considered, an
estimate for dH can be found by fitting (4.5) to the data. This is performed for all three ensembles.
The scaling factors kN , as well as the aforementioned fits, are presented in Fig. 4.3. The corresponding
estimates for dH are presented in Table 4.2. Note that by fitting equation (4.5) to the data, our approach
deviates from that of [11], where a subleading term is included in the fit function. The reason for this
difference in approach is discussed in more detail in section 4.3.
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Figure 4.3: Log-log plot of the scaling factors kN as a function of the triangulation size N , relative to the reference
size of N0 = 106, for all three ensembles. Linear fits are presented in orange. Error bars are smaller than the dot
size.

4.3 Discussion

The estimates for the Hausdorff dimension of Table 4.2 are close to the expected value of dH = 4,
especially the estimate for the maximally degenerate ensemble. However, they do not agree with the
expected value of 4 within error bars. Finite-size effects could play a role in this discrepancy. In [35],
where maximally degenerate triangulations are studied, the authors find an estimate for the Hausdorff
dimension dH ≈ 3.8, and show how it depends on the triangulation sizes considered. Specifically, the
estimate for the Hausdorff dimension is closer to 4 if only larger sizes are considered. It must be noted
that the triangulation sizes used in [35], with a maximum of N = 32k, are significantly smaller than
those used in the present work, with a maximum of N = 1000k. Indeed, it appears that by performing
measurements at larger N we have found a better estimate for the Hausdorff dimension for the maximally
degenerate triangulations, namely dH = 3.914± 0.013.
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Table 4.2: Hausdorff dimensions found from curve collapse. Specifically, these results are obtained from the
power law fits of Fig. 4.3 for the three ensembles.

Ensemble dH

TC 3.880± 0.010
TRD 3.798± 0.011
TMD 3.914± 0.013

The fitting performed to obtain the values presented in Table 4.2 does not follow the procedure given
in [11]. Instead of fitting to eq. (4.5), the fitting function used in [11] contains a subleading term:

kN =

(
N

N0

)−1/dH
(
a+ b

(
N

N0

)−δ
)

, (4.6)

with a ≈ 1, b ≈ 0, and δ > 0. However, this prescription proves difficult to apply to the present data.
The fit results, especially the parameters b and δ, do not stay within reasonable bounds. Moreover, we
checked that these results are not robust under resampling of the data when bootstrapping, which is
the method used for error estimation. The number and range of triangulation sizes considered in the
present work is likely too small to reliably fit to eq. (4.6), with its four free parameters. The present
data only considers nine triangulation sizes, ranging from 20k to 1000k triangles, whereas the authors
of [11] consider 15 different quadrangulation sizes, ranging from 28 to 224 squares. Additionally, better
statistics could help make the result for b and δ more robust under resampling.

In [35], the authors present a different method of estimating dH from the distributions ρTN (r). From
eq. 4.2, the location r0 of the peak, and the corresponding maximum value ρTN (r0) are expected to scale
as

r0 ∝ N1/dH , (4.7)

ρTN (r0) ∝ N−1/dH , (4.8)

respectively. The peak location is determined by fitting ρTN (r) to

ρTN (r) = P4(r) exp(−arb) , (4.9)

where P4(r) is a fourth-order polynomial in r. The maximum is then determined using the fitted
function. The locations and heights of these maxima can then be fitted to (4.7) and (4.8) respectively.
This prescription is performed here for all three ensembles and the results are presented in Table 4.3.

Table 4.3: Estimates for the Hausdorff dimension in the three ensembles. The column denoted by “location”
contains the results obtained from scaling of ρTN peak location, the column denoted by “height” contains the
results obtained from scaling of ρTN peak height.

dH

Ensemble from location from height

TC 3.625± 0.011 3.677± 0.018
TRD 3.767± 0.014 3.869± 0.018
TMD 3.930± 0.015 3.922± 0.017

They again exhibit deviations from dH = 4 which rapidly shrink when going to more degenerate
ensembles. However, even for the maximally degenerate ensemble, neither the results for dH obtained
from peak height, nor from peak location fall within error bars of dH = 4. The authors of [35] have
demonstrated that local restrictions on the sphere growth can have a large influence on the estimate for
the Hausdorff dimension, by comparing curve collapse for measurements on the direct lattice to those
on the dual lattice, where they find dH = 3.790 ± 0.030 and dH = 3.150 ± 0.031 respectively. They
find similar discrepancies between the direct and dual lattice when obtaining estimates for the Hausdorff
dimension from the scaling of peak height and location. These discrepancies are explained as follows.
In the dual lattice, the degree of all vertices is 3, which implies an upper bound for the ball boundary
length as a function of r. This upper bound pushes the power law scaling one expects from the sphere
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growth out to larger radii, which in turn could lead to finite-size effects in triangulations that are not
sufficiently large for these larger radii to be available. This argument is not directly applicable here, since
none of our ensembles have upper bounds on the vertex degree. Nonetheless, the restricted degenerate
and combinatorial ensembles come with local gluing restrictions, compared to the maximally degenerate
ensemble. Perhaps these restrictions similarly restrict the ball boundary length growth at small radii.
However, further investigation is needed to confirm this.
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Chapter 5

Average Sphere Distance

This chapter presents the measurements of the average sphere distance, defined in section 2.4.1. Section
5.1 presents the methods used. The results of measurements in the combinatorial ensemble are presented
in 5.2. The results of measurements in the degenerate ensembles are presented in 5.3. A discussion of
the results is given in section 5.4. This section also contains improvements on the presented method,
with their corresponding results. Finally, section 5.5 presents of summary of these improvements.

5.1 Methods

The methodology for measuring the average sphere distance in 2D EDT follows that of [7] closely. It
is reiterated here for completeness, but also to make clarifications, or expand upon it. In the following,
whenever a deviation from the approach in [7] is present, it is indicated.

As stated in section 2.4, the quantity of interest is the expectation value of an observable. Here, the
observable of interest is the average sphere distance dT (δ), as defined in (2.22), for a given ensemble
T ∋ T . Using the MCMC algorithm outlined in section 2.5, T can be sampled uniformly, and an estimate
of ⟨dT (δ)⟩T is obtained as the sample mean. Denote the expectation value of dT (δ) for an ensemble T at
fixed size N as ⟨dT (δ)⟩N . Then, the quantity approximated in the simulations is

dN (δ)

δ
=

⟨dT (δ)⟩N
δ

. (5.1)

To this end, the following measurements are made. For each sample triangulation T , pick a point p
uniformly at random from its set of vertices V (T ). This point p is kept fixed during the following
steps. For each δ = 1, . . . , δmax, a point p′ is picked uniformly at random from Sδ

p , and the average

sphere distance d(Sδ
p , S

δ
p′) is calculated, as introduced in section 2.4.1. Similar to [7], δmax is set to

15 for now. In total, these measurements are performed on 2 × 104 sample triangulations of sizes
N = 20, 30, 40, 60, 80, 120, 160, and 240k, and for the ensembles TC , TRD, and TMD. Between each
sample triangulation a sufficient number of updates is performed, in accordance with the conclusions of
section 3.3. The number of measurements for N = 20 and 30k is lower than in [7], since at 2× 104 the
statistical error is deemed to be sufficiently small already. Furthermore, the methodology of the present
work differs from that of [7] by performing measurements in the degenerate ensembles.

Note that the prescription above takes shortcuts to save on computation time. Generating a new
triangulation sample T is much less time-consuming than performing all the average sphere distance
measurements needed for dT (δ), defined in (2.22). Instead of calculating an average sphere distance for
every δ-separated point pair, only one point pair is considered for each distance δ, in each triangulation
T . Furthermore, for a given triangulation T , the point pairs at the different distances δ all contain the
point p. This way, different average sphere distance measurements at a given δ never consider overlapping
area’s, thus avoiding correlation. Additionally, keeping p fixed in constructing the point pair for each δ
allows one to construct Sδ+1

p from Sδ
p .

