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Abstract

Dynamical Triangulations is an approach for discretizing the Euclidean
quantum gravity path integral using regular simplices. On the 2-sphere
such models have been shown to lead to a family of universality classes
with a consistent topology. However, in three (or more) dimensions such
a correspondence is currently out of reach. An attempt to remedy this
has been proposed by T. Budd and L. Lionni in 2022 [4] in the form of the
triple trees model. This model puts a heavy restriction on the possible
configurations by requiring a specific decomposition of the geometry into
three trees. In this work, the model is investigated numerically using
a Markov Chain Monte Carlo simulation written in Rust. In particular,
the phase transition is analysed qualitatively and quantitatively. Further-
more, a peculiar distance scaling in the low 𝜅 phase is presented.
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Philosophy is written in this grand book — I mean the Universe
— which stands continually open to our gaze, but it cannot be un-
derstood unless one first learns to comprehend the language and
interpret the characters inwhich it iswritten. It iswritten in the lan-
guage of mathematics, and its characters are triangles, circles, and
other geometrical figures, without which it is humanly impossible
to understand a single word of it; without these, one is wandering
around in a dark labyrinth.

- Galileo Galilei, Il Saggiatore
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Chapter 1

Introduction

1.1 Euclidean Quantum Gravity
One of the major challenges in contemporary theoretical physics is defining a
predictive theory of quantum gravity. Our modern understanding of classical
gravity in the form of general relativity was introduced by Albert Einstein in
1915. General relativity states that gravity is in fact a geometric effect, linking
the presence of matter with the curvature of spacetime. For simplicity, we shall
restrict ourselves to geometries with Euclidean signature.

The dynamics of the Euclidean version of Einstein’s theory in 𝑑 dimensions
can be very compactly summarized in the Euclidean Einstein-Hilbert action

𝑆[𝑔𝑎𝑏] =
1

16𝜋𝐺
∫
ℳ

d𝑑𝑥√𝑔(𝑥)[−𝑅(𝑥) + 2Λ], (1.1)

where 𝐺 is Newton’s gravitational constant andΛ is the cosmological constant.
The integration is over the 𝑑-dimensional Riemannian manifoldℳwith metric
𝑔𝑎𝑏(𝑥), and it has a measure related to the determinant of the metric 𝑔(𝑥). Fi-
nally, 𝑅(𝑥) is the Ricci scalar curvature at 𝑥 ∈ ℳ. As with any classical action,
the equations of motion can be found using the stationary-action principle.

The usual approach to quantizing any classical theory described by an ac-
tion is to embed said action in a path integral. In the case of Euclidean gravity
this results in

𝑍 = ∫𝒟𝑔𝑎𝑏
𝑒−𝑆[𝑔𝑎𝑏]

|Diffℳ|
, (1.2)

where the integration is over all geometries¹. To prevent overcounting due to
invariance under coordinate transformations we divide by the volume of the
diffeomorphism groupDiffℳ. By considering the Euclidean version of general
relativity, the path integral can also be interpreted as a statistical partition func-
tion. In particular, the action 𝑆[𝑔𝑎𝑏] determines the Boltzmann weight 𝑒−𝑆[𝑔𝑎𝑏].

¹More precisely, the integration is over equivalence classes of metrics [𝑔𝑎𝑏] related by diffeo-
morphisms.
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2 CHAPTER 1. INTRODUCTION

However, making quantitative statements derived from (1.2) is still a major
open problem. It is not straightforward at all to assign a well-defined prob-
ability space and measure consistent with (1.2). The current goal of Euclidean
quantum gravity, in this sense, is therefore to assign a well-defined statistical
interpretation to (1.2) as a partition function on the space of all geometries.

The standard method to make sense of functional integrals such as (1.2) is
to employ perturbative methods. In particular, one tries to quantize fluctu-
ations around some classical solution of the field equations. However, it turns
out that the quantum field theory corresponding to (1.2) is perturbatively non-
renormalizable. This implies that we cannot make predictions by probing the
model using perturbative methods.

Dynamical Triangulations In order to study (1.2) non-perturbatively we can
introduce a discretization of geometries. In particular, we can discretize aman-
ifold ℳ by gluing a set of 𝑑-dimensional polyhedra together. One can vary
either the shape of the polyhedra or their connectivity (or both) to obtain dif-
ferent geometries.