As pointed out in [9], the aforementioned prescription for sampling the point pair p, p′ introduces a
bias, particularly for small δ. In approximating the sum over all δ-separated point pairs of T in equation
(2.22) by only considering one point pair, one would ideally sample this point pair uniformly, that is, as if
picked blindly from a list of all δ-separated point pairs of T . The construction outlined does not provide
a uniform point pair sampling in this sense. Instead, the probability of picking a given point pair in
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this way is dependent on the sphere sizes
∣∣Sδ

p

∣∣ and ∣∣Sδ
p′
∣∣, which may be correlated to the average sphere

distance. The effect of this sampling bias on vertex degree two-point functions has been studied in 2D
CDT [9]. The biased sampling resulted in a statistically significant deviation from the results obtained
with uniform sampling, but only for lower distances. For this reason, we assume that this sampling
bias is a small-δ effect and will not affect continuum results, and the biased point pair selection laid out
above is still used. Furthermore, it replicates the methodology of [7], which is used as a starting point
for incremental improvement.

To make a comparison of curvature profiles of 2D EDT and of continuum spheres, one must resolve
the matter of determining cav on piecewise flat manifolds. As mentioned in section 2.4.1, evaluating
cav = limδ→0 dT (δ)/δ is not a meaningful prescription on the lattice. Following [7], cav is determined
by demanding the curves go through a common point at a δdiscr at which the discretization effects are
deemed sufficiently small. To start with, δdiscr is set to 5, matching the choice made in [7].

5.2 Results for combinatorial triangulations

First, the measurements for the combinatorial ensemble TC are presented. These replicate the method-
ology of [7], and illustrate the analysis used to come to their conclusion. Figure 5.1 shows the curvature
profile for combinatorial triangulations of size N = 40k. Additionally, the best fit of the 4-sphere curva-
ture profile is included. After setting both curves equal at δ = δdiscr by introducing a vertical shift, the
only fit parameter is the curvature radius ρ. Note that only data points with δ > δdiscr are included in
the fit. The best fit curvature radius ρeff = 16.67 is found. This fit procedure is then repeated for all
combinations of dimensions D of the sphere curvature profiles and triangulation sizes N .

2 4 6 8 10 12 14

1.1

1.2

1.3

1.4

δ

d
/δ

Average sphere distance, N = 40k

4-sphere, ρ = 16.67
N = 40k

Figure 5.1: The curvature profile for combinatorial triangulations of size N = 40k, in blue. Error bars are smaller
than marker size. A fit of the 4-sphere curvature profile is pictured, in orange. The radius obtained from this fit
is ρ = 16.67.

In [7], the authors concluded that the fit quality was not sufficient to decide for which D the sphere
curvature profiles resemble that of 2D EDT best. To resolve this issue, they invoked the following
additional argument. A D-sphere’s1 volume scales with its radius ρ in the following way:

V ∝ ρD . (5.2)

The fitting results of the fit shown in Fig. 5.1 and likewise for the other triangulation sizes and sphere
dimensions, provide a ρeff for every triangulation size N , and for each D. Using these, for each value
of D, one can determine the best-fit volume-radius scaling dimension D, since N is proportional to V .
Then, a self-consistency argument is employed. That is, the sphere dimension D that describes the
curvature properties of 2D EDT best is that where D and D agree. In Fig. 5.2 the (N, ρeff ) data points
are presented for D = 4, along with a power law fit through them. Here, D is found to be 5.30± 0.11.

1Note the calligraphic font that is used here. Crucially, this D is not necessarily equal to D. Although this notation
may cause confusion, it is used to be consistent with [7].
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Figure 5.2: Example of a log-log plot of the effective curvature radii ρeff as function of triangulation size N , for
combinatorial triangulations, shown in blue. (Error bars are smaller than the dot size.) The values shown here
are obtained from fits to D = 4-sphere curvature profiles. A linear fit is made, shown in orange. The power law
exponent D = 5.30± 0.11 is found.

Repeating for the other values of D gives the results shown in Table 5.1. The results found in [7]
are also included. The present results are systematically larger than those found in [7], with (mostly)
non-overlapping error bars. Possible causes of this discrepancy are discussed in section 5.4.1. Despite
this discrepancy, the same conclusion is still drawn: D and D match best at D = 5.

Table 5.1: Values of D found for a range of sphere dimensions D, based on average sphere distance measurements
in the combinatorial ensemble TC . The values in the “Present results” column are based on measurements
performed for the present work. Values in the last column are taken from [7]

D
D Present results Results from [7]

2 6.00± 0.14 5.7 ± 0.3
3 5.38± 0.12 5.02± 0.17
4 5.30± 0.11 4.92± 0.17
5 5.15± 0.11 4.85± 0.16

5.3 Results for degenerate triangulations

The curvature profiles measured for the degenerate ensembles TRD and TMD are also compared to those
of smooth D-spheres. Again, fits are made, and for both ensembles the resulting ρeff values are shown
as a function of triangle number N , for D = 4, in Fig. 5.3, as well as a power law fit. For both degenerate
ensembles the values for D found for the various sphere dimensions D are shown in Table 5.2. The values
for D in Table 5.2 lie slightly lower than those found for the combinatorial ensemble shown in Table 5.1,
more so for the restricted degenerate ensemble. Similar to the results for the combinatorial ensemble, D
decreases with increasing D. The conclusion that was found for the combinatorial ensemble is found for
both the degenerate ensembles as well: D and D match best at D = 5.

Based on these results, and those presented in section 5.2, one may be tempted to consider the
conclusion of [7] to be confirmed. However, as mentioned in section 5.2, the combinatorial ensemble
result show a discrepancy with the results in [7] that warrants further investigation. Furthermore, one
must be careful not to take the results of the present section at face value. Despite the apparent good
quality of the fit in Fig. 5.2, Figures 5.3a and 5.3b show that for the other two ensembles, for D = 4,
a power law is not a good fit for the data. The same holds when considering other values of D for the
degenerate ensembles. In the log-log plots, the slope is lower for (roughly) the smallest three triangulation
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(a) Restricted degenerate ensemble TRD
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Figure 5.3: Examples of log-log plots of the effective curvature radii ρeff as function of triangulation size N ,
for restricted degenerate triangulations (a) and maximally degenerate triangulations (b). (Error bars are smaller
than the dot size in both.) The values shown here are obtained from fits to D = 4-sphere curvature profiles. A
linear fit is made for both, shown in orange. The resulting power law exponent D has been added.

Table 5.2: Values of D found for a range of sphere dimensions D. The TRD column represents the values found
for the restricted degenerate ensemble, the TMD column represents the values found for the maximally degenerate
ensemble.

D
D TRD TMD

2 5.76± 0.13 5.97± 0.14
3 5.14± 0.11 5.31± 0.12
4 5.05± 0.11 5.22± 0.11
5 4.91± 0.10 5.07± 0.12

sizes. Finite-size effects could be a possible explanation. Alerted by these findings, investigations into
the effects of discretization and finite-size effects are presented in sections 5.4.2 and 5.4.3, respectively

5.4 Discussion

5.4.1 Discrepancy with previous work

The results obtained for the combinatorial ensemble show discrepancies from previous work. A compar-
ison is presented in Table 5.1. Since the data and programs used in [7] were no longer available, rigorous
checks can only be performed on the present experimental results and methodologies. Three potential
causes for the discrepancy are identified:

(i) statistical error,

(ii) different triangulation generation, and

(iii) different average sphere distance measurement implementation.

(i) The values in the two columns of Table 5.1 are all at least one standard deviation apart from each
other at equal D. The fact that these statistical errors are relatively small compared to the difference in
the actual results suggests the presence of a systematic difference between the present methods, and those
used in [7]. However, at a difference of two to three error bars one cannot definitively dismiss statistical
error as a cause. On the contrary, the curvature profile itself, specifically the value at δ = 1, does provide
a definitive discrepancy. Visual inspection of Fig. 4 in [7] gives d/δ|δ=1 = 1.59 ± 0.01, where the error
bar is determined by the scale reading uncertainty, due to the obscured error bars in the figure. Using
the same settings (N = 40k, D = 4, T = TC), the present experiments find d/δ|δ=1 = 1.447 ± 0.002.

31



Even when considering the read-off uncertainty, which is an upper bound, as the statistical uncertainty
σ, these values differ by at least 14σ. This discrepancy leaves no doubt that a difference in methodology
is present. The found discrepancy is largest for small δ.

(ii) If the triangulation generation is faulty, one would of course expect different outcomes even
when all other parts of the algorithm are implemented correctly. Unfortunately, there is no check that
guarantees the triangulations generated are correctly distributed. However, the vertex degree distribu-
tion measurements provide an estimation, since for TC the theoretical distribution is readily available.
However, it should be noted that agreement of the vertex degree distribution is only a necessary, and
not a sufficient condition. Considering the measurements presented in Fig. 3.2a, the measured distri-
bution matches the theoretical prediction perfectly. Furthermore, our measurements of the Hausdorff
dimension presented in section 2.5 show agreement with theoretical predictions, as well as the wealth of
existing experimental data. Based on these agreements, the triangulations are deemed to be distributed
as expected.

(iii) A mistake could also have been made in the implementation of the average sphere distance
measurement algorithm. As a check of the present implementation, a new implementation was created
using the Python programming language. Generated triangulations are imported, and the Networkx [36]
package is used for the graph exploration that is necessary when determining the average sphere distance.
Moving this part of the implementation to a well-tested package removes most of the room for error.
A drawback is that this implementation is relatively slow. Therefore, it is only suitable for evaluating
the average sphere distance for small δ. The results are shown in Table 5.3. All results fall within each
other’s error bars. It follows that the present implementation is likely free of significant errors.

Table 5.3: Values of d/δ found for a range of radii δ. The “C++” column represents the values found using the
initial C++ implementation, the “Python” column represents the values found using the Python implementation.
The results in this column are based on 5000 measurements, except for (*), which is based on 300 measurements.

d/δ

δ C++ Python

1 1.4473± 0.0024 1.4502 ± 0.0048
2 1.3014± 0.0019 1.3001 ± 0.0038
3 1.2535± 0.0017 1.2489 ± 0.0034
4 1.2296± 0.0016 1.2416 ± 0.0139 *

A possible difference between the present analysis and that of [7] is the treatment of the case where
d(q, q′) = 0, which may arise when calculating the average sphere distance (see Fig. 2.8). To elaborate
on this, let us first present the details of the algorithm used to calculate the average sphere distance
between the spheres Sδ

p and Sδ
p′ . Recall that the average sphere distance is given by equation (2.19).

Adapted to triangulations, and setting ϵ = δ, it reads:

d(Sδ
p , S

δ
p′) =

1

|Sδ
p |

1

|Sδ
p′ |
∑
q∈Sδ

p

∑
q∈Sδ

p′

d(q, q′) . (5.3)

In the present implementation, the distance between q and q′ is found using a breadth-first search (BFS),
that is, by constructing a sphere of radius one around q, and repeatedly increasing its radius by one until
q′ is found. Then, the distance between q and q′ is given by the radius of the sphere at the end of
this process. Instead of performing a BFS for each pair of q and q′, the distance of q to every point
q′ in Sδ

p′ is determined in a single breadth-first search. Instead of growing the sphere until one desired

point q′ is found, the sphere is grown until all points of Sδ
p′ have been encountered. This altered BFS is

performed for each point q in Sδ
p , recording all the distances to the points encountered in a single list.

The average sphere distance is then simply the mean of this list of distances, but only if one records a
distance d(q, q′) = 0 in the case q is a vertex in both Sδ

p and Sδ
p′ . If not, the mean of the list of distances

does not correspond to eq. (5.3). The sum of distances is still equal, however the normalization factor
may not be. The inclusion of these distances of 0 is easy to miss2 by starting the breadth first search
at a radius of one, instead of zero. To estimate the effect of this normalization error, an intentionally
faulty average sphere distance implementation is made. At δ = 1, this faulty implementation finds

2The claim that this mistake is easy to make comes from first-hand experience. The initial analysis did contain this
error, but the results that are presently presented do not.
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d/δ = 1.5454 ± 0.0043. This difference lies approximately 5σ from the results found in [7], as opposed
to the 14σ difference that was present before. Furthermore, the effect of this normalization difference is
expected to decrease with growing δ. Qualitatively, this behavior follows the discrepancy between the
present results and those presented in [7], which are also largest at small δ.

In conclusion, neither statistical error nor differences in the triangulation generation and average
sphere distance measurement implementation can fully explain the discrepancy. A difference in nor-
malization for the average sphere distance may play a role. Qualitatively, the effect of the different
normalization matches the discrepancy to the results of [7]. However, even after compensating for this
effect, a statistically significant discrepancy remains. Due to the one-sided nature of this comparison of
methodologies, no definitive cause can be pinpointed for the discrepancy. Despite leaving this question
open, this a posteriori investigation into the measurements of section 5.2 does provide confidence in the
validity of these measurements, and the analyses that follow.

5.4.2 Discretization effects

Discretization effects may play a role for small distances δ. The fit curve presented in Fig. 5.1, which
is fitted to the data points with δ ≥ 5, is far from perfect. For any size of triangulation, the curvature
profile has roughly the same shape: it starts with a steeply dropping concave up3 part, followed by a
slightly concave down tail. The initial concave up part is considered to be caused by discretization effects
[5]. The value δdiscr = 5 appears to be a low estimate for the end of this region. Recall that for the fit
to the D-sphere curvature profiles, a vertical offset is fixed by letting the curves coincide at δ = δdiscr.
Therefore, the resulting ρeff that is obtained from this fit is expected to be sensitive to any discretization
effects that are present at δdiscr. To make a more quantitative argument for what a good value of δdiscr
would be, the aforementioned transition from concave up to concave down of the EDT curvature profiles
is examined. To this end, the discrete second derivative4 of the curvature profiles is determined. For
TC , and for all sizes for which the curvature profile is measured, the second derivative of the curvature
profile is shown in Fig. 5.4. At δ = 5, the majority of the curves are still concave up, especially for the
larger sizes. A higher value of δdiscr is therefore deemed better. However, increasing δdiscr has its own
drawbacks. Only the data points for δ ≥ δdiscr are taken into account, and consequently raising δdiscr
means discarding data. Based on this trade-off, δdiscr = 7 is deemed to be the best choice for TC . Note
that discrete derivatives are very susceptible to noise, and ∂2

δ

(
d/δ
)
< 0 is not a very rigorous criterion to

identify the discretization radius. However, it is still the preferable approach, considering the alternative
is visual inspection.
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Figure 5.4: Discrete second derivative of the curvature profile for triangulation sizes N ranging from 20k to 240k,
for the combinatorial ensemble. In red, the horizontal line ∂2

δ

(
d/δ

)
= 0 is added. For clarity, error bars are not

shown. The error bars range from 0.001 to 0.005.

Similar analyses are performed for the degenerate ensembles. The second derivatives of the curvature
profiles are shown in Fig. 5.5. For TRD and TMD, δdiscr = 6 is deemed sufficiently large.

3Here concave up(down) refers to the shape of the graph of a function whose second derivative is positive(negative).
4The discrete second derivative is obtained by two consecutive applications of the numpy.gradient NumPy [37] method.

33



2 4 6 8 10 12 14

0

1

2

3

4

·10−2

δ

∂
2 δ
d
/δ

N = 20k
N = 30k
N = 40k
N = 60k
N = 80k
N = 120k
N = 160k
N = 240k

∂2
δd/δ = 0

(a) Restricted degenerate ensemble TRD
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Figure 5.5: Discrete second derivatives of the curvature profile for triangulation sizes N ranging from 20k to 240k,
for the restricted degenerate ensemble (a) and the maximally degenerate ensemble (b). In red, the horizontal line
∂2
δ

(
d/δ

)
= 0 is added in both. For clarity, error bars are not shown. The error bars range from 0.001 to 0.005.