In the Dynamical Triangulations (DT) approach, we keep the shape of all
polyhedra fixed, while varying their connectivity. This has the advantage of
resulting in discrete degrees of freedom, turning (1.2) into a summation. As
for the shape of the polyhedra, we make the simplest choice by only consid-
ering regular simplices with physical side length 𝑎. By regular simplices we
mean, in order of increasing dimension: vertices, edges, triangles, tetrahedra
and higher-dimensional generalizations of these. All in all, the discretized par-
tition function will be of the form

𝑍 = ∑
𝑇∈𝒯

𝑒−𝑆[𝑇]

𝐶[𝑇]
, (1.3)

where the summation is over the space of all possible gluing relations 𝒯. Here
𝐶[𝑇] is a symmetry factor to correct for overcounting.

Since DT is a discretization of (1.2), we hope to find a continuum limit re-
lating DT back to a continuum model. Ideally, we would like to use such a
continuum model as a potential definition of (1.2). Taking a continuum limit
means that we take the physical length of the building blocks 𝑎 → 0 and in-
crease the number of building blocks 𝑁 → ∞, while keeping the physical
volume fixed. Of course there are infinite ways in which such a limit can be
taken, but only a few lead to convergent results.

Our approach to taking this limit is to look for a convergence of metric
spaces in linewith the so-calledGromov-Hausdorff definition, as used in [7]. In
particular, we consider the possibility of a power law rescaling of geodesic dis-
tances. This type of rescaling is only possible if the model has a well-defined,
finite Hausdorff dimension 𝑑𝐻. The Hausdorff dimension describes how the
volumes of geodesic balls grow as a function of their radius. The relationship
between 𝑑𝐻 and a continuum limit is further elaborated in section 2.3.
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Figure 1.1: Visualization of a triangulation in 𝑑 = 2 with 𝑁 = 8 ⋅ 106 triangles.
Adapted from Benedikt Stufler’s gallery.

1.2 Current Models
TwoDimensions We start our tour of DT models in 𝑑 = 2 dimensions, since a
lot is already known about thesemodelsmathematically. When considering the
action 1.1 for 𝑑 = 2wewill see that by the Gauß-Bonnet theorem the integrated
curvature is constant,

∫
ℳ

d2𝑥√𝑔(𝑥)𝑅(𝑥) = 4𝜋𝜒(ℳ), (1.4)

where 𝜒(ℳ) is the so-called Euler characteristic of the manifoldℳ. It depends
only on the topology of ℳ, so in this context it is constant and therefore irrel-
evant to the dynamics. Thus, for 𝑑 = 2, only the integrated volume contributes
to the dynamics. We can therefore write the action as

𝑆[𝑇] = 𝜆𝑁2[𝑇], (1.5)

where 𝜆 is related to the continuum cosmological constant Λ from (1.1). Here
𝑁𝑑[𝑇] denotes the number of 𝑑-simplices contained in 𝑇. In this case 𝑁2[𝑇]
denotes the number of triangles in 𝑇. For 𝑑 = 2 the model is so simple that at
fixed volume (i.e. number of triangles) the action is constant, resulting in an
equal probability for all triangulations of the given volume, modulo symmetry
factors. An example of such a triangulation is shown in figure 1.1.

It has been shown [7] that this model has a continuum limit, known as the
Brownian sphere. Many properties of the Brownian sphere are known analytic-
ally. In particular, it has a Hausdorff dimension 𝑑𝐻 = 4. It provides an example
for how a metric structure can be obtained from a DT model. A major caveat
here is that the resulting manifold turns out to be fractal in nature.

https://www.dmg.tuwien.ac.at/stufler/gastranim.html
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Figure 1.2: Visualization of the mating of trees procedure. Left: two trees in-
cluding a gluing relation. Middle: the trees are being glued together. Right: the
trees have been glued into a manifold. Adapted from the 3rd EPS Conference
on Gravitation talk “Quantum Gravity and Random Geometry” by Timothy
Budd.

Alternatives to pure DT can be constructed by introducing extra informa-
tion (i.e. decorations) on the triangulations. A whole zoo of models has been
investigated here, including spanning tree decorations, Isingmodels and scalar
fields, to name a few. It turns out that many of these models belong to a 1-
parameter family of universality classes known as Liouville quantum gravity.
A very peculiar property of these geometries is that they can be constructed
by interlacing two continuum random trees with each other [6]. This is highly
non-trivial, since it allows us to construct a simple manifold from topologically
extremely complicated objects, i.e. trees. A visualization of this procedure is
shown in figure 1.2.