This new choice of δdiscr changes the values of ρeff that are found from the fits to the sphere curvature
profiles, for all three ensembles. Of particular interest are the changes for the combinatorial ensemble,
where a qualitative difference is found compared to the results for δdiscr = 5. Previously, the plot of
log(ρeff ) as a function of log(N) had shown a near perfect straight line (see Fig. 5.2). Now, with δdiscr
set to 7, the shape is similar to that of the degenerate ensembles: a lower slope for smaller values of N .
This can be seen in Fig. 5.6. As a result, the values for D found from a power law fit are significantly
lower. For example, for D = 4, we find D = 4.68 ± 0.12, in contrast to the result D = 5.30 ± 0.11
found before, shown in Figure 5.2. Again, this lower slope for the smaller values of N is an indication of
finite-size effects, which are discussed in more detail in section 5.4.3.
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Figure 5.6: Log-log plot of the effective curvature radii ρeff as function of triangulation size N , for combinatorial
triangulations and with δdiscr = 7, shown in blue. These are obtained from fits to D = 4-sphere curvature profiles.
A linear fit is made to all data points, shown in orange. The resulting power law exponent D = 4.68 ± 0.12 is
found.

5.4.3 Finite-size effects

After the adjustments of δdiscr in the previous section, the log-log plots of Figures 5.3 and 5.6, which
show ρeff as a function of N show the following behavior: a near perfect straight line for the larger
values of N , roughly N ≥ 60k, with a decreasing slope near the lower values of N , roughly N < 60k.
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This deviation from the expected power-law behavior at low N suggests that finite-size effects play a role
at small volumes. Consider the distances involved in a measurement of d(Sδ

p , S
δ
p′). The pairs of points q,

q′ can be at most a distance 3δ apart. With δmax = 15, the longest possible distance between q and q′

is 45. At this scale, the triangulations do not resemble round spheres. For instance, consider the sphere
area measurements performed to determine dH , presented in Fig. 4.1. Past their peak, these curves do
not resemble the shape one would expect for a 4-sphere [7]. Note that δ = 45 is well past the peak for
the sizes considered in the average sphere distance measurements. This does not mean all data should
necessarily be discarded, the value of 3δmax is only an upper bound after all. Still, it illustrates that the
average sphere distance measurements probe length scales at which the triangulations do not resemble
smooth spheres, especially for the smaller triangulation sizes.

First, a crude method of avoiding these finite-size effects is presented. The effective radii for the sizes

N = 20, 30, and 40k are simply not incorporated in the N ∝ ρ
1/D
eff power law fit. The resulting fits for all

three ensembles, and D = 4, are presented in Fig. 5.7. In these figures the fit function is shown for the
whole range of triangulation sizes N . The graph is dashed for N ≤ 40k, to indicate these points are not
incorporated in the fit. The figures clearly show the lower slope for the lower triangulation sizes. The
full set of results for the various values of D are presented in Table 5.4. For all three ensembles, D and
D agree best at D = 4. This approach may be wasteful, in the sense that measurements for relatively
low δ are omitted for the lower sizes, even though at these shorter length scales measurements may not
be subject to significant finite-size effects.
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(a) Combinatorial ensemble
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(b) Restricted degenerate ensemble
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Figure 5.7: Log-log plot of the effective curvature radii ρeff as function of triangulation size N for all three
ensembles. A linear fit is made, shown in orange. This fit is not made to all data points, but only to the data
points corresponding to the sizes N ≥ 60k, located at the transition of dashed to solid in the figure. The resulting
power law exponents are presented in the legends. The values shown are obtained from fits to D = 4-sphere
curvature profiles. For combinatorial triangulations, δdiscr is set to 7 (a). For the restricted (b) and maximally
(c) ensembles, δdiscr is set to 6.

Table 5.4: Values of D found for a range of sphere dimensions D. Triangulation sizes N ≤ 40k have been excluded
from the power law fits, as opposed to the values shown in Tables 5.1 and 5.2, where the full range of sizes was used
in the fits. The TC , TRD, and TMD columns represent the results for the combinatorial, restricted degenerate,
and maximally degenerate ensembles. In obtaining these results, δdiscr is set to 7, 6, and 6 respectively.

D
D TC TRD TMD

2 4.54± 0.22 4.66± 0.20 4.44± 0.17
3 4.29± 0.21 4.36± 0.17 4.12± 0.15
4 4.24± 0.21 4.31± 0.18 4.10± 0.15
5 4.21± 0.22 4.24± 0.19 4.02± 0.16

In an attempt to discard fewer data points, a more careful approach is also used. Instead of omitting
all data for the triangulation sizes N = 20, 30, and 40k, only the data points gathered for values of δ that
are sufficiently sensitive to finite-size effects are discarded. Of course, it is difficult to judge this exactly.
However, it is possible to make an estimate based on the following argument. Assume the maximum δ
for which finite-size effects are found is proportional to the location of the peak of the sphere area curves
of Fig. 4.1. According to [35], and corroborated by the measurements of chapter 4, the location of these
peaks follows a power-law scaling as a function of triangulation size, with scaling dimension equal to the
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Hausdorff dimension. One then only needs to pick a reference size Nref , for which the measurements at
δmax are still sufficiently free of finite-size effects. Then, the δmax values for N ≤ Nref are found using

δmax(N) = 15 ·
(

N

Nref

)1/dH

. (5.4)

Of course, δmax is not a continuous variable, so rounding is applied where necessary. For all ensembles,
Nref = 80k is chosen based on visual inspection. After rounding, the δmax values that follow for the
triangulations with sizes N < Nref are 11, 12, 13, and 14.

Recall that in section 5.4.2, δdiscr was chosen to be 7, 6, and 6 for the combinatorial and both
degenerate ensembles respectively. Combined with the δmax values found in the present section, the
following results are found. Power law fits for ρeff as a function of N , for D = 4 and all three ensembles,
are presented in Fig. 5.8. Note how the scaling δmax has removed the finite-size effects, which could be
seen in Fig. 5.7: in the log-log plots, all data points appear to lie on a single line. Results for all values
of D are presented in Table 5.5. Note that the error on these results is now roughly halved compared
to the “wasteful” method presented in the previous section. Furthermore, at D = 4, the values of D
agree with 4 to within one error bar, for TC and TRD. The value of D at D = 4 found for TMD is just
barely more than one error bar away from 4. The quality of this agreement leads us to conclude that
the curvature of 2D EDT resembles that of a sphere of dimension four. This conclusion is contrary to
that of [7], finding resemblance to a sphere of dimension five.
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(b) Restricted degenerate ensemble
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Figure 5.8: An example forD = 4, of log-log plots of the effective curvature radii ρeff as a function of triangulation
size N , for all three ensembles, where the largest δ included in the ρeff fits, δmax, is scaled according to eq. (5.4),
with Nref = 80k. The results presented are obtained from fits to curvature profiles of (D = 4)-sphere curvature
profiles. Linear fits are made, shown in orange. The resulting power law exponents are presented in the legends.

Table 5.5: Values of D found for a range of sphere dimensions D, obtained using the scaling δmax according to
eq. (5.4). Here, Nref is set to 80k. The discretization radii δdiscr are set to the values found in section 5.4.2.
Column labels TC , TRD, and TMD denote the triangulation ensemble used for obtaining the results presented.

D
D TC TRD TMD

2 4.19± 0.09 4.27± 0.08 4.31± 0.08
3 4.03± 0.09 4.09± 0.08 4.12± 0.08
4 4.00± 0.09 4.06± 0.08 4.09± 0.08
5 3.99± 0.09 4.04± 0.09 4.05± 0.08

5.5 Summary of incremental improvements

The present chapter presents incremental improvements on the methods presented in [7]. Additionally,
argumentation is presented to justify these improvements. While those pieces of justification are nec-
essary for completeness, they may have obscured the key takeaways. Therefore, the most important
improvements and results are reiterated here.

In section 5.2, measurements that replicate the methods of [7] have been presented, that is, average
sphere distance measurements in the combinatorial ensemble. While the present results confirm the
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overall conclusion of [7], statistically significant differences in the results were noted. Section 5.3 contains
the results for average sphere distance measurements in the degenerate ensembles. Again, the conclusion
from these results is the same: The volume scaling exponent D and the sphere dimension D agree best at
D = 5. However, the poor fits of Figures 5.1 and 5.3 suggest the presence of discretization and finite-size
effects.

In [7], possible discretization effects are dealt with by excluding the data points of the curvature
profiles with δ < δdiscr = 5. In section 5.4.2 it has been shown that for the combinatorial ensemble,
discretization effects are still present at δdiscr = 5, and that setting δdiscr = 7 is a better choice for
excluding discretization effects. Similarly, δdiscr = 6 is a better choice for the degenerate ensembles.
With the new value δdiscr = 7 for the combinatorial ensemble, these results now also visibly show finite-
size effects, as can be seen in Fig. 5.6. Their absence until now had been conspicuous, since finite-size
effects were present in the measurements for the degenerate ensembles.

The presence of finite-size effects has been addressed in section 5.4.3. To this end, two methods have
been presented. The first is more radical in discarding data points: All data points at a triangulation size
where finite-size effects are seen are discarded. The second method relies on more refined assumptions
regarding the presence of finite-size effects: The distance δ at which finite-size effects occur is assumed
to be proportional to the distance where finite-size effects occur in the measurements for the Hausdorff
dimension. Only data points that are suspected of finite-size effects using this assumption are discarded.
Both methods lead to the same conclusion: The volume scaling exponent D and the sphere dimension
D agree best at D = 4, for all three ensembles. Notable is the case of the second method, where this
agreement is (nearly) within one error bar (see Table 5.5), showing not only good resemblance to the
four-sphere, but also that the result is independent of discretization.

Lastly, let us illustrate the improvement in fit quality we obtain by reproducing the curve collapse
of Figure 6 of [7] for the combinatorial ensemble, before and after the aforementioned improvements to
the methodology. The 2D EDT average sphere distance curves are rescaled by their effective curvature
radius ρeff , obtained before and after improvements. Both are shown in Figure 5.9 with the D = 4
continuum sphere curve with a best fit vertical shift. After the improvements, the collapse of the 2D
EDT average sphere distance curves is better both to each other, and to the continuum sphere curve,
for the data points considered.
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Figure 5.9: Curve collapse of the 2D EDT average sphere distance measurements, rescaled by their effective
curvature radius ρeff for volumes in the range N ∈ [20k, 240k], and sphere dimension D = 4. Results obtained
with δdiscr = 5 and constant δmax = 16 are shown in (a), results obtained with δdiscr = 7 and scaling δmax

according to eq. (5.4) are shown in (b). Both are presented with the 4-sphere average sphere distance curve,
vertically shifted to best fit the data. Data points with δ < δdiscr or δ > δmax are not used in the fitting
procedure, and are shown with faint coloring.
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Chapter 6

Conclusion

Previous work concluded that the curvature properties of 2D Euclidean Dynamical Triangulations (2D
EDT) resemble those of a (D = 5) sphere [7], by performing average sphere distance measurements on
combinatorial triangulations. While there is no prediction for which D-sphere’s curvature properties
resemble those of 2D EDT, the result D = 5 was unexpected, as it did not equal any of the known
fractal dimensions characterizing 2D EDT, which are either 2 or 4. The aim of the present work was to
investigate this issue in more detail by measuring the average sphere distance in two additional ensembles
of triangulations, the restricted degenerate and maximally degenerate ensembles.

As validation of the simulations, the Hausdorff dimension dH was measured. The results are close to,
but not within error bars of the known value dH = 4. The closest result that was extracted using curve
collapse was dH = 3.91±0.01, which was found for the maximally degenerate ensemble of triangulations.
The deviation from the known value is suspected to be caused by finite-size effects. Going to larger
triangulation sizes will likely bring the estimate closer to the known value.

Measurements of the average sphere distance on combinatorial triangulations with a methodology
similar to that of [7] found a compatible result. The results for the degenerate ensembles also led to
the same conclusion. However, further analysis in which data points subject to discretization effects and
finite size effects were removed according to additional, well-motivated prescriptions showed that the
curvature properties of 2D EDT are best approximated by those of the four-sphere. Good agreement
with D = 4 is found in all three ensembles considered.
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Appendix A

Link and vertex picture equivalence

In section 2.2.1, three formulations for the definition of a combinatorial manifold are given. The equiv-
alence between two formulations, using either the link picture or the vertex picture, is not shown in the
main text. In this appendix, a proof for the equivalence is presented. Let us restate the definitions for
the combinatorial ensemble using the two aforementioned pictures:

1. In the link picture: the link lk of every edge and vertex in the triangulation is homeomorphic to
S0 and S1 respectively.

2. In the vertex picture: The vertices of any edge and triangle are distinct from each other, and each
edge and triangle is uniquely described by the list of its vertices.

In the following discussion, these definitions may be referred to as rulesets 1 and 2 respectively.
The key idea is to construct a generic neighborhood of radius 1 around a vertex v. First, a triangle

is considered, with v at one of its corners. All edge-to-edge and planar gluings using these elements
are tested against both rulesets. Then, a second triangle is added, glued to the first triangle, such that
vertex v is also a vertex of this new triangle. Again, all gluings using these elements are tested against
both rulesets. This process is continued until either the rulesets disagree on the legality of a gluing, or
the agreement of the rulesets can be extrapolated indefinitely after a certain point in the process. In
the latter case, the rulesets place the exact same demands on the neighborhood of any vertex in the
triangulation, and are therefore equivalent.

As mentioned, start with a triangle that has a vertex v at one of its corners. The other vertices
are labelled x1 and x2. This setup is shown in Fig. A.1. Three gluings are possible: e(x1, x2) to either
e(v, x1) or e(v, x2), and e(v, x1) to e(v, x2), where the notation e(x, y) denotes the edge with endpoints
x and y. The first two of these gluings are related by symmetry, and testing either one to ruleset 1
we find that lk(v) ≇ S1. The other gluing, e(v, x1) to e(v, x2), results in the following edge links:
lk(e(v, x1)) = lk(e(v, x2)) = ∅ ≇ S0. It follows that ruleset 1 does not allow for a single triangle
neighborhood of a vertex. Ruleset 2 also forbids all gluings. Any gluing will inevitably identify one of
the vertices with another, causing there to be repeated vertices in the list of vertices that describe the
triangle.

v

x1

x2

Figure A.1: Vertex v, at the corner of a single triangle

Now all gluings concerning a single triangle have been tested against the rulesets, let us consider a
neighborhood consisting of two triangles, shown in Fig. A.2. A second triangle is present, as well as
a fourth vertex, labelled x3. The gluings that identify an edge with another edge of the same triangle
are excluded, since these are already covered in the single triangle case. That leaves the following three
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gluings: e(v, x1) to e(x2, x3), e(v, x3) to e(x1, x2), and e(v, x1) to e(v, x3). Again, the first two gluings are
related by symmetry, and both gluings give lk(v) ≇ S1. The latter gluing, e(v, x1) to e(v, x3), is excluded
by ruleset 1, since after this gluing we have lk(e(v, x2)) = x1 = x3 ≇ S0. The three aforementioned
gluings are also excluded by ruleset 2, since after each of these gluings the two triangles share the same
list of vertices. Consequently, the lists of vertices no longer describe the triangles uniquely.

v

x1

x2

x3

Figure A.2: Vertex v, at the corner of two triangles.

Consider now a neighborhood of three triangles, shown in Fig. A.3. Again, the addition of a triangle
requires a new vertex, labelled x4. There are four possible gluings that are not already covered by the
one- or two-triangle case: e(x1, x2) to e(x3, x4), e(v, x1) to e(x3, x4), e(v, x4) to e(x1, x2), and e(v, x1)
to e(v, x4). The first gluing, and the second and third gluing, which are related by symmetry, give
lk(v) ≇ S1.