Three Dimensions For 𝑑 = 3, the DT action takes the form [2]

𝑆[𝑇] = 𝜆𝑁3[𝑇] − 𝜅𝑁0[𝑇], (1.6)

where 𝜅 is related to the inverse ofNewton’s gravitational constant𝐺 from (1.1).
At fixed volume the model still has a free parameter, namely 𝜅. It turns out [2]
[8] that various phases emerge, depending on the value of 𝜅.

For 𝜅 < 𝜅𝑐 (where 𝜅𝑐 is the critical value at which the phase transition hap-
pens) the model is in the so-called crumpled phase. In this phase there is gen-
erally one (or a few) vertices with very high degree, indicating a singular be-
haviour. In particular, it appears [12] to have a Hausdorff dimension 𝑑𝐻 = ∞.
Because of this it seems unlikely that a continuum limit to ametric space can be
obtained. That is, not using methods analogous to the 𝑑 = 2 case, as presented
in [7].

On the other hand, for 𝜅 > 𝜅𝑐 the model is in a tree-like phase, commonly
referred to as the “branched polymer” phase. The universality class of this
phase seems [8] to be the continuum random tree of Aldous [1]. Hence, this
phase also does not correspond to physical quantum gravity.

Finally, there is the possibility of new behaviour emerging at the phase
transition. According to statistical mechanics, we would expect to find crit-
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𝜅𝜅𝑐

Figure 1.3: An overview of the two phases in 𝑑 = 3 DT. Adapted from the
3rd EPS Conference on Gravitation talk “Quantum Gravity and Random Geo-
metry” by Timothy Budd.

ical behaviour if the transition were to be continuous. This behaviour includes
a correlation length 𝜉 that diverges as a power law near the transition. This
divergence could then be used to redefine the physical distance 𝑎 such that the
physical correlation length 𝜉𝑎 converges. We could then take 𝑎 → 0 and𝑁 → ∞
while retaining a finite physical distance scale. Unfortunately there is strong
evidence [9] that the phase transition in standard 𝑑 = 3 DT is discontinuous.
An overview of the phase space for 𝑑 = 3 DT is shown in figure 1.3

1.3 The Triple Trees Model

In 2022, Budd and Lionni [4] introduced an alternative model to pure DT in
𝑑 = 3. The defining feature of this model is that triangulations are constructed
from three different trees, hence the name triple trees. This construction can
in some sense be viewed as reverse-engineering an analogue to the mating of
trees construction presented in [6], extending the idea from 𝑑 = 2 to 𝑑 = 3.

Since the model is by construction decomposable into three trees, it shares
some useful properties that usually come with trees. Most notably exponential
bounds on the canonical partition function have been established, something
that has at present not been done for pure DT. This is also an indication of
just how restrictive the model is on the geometry. Since this restriction is so
extreme, it seems plausible that this model could contain new behaviour not
seen in pure DT. Additionally, better control over enumerations is expected to
go hand in hand with a greater ability to apply analytical methods.

This Work As the triple trees model is relatively new it still leaves much to
be explored. In particular, the phase transition (if it still exists in triple trees)
may show interesting behaviour. If the transition turns out to be continuous,
it could potentially host a new universality class. Thus, we focus our efforts on
trying to answer the following questions:
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1. Can we find evidence for a phase transition in the triple trees model?

2. What are the properties of these phases, and do they differ from pure DT?

3. Assuming there is a phase transition, what can we say about its (dis)con-
tinuity?

We will investigate these questions numerically using a Markov Chain Monte
Carlo simulation written in the Rust programming language.

In chapter 2 we will define the triple trees model in more detail, and we will
elaborate on how we define the expectation values that can be extracted from
such a statistical system. How these expectation values are extracted in practice
is elaborated in chapter 3. In particular, we elaborate on how we can design a
Markov chain that we can use to sample configurations from our configuration
space. Then, in chapter 4 we give an overview of which types of observables
we can measure on our triangulations and what these can tell us about possible
phase transitions. Additionally, we briefly discuss the error analysis employed
on the data itself. The results of this analysis are presented in chapter 5. Finally,
we interpret these results in chapter 6.