The last gluing, e(v, x1) to e(v, x4), does give lk(v) ∼= S1. Furthermore, for every xi = x1, x2, x3 it
also holds that lk(e(v, xi)) = xj , xk

∼= S0, where i ̸= j ̸= k. This gluing results in a neighborhood of v
that is allowed by ruleset 1. Next, the three-triangle gluings are tested against ruleset 2: The arguments
that forbid identifying v to xi have been covered in the one triangle case. Furthermore, no two vertices
xi and xj can be identified with each other, without gluing e(v, xi) to e(v, xj). Otherwise, the two edges
would be distinct, but would have equal vertex lists: {v, xi = xj}. That leaves one option: gluing e(v, x1)
to e(v, x4).

v

x1

x2

x3x4

Figure A.3: Vertex v, at the corner of three triangles.

Finally, consider a neighborhood of q > 3 triangles, as shown in Fig. A.4. The arguments of the
three triangle case apply to the q > 3 case as well. Both rulesets rule out any gluing, except e(v, x1) to
e(v, xq+1).

Both rulesets 1 and 2 place the same restrictions on a triangulation. It follows that the link picture
and vertex picture definitions of the combinatorial ensemble are equivalent.
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v

x1

x2

xqxq+1

Figure A.4: Vertex v, at the corner of q triangles.
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Appendix B

Vertex links in the degenerate
ensembles

In Figures 2.5 and 2.7, examples of vertex links are presented for the restricted and maximally degenerate
ensemble, respectively. In this appendix, we present what general vertex link looks like in the two
degenerate ensembles. Let us start with the restricted degenerate ensemble.

B.1 Restricted degenerate ensemble

The key idea is to construct a general neighborhood of v, only keeping in mind the details that are
relevant for lk(v). The general neighborhood of v in the restricted degenerate ensemble is constructed
by starting with the general neighborhood of v in the combinatorial ensemble, as defined in section 2.2.1,
and then exploring which additional gluings are available for the neighborhood of v in the restricted
degenerate ensemble TRD. This exploration is performed by iteratively considering the simplest possible
additions to the neighborhood, until all possibilities can be taken into account recursively.

Consider an edge e0 connecting v to a vertex w ∈ lk(v), shown in Figure B.1. In the restricted
degenerate ensemble, there could be more than one distinct link connecting v to w. Let us start with
the simplest case where instead of the single edge of before, two distinct edges e1 and e2 connect v to
w, shown in Figure B.2. This substitution, that brings the case of Figure B.1 to the case of Figure B.2
is labelled (i). The shaded area denotes the fact that between these edges there could be any piece of
restricted degenerate triangulation with disk topology, and with a boundary of length l = 2. Here, the
first recursive argument is made: substitution (i) can be performed at edge e1 or e2. This way, the case
of three edges connecting v to w is made. Repeated application of substitution (i) causes an arbitrary
number of edges to connect v to w. It follows that although an arbitrary number of edges is allowed
to connect v to w, the general neighborhood of v is determined by exploring the case of only two edges
connecting v to w.

v

w

e0

Figure B.1: Vertex v, with edge e0 connecting it to vertex w, part of lk(v), depicted in red.

Let us now consider the smallest piece of triangulation that could make up the shaded area of Figure
B.2. For the TRD, this consists of two triangles that share two of their edges, shown in Figure B.3. Larger
disk triangulations with boundary length 2 are obtained by one of the following four substitutions:

(ii) replacing e4 by a two-loop,

(iii) replacing e3 by a two-loop,

(iv) replacing both e3 and e4 by a two-loop, or
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v

w

e1 e2

Figure B.2: Vertex v, with edges e1 and e2 connecting it to vertex w, part of lk(v), depicted in red. The shaded
area represents any piece of restricted degenerate triangulation with disk topology and boundary length l = 2.

(v) replacing e3 and e4 together by a four-loop.

The results of these substitutions are shown in Figure B.4. The result of substitution (ii), shown in
Figure B.4a, is explored using the following recursive arguments: the two-loop of edges e4 and e5, is of
the exact same nature as the two-loop of Figure B.2. Substitutions made there can be made here as well.
Furthermore, the edges e4 and e5 can be subject to substitution (i). Lastly, any pairing of one of the
edges e4 and e5 with e3 is of the same shape as the edges e3 and e4 of Figure B.3, and the substitutions
(iii) to (v) can be made.

v

w

e1

e3

e2

e4

Figure B.3: The smallest restricted degenerate disk triangulation with boundary length l = 2, enclosed by edges
e1 and e2. The vertex v is marked with a cross, parts of lk(v) are shown in red.

v

w

e1 e4 e2

e3

e5

(a) Substitution (ii)

v

w

e1
e4

e2
e3 e5

(b) Substitution (iii)

v

w

e1
e6

e2

e3

e4

e5

(c) Substitution (iv)

v

w

e1 e2
e6

e3

e4

e5

(d) Substitution (v)

Figure B.4: The results of substitutions (iii) to (v). The vertex v is marked with a cross, parts of lk(v) are shown
in red. The shaded regions denote arbitrary restricted degenerate disk triangulations with suitable boundary
length, the crosshatching denotes pieces of triangulation that are irrelevant for lk(v).

The result of substitution (iii), shown in Figure B.4b is explored. The piece of triangulation that sits
inside the two-loop is irrelevant for the link of v. Furthermore, edge e4 can be subject to substitution
(i). Lastly, any pairing of one of the edges e3 and e5 with e4 is of the same shape as the edges e3 and e4
of Figure B.3, and the substitutions (iii) to (v) can be made.

The result of substitution (iv), shown in Figure B.4c, is also explored by recognizing previous steps.
The two-loop of edges e4 and e6 is of the same nature as the two-loop of Figure B.2. The piece of
triangulation that sits inside the two-loop of edges e3 and e5 is irrelevant for the link of v. Lastly, any
pairing of one of the edges e4 and e6 with either e3 or e5 is of the same shape as the edges e3 and e4 of
Figure B.3, and the substitutions (iii) to (v) can be made.

The result of substitution (v) requires some further investigation before it can be explored fully by
recognizing previous steps. The edges e3, e4, e5 and e6 form a four-loop, and consequently any piece

43



of restricted degenerate triangulation with disk topology with boundary length l = 4 can be placed in
between, indicated by the shaded area in Figure B.4d. The smallest piece restricted degenerate disk
triangulation with boundary length l = 4 is two triangles meeting along one edge. This piece can
be placed in the aforementioned four-loop in two inequivalent ways, both shown in Figure B.5. The
substitutions of Fig. B.5a and Fig. B.5b are labelled (v)a, (v)b, respectively. The result of substitution
(v)a is fully explored by recognizing the following: edges e4, e6 and e7 can be subject to substitution
(i). Furthermore, any pair of either e4, e6 or e7, with either e3 or e5, can be subject to substitutions
(iii) to (v). The result of substitution (v)b is also fully explored by recognizing previous steps. First,
note that the piece of triangulation that sits inside the three-loop formed by edges e3, e5 and e7 is not
relevant for lk(v). Furthermore, edges e4 and e6 are subject to substitution (i). Any pair of either e4 or
e6, with either e3, e5 or e7, can be subject to substitutions (iii) to (v).

v

w

e1 e2
e6

e3

e4

e5

e7

(a) Substitution (v)a

v

w

e1 e2
e6

e3

e4

e5

e7

(b) Substitution (v)b

Figure B.5: The two inequivalent ways to place two triangles in the four-loop of Fig. B.4d. These are the results
of substitutions (v)a and (v)b. The vertex v is marked with a cross, parts of lk(v) are shown in red. The
crosshatching denotes pieces of triangulation that are irrelevant for lk(v).

Note how substitutions (iii) and (iv) create a two-loop in lk(v). If applied to a pair of edges where one
of the edges is part of a loop in the link, the substitution (v)b increases the length of this loop by one. If
it is not applied to edges that are part of a loop in the link, it creates a three-loop in the link. Together
with the effects that the other substitutions have on the link, we come to the following conclusion about
the general link in the restricted degenerate ensemble: the link of any vertex of a restricted degenerate
triangulation is a tree of edges, and of n-loops, with n ≥ 2, where the intersection of two of these loops
can at most be a single vertex. An example of a link that is possible in the restricted degenerate ensemble
is shown in Figure B.6.

Figure B.6: The general link (in red) of a vertex (marked with cross), in the restricted degenerate ensemble. For
clarity, some vertices of the link, and edges that are not part of the link are not shown.

B.2 Maximally degenerate ensemble

Constructing the general vertex link in the maximally degenerate ensemble follows the construction of
the restricted degenerate ensemble, with the following alteration: the maximally degenerate ensemble
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allows for a second disk triangulation with boundary length l = 2 that can be placed in the two-loop after
substitution (i) in two inequivalent ways, shown in Figure B.7. Either a one-loop is placed at v, or at
w. In both cases, the edges e1 and e2 can both be subject to substitution (i). The piece of triangulation
within the one-loop formed by edge e3 in Figure B.7b is not relevant for the link of v, indicated with
crosshatching.

v

w

e3

e4

e1 e2

(a)

v

w

e1 e2

e3

(b)

Figure B.7: The two inequivalent ways in which the l = 2 disk triangulation that is now allowed in the maximally
degenerate ensemble can be placed in the two-loop after substitution (i). The vertex v is marked with a cross,
parts of lk(v) are shown in red. The crosshatching denotes pieces of triangulation that are irrelevant for lk(v).

The one-loop e3, starting and ending in v, of Figure B.7a, is a case that has not been seen before.
Similar to substitution (i), this edge can be replaced by a two-loop, and similar further substitutions
follow. However, the consequences for the link are different, since before one of the vertices of the edge
subject to the substitution was part of the link. Recall that the first step after replacing the edge of
interest with a two-loop, was to put the smallest disk triangulation with boundary length l = 2 inside the
two loop. The maximally degenerate ensemble allows for two different two-triangle disk triangulations
with boundary length l = 2. Placing these in the two-loop that is substituted for edge e of Figure B.7a
gives the results presented in Figure B.8. Here, the vertex v is drawn in two places for clarity.

v

v

e5 e6

e7

e8

(a)

v

v

e5 e6

e7

e8

(b)

Figure B.8: The two possible two-triangle substitutions possible for the edge e3 of Fig. B.7a. The vertex v is
marked with a cross and is drawn in two places for clarity, parts of lk(v) are shown in red.

All elements of the situation presented in Fig. B.8b have been explored before. The pair of edges e7
and e8 of Fig. B.8a, with a vertex belonging to the link in the middle, has not been explored before. Again,
the substitutions that are possible here are similar to the substitutions (iii) to (v) available for edges e3
and e4 of Fig. B.3, but the consequences for the link are different. The four possible substitutions are laid
out in Figure B.9. Again, the vertex v is drawn in two places for clarity. Note that the substitution of
Fig. B.9a corresponds to substitutions (ii) and (iii), Fig. B.4c corresponds to (iv), Fig. B.9c corresponds
to (v)a, and Fig. B.9d corresponds to substitution (v)b. All elements of the situations presented in Fig.
B.9 have been explored before, and consequently the exploration of the maximally degenerate vertex link
is complete.

Note how in the maximally degenerate ensemble a link vertex or edge can be present that is dis-
connected from the rest of the link. Furthermore, one-loops in the link are allowed. It follows that the
link of a vertex in the maximally degenerate ensemble consists of trees of edges and n-loops with n ≥ 1,
which are not necessarily connected. An example is shown in Fig. B.10. An example of a link that is
possible in the maximally degenerate ensemble is shown in Figure B.10.
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v

v

e5 e6

e7

e8 e9

(a)

v

v

e5 e6

e7

e8 e9

e10

(b)

v

v

e5 e6

e7

e8 e9

e10

e11

(c)

v

v

e5 e6

e7

e8 e9

e10

e11

(d)

Figure B.9: The four substitutions possible for the pair of edges e7 and e8 of Fig. B.8a. The vertex v is marked
with a cross and is drawn in two places for clarity, parts of lk(v) are shown in red. The shaded regions denote
arbitrary restricted degenerate disk triangulations with suitable boundary length.

Figure B.10: The general link (in red) of a vertex (marked with cross), in the maximally degenerate ensemble.
For clarity, some vertices of the link, and edges that are not part of the link are not shown.
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Appendix C

Average sphere distance on a
hypersphere

In this appendix, we will derive the exact integral expression for the average sphere distance on a
continuum sphere of dimension D ≥ 2, which is referred to in section 2.4.1. Consider first the case of
the 2-sphere. This case allows for an easy embedding in R

3, and is therefore an intuitive example. To
evaluate an average sphere distance, the setup of Fig. 2.8 must be implemented. Note that ϵ is not set
equal to δ here, unlike the applications presented in the present work. Due to the symmetry of the sphere
the average sphere distance does not depend on the exact location of p and p′, on the distance δ that
separates them. Consequently, a manifold average over δ-separated center points p, p′ is unnecessary.
A convenient choice for p, p′ can therefore be made without loss of generality, provided d(p, p′) = δ.
Using a spherical coordinate system in R3, the 2-sphere is the surface of constant radius ρ. Every point
is described by a polar angle θ ∈ [0, π], and an azimuth angle ϕ ∈ [0, 2π).

δ

ϵ

ϵ

ρ

x

y

z

p

p′

q

q′

Sϵ
p

Sϵ
p′

Figure C.1: Application to the 2-sphere of radius ρ of the general average sphere distance construction presented
in Fig. 2.8. The sphere Sϵ

p, with radius ϵ and center point p at the north pole, is shown in blue. An arbitrary
point q on this sphere is marked. The sphere Sϵ

p′ , with center point p′ at the ϕ = 0 meridian, is shown in red.
An arbitrary point q′ on this sphere is marked. Note that these spheres are 1-spheres, i.e., the bold and colored
circles pictured. The shaded areas they enclose are for clarity only. Cartesian axes x, y, and z are shown in
black. To avoid clutter, no spherical coordinate system is pictured. The usual set up is implied however, with θ
the polar angle to the Cartesian z-axis, and ϕ the azimuth angle, clockwise around the z-axis. The angles are
defined such that the point θ = π/2, ϕ = 0 sits at the x-axis.

The construction that will be used is shown in Fig. C.1. The point p is placed at the north pole,
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θ = 0. The point p′ is placed at the ϕ = 0 meridian, a geodesic distance δ from p. Since geodesics on
the sphere are arcs of great circles, the polar angle of p′ is θ = δ/ρ. Similarly, the points on Sϵ

p all sit
at θ = ϵ/ρ. These points are all described by only one angle α ∈ [0, 2π), here α = ϕ. In Cartesian
coordinates, the vector from the origin to point q(α) is given by1:

q⃗(α) =

z
x
y

 = ρ

 cos(ϵ/ρ)
sin(ϵ/ρ) cos(α)
sin(ϵ/ρ) sin(α)

 . (C.1)

Similarly, let β ∈ [0, 2π) describe the points on Sϵ
p′ . Using a rotation, the vector pointing to the points

on Sϵ
p′ is

q⃗ ′(β) = M(δ/ρ) · q⃗(β) =

cos(δ/ρ) − sin(δ/ρ) 0
sin(δ/ρ) cos(δ/ρ) 0

0 0 1

 ·

 cos(ϵ/ρ)
sin(ϵ/ρ) cos(β)
sin(ϵ/ρ) sin(β)

 . (C.2)

The angle between q⃗(α) and q⃗ ′(β) is found from their inner product. Again invoking the fact that
geodesics are great circles, the distance between a point on Sϵ

p parametrized by α, and a point on Sϵ
p′

parametrized by β is given by

d(α, β) = ρ arccos

(
q⃗(α) · q⃗ ′(β)

∥q⃗(α)∥∥q⃗ ′(β)∥

)
= ρ arccos

(
q⃗(α) ·M(δ/ρ) · q⃗(β)

ρ2

)
. (C.3)

Finally, using equation (2.19), one finds

d

δ
=

ρ

δ

1

(2π)2

∫ 2π

0

dα

∫ 2π

0

dβ arccos

(
q⃗(α) ·M(δ/ρ) · q⃗(β)

ρ2

)
. (C.4)

Inspecting equations (C.1), (C.2), and (C.4), d/δ is only a function of δ/ρ and ϵ/ρ. In fact, this turns out
to be true for D > 2 as well. Therefore, one can consider only the unit sphere without loss of generality.
In that case ϵ/ρ and δ/ρ become ϵ and δ. For this reason, the rest of this section will only consider the
unit sphere. To recover a non-unit sphere, only the substitutions ϵ → ϵ/ρ and δ → δ/ρ need to be made.

It is straightforward to generalize the previous calculation to D > 2. The spherical coordinates are
now ρ, ϕ1, . . . , ϕD. Here, ϕD ∈ [0, 2π), and ϕ1, . . . , ϕD−1 ∈ [0, π]. Points on Sϵ

p are described by D − 1
angles, denoted by {αi} = {α1, . . . , αD−1}. In Cartesian coordinates, these points are given by

q⃗({αi}) =


cos(ϵ)

sin(ϵ) cos(αD−1)
...

sin(ϵ) sin(αD−1) · · · cos(α1)
sin(ϵ) sin(αD−1) · · · sin(α1)

 . (C.5)

Similarly, the points on Sϵ
p′ are parametrized by the angles {βi} = {β1, . . . , βD−1}, and are again found

by applying a rotation to q⃗({βi}):

q⃗ ′({βi}) = M(δ) · q⃗({βi}) =

cos(δ) − sin(δ)
sin(δ) cos(δ)

O2,D−1

OD−1,2 ID−1

 · q⃗({βi}) , (C.6)

where Om,n denotes the m×n null matrix, and In the n×n identity matrix. Using the same arguments
as for the D = 2 case, one finds the following for the geodesic distance between q({αi}) and q′({βi}):

d({αi} , {βi}) = arccos
(
q⃗({αi}) ·M(δ) · q⃗({βi})

)
. (C.7)

Finally, averaging is performed over the volumes of Sϵ
p and Sϵ

p′ , with volume elements

dΩ{αi} = sinD−2(α1) · · · sin(αD−2)

D−1∏
i=1

dαi , (C.8)

1Note the unusual order of the Cartesian coordinates in the vector. When generalizing to D > 2, this ordering is more
convenient to notate.
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and dΩ{βi} likewise. Then, d is given by

d =
1

(VD−1(1))2

∫
dΩ{αi}

∫
dΩ{βi} d({αi} , {βi}) , (C.9)

where Vn(ρ) denotes the volume of an n-sphere of radius ρ.
Let us end this appendix with some remarks regarding the numerical integration of the integral in

eq. C.9. Note how the dimension of the domain of integration is 2(D− 1). As a consequence, numerical
integration for higher values of D quickly becomes computationally expensive. For this reason, we have
determined the D = 5 curve in Fig. 2.9 by using Monte Carlo integration. Furthermore, the computation
time can be roughly halved by using the symmetry of the system: either αD−1 or βD−1 can be integrated
from 0 to π, instead of 2π. Afterwards the result must of course be multiplied by 2 to compensate, but
halving the domain of integration saves much more time than a single multiplication would ever cost.
While this speedup is helpful, for higher dimensions D it cannot counteract the inherent exponential
growth in computation time.
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Appendix D

Edge flip ergodicity

In this appendix we show that the edge flip is an ergodic update for spherical 2D degenerate triangulations
of fixed size. This property is used in section 2.5. To show that the edge flip is an ergodic update,
an approach similar to that of [20] is used. It is known that the move is ergodic for combinatorial
triangulations. Since TMD ⊃ TRD ⊃ TC , it is sufficient to show that for any triangulation in TMD there
exists a finite number of moves that reaches a triangulation in TRD, and likewise that there exists a finite
number of moves for any triangulation in TRD to a triangulation in TC .

D.1 Removing one-necks

To show the former, consider the case of an edge with overlapping endpoints: a one-neck, or tadpole in
the dual graph (the equivalence of which has been shown in section 2.2.1). The general case is shown in
Fig. D.1a. The dual graph is considered, and unless mentioned otherwise, the terms vertex, edge, and
face refer to the elements of the dual graph. Edge e has face v at both sides, i.e., in the non-dual graph
both endpoints are vertex v. The dashed area denotes any planar ϕ3 diagram with one leg, with its size
constrained by the size of the triangulation it is part of. When edge e is followed into the dashed area,
one is guaranteed to hit a vertex. This vertex is either connected to two tadpoles, or one self-energy.
These options are presented in Figures D.1b and c respectively. The result of flipping edge e in both
cases is shown in Fig. D.2. In both cases, the edge e is no longer a one-neck after the flip. Furthermore,
any one-necks that are left after the flip were there beforehand. These can be given the same treatment
as the original one-neck. This way, the dashed area can be recursively explored, removing all one-necks
one encounters in the process until a self-energy is made at the end of every branch. This is guaranteed
to happen in a finite number of steps due to the finiteness of the original tadpole diagram.

v v
e

(a)

v v
e

v

(b)

v ve

(c)

Figure D.1: The general case of an edge e with coinciding endpoints in v, represented as a dual graph, in (a).
The dashed area denotes any planar ϕ3 diagram with one leg. Following the dual edge e into this area, a dual
vertex is encountered. This vertex is either connected to two tadpole diagrams, shown in (b), or to a self-energy
diagram, shown in (c). Here, the crosshatched area denotes any planar ϕ3 diagram with two legs.
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v v

v

(a)

e

v v

(b)

Figure D.2: Results of flipping edge e in Figures D.1b and D.1c respectively.

D.2 Removing two-necks

To show it is possible to reach a triangulation in TC from any triangulation in TRD, consider the general
case of a two-neck, that is, two edges that share their endpoints. The dual graph of such a gluing is
presented in Fig. D.3a. The crosshatched area denotes any planar ϕ3 diagram with two legs. The simplest
case of this, where this crosshatched area is just a single edge, is shown in Fig. D.3b. Here, there is no
two-neck since, e1 is the same edge as e2. Therefore, this case can be ignored in the following arguments.
That case aside, Fig. D.3a shows the general two-neck: edges e1 and e2 both connect v1 to v2. Similar
to the treatment of the one-neck, consider the options one could encounter when traversing from e1 to
e2 along the dual graph. Since tadpoles can be excluded, the only possibility is that of Fig. D.3c. The
result of flipping the edge e1 is shown in Fig. D.4. Due to the symmetry, only the flip of e1 is considered
without loss of generality. Note that after the flip, edge e1 does not connect v1 to v2 anymore, and thus
the two-neck is removed. Furthermore, no new self-energies or tadpoles are made by performing the flip.
Again, due to the finiteness of the original crosshatched diagram, this process only has to be repeated a
finite number of times until all obtained crosshatched diagrams are simply single, that is, the diagram
in Figure D.3b.

e1 e2

v1

v2

(a)

v1

v2

e1 = e2

(b)

e1 e2

v1

v2

(c)

Figure D.3: The general case of two edges e1, e2 sharing their endpoints v1, v2, represented as a dual graph, in
(a). The crosshatched area denotes any ϕ3 diagram with two legs. Figures (b) and (c) show the options for what
this crosshatched area could be. The former shows the case where this shaded area is the simplest diagram with
two legs: a single edge. In this case there is no two-neck. The latter shows the only other option when tadpoles
are excluded: two self-energy diagrams in parallel.

To summarize, it has been shown that any triangulation in TMD can be transformed into one in TRD,
and likewise any triangulation in TRD can be transformed into one in TC , in a finite number of edge flips.
The edge flip is ergodic in TC , and thus the edge flip is also ergodic in both the degenerate ensembles.
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v1

v2
e1

e2

Figure D.4: The result of flipping edge e1 of the self energy diagram of Figure D.3c.
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