Chapter 2

Defining the Triple Trees
Model

As mentioned in the introduction, DT can be interpreted as a statistical model.
As such, its dynamics can be captured in a partition function 𝑍. This partition
function is given by (1.3), and we restate it here:

𝑍 = ∑
𝑇∈𝒯

𝑒−𝑆[𝑇]

𝐶[𝑇]
, (2.1)

where the summation is over all triangulations 𝑇 contained in some config-
uration space 𝒯. Each triangulation 𝑇 has a Boltzmann weight (or euclidean
action in the context of quantum gravity) 𝑆[𝑇], which for 𝑑 = 3 has already
been presented in (1.6). Additionally, a symmetry factor 𝐶[𝑇] is included to
compensate for overcounting. Note that the model is uniquely determined by
specifying 𝒯 and 𝑆[𝑇] ∶ 𝒯 → ℝ.

2.1 Labels and Symmetry

As mentioned, the symmetry factor 𝐶[𝑇] is present in (2.1) in order to com-
pensate for overcounting. It is equal to the order of the automorphism group
of 𝑇

𝐶[𝑇] = |Aut𝑇|. (2.2)

For abstract triangulations 𝑇, as considered here, |Aut𝑇| depends on the sym-
metry of 𝑇. This results in 𝐶[𝑇] having a rather complicated structure, and it
is therefore difficult to work with both analytically and numerically. However,
if we instead consider labelled triangulations 𝑇ℓ ∈ 𝒯ℓ, there are no (non-trivial)
automorphisms. Instead, each permutation of labels occurs as a separate term
in the summation. If a triangulation 𝑇 has a set of labels ℓ[𝑇], there are in

7
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principle |ℓ[𝑇]|! different permutations of these labels. However, due to auto-
morphisms some of these permutations are equivalent, thus reducing the ac-
tual number of distinct labellings. This means that an unlabelled triangulation
𝑇 ∈ 𝒯 will correspond to

|ℓ[𝑇]|!
|Aut𝑇|

(2.3)

labelled triangulations 𝑇ℓ ∈ 𝒯ℓ. Hence, we can rewrite (2.1) to

𝑍 = ∑
𝑇ℓ∈𝒯ℓ

𝑒−𝑆[𝑇ℓ]

|ℓ[𝑇ℓ]|!
. (2.4)

Note that we are agnostic over what exactly the labels refer to. For instance,
a label could be assigned to each vertex (|ℓ[𝑇]| = 𝑁0[𝑇]), or to each half-edge
(|ℓ[𝑇]| = 12𝑁3[𝑇]), or both (|ℓ[𝑇]| = 𝑁0[𝑇] + 12𝑁3[𝑇]). As long as the labels
completely break the symmetry the argument is the same. Note that for the
remainder of this work, we will only be considering labelled triangulations.
Therefore, the subscript ℓ shall be suppressed from this point onward.

2.2 Configuration Space

We have defined a Boltzmann weight 𝑒−𝑆[𝑇] using the action in (1.6). However,
in order to completely specify our model we still need to define a configuration
space𝒯. The biggest restriction here is that we do not consider changes in topo-
logy. In particular, we only consider spherical topology, since 𝑆3 is the simplest
choice which is compact and without boundaries. Besides fixing the topology
of our triangulation, we can also impose restrictions relating to the degeneracy
of its underlying simplices, further restricting 𝒯. Finally, we can introduce ex-
tra structures (such as trees) on top of the triangulation. This generally has the
effect of enlarging 𝒯, although putting restrictions on these structures can also
reduce the size of 𝒯.

Subsimplices Configuration space restrictions in dynamical triangulations
are more straightforwardly explained by first introducing the concept of sub-
simplices. In this context a 𝑝-simplex 𝑃 is a subsimplex of a 𝑞-simplex 𝑄 (with
𝑝 < 𝑞) if and only if 𝑃 ⊂ 𝜕𝑄. Conversely, 𝑄 is a supersimplex of 𝑃. A sub- or
supersimplex is direct if and only if 𝑞 = 𝑝 +1. For example, a triangle is a direct
supersimplex of any one of its edges. It is also a supersimplex of any one of its
vertices, but in these cases it is not a direct supersimplex. In general, a sim-
plex could have duplicates among its subsimplices. Additionally, two distinct
simplices may have exactly the same subsimplices.

Degeneracy Categories As already suggested, there are various types of de-
generacies that can occur in a triangulation. Broadly speaking, there are two
main categories of degeneracies:
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Figure 2.1: Two examples of degenerate 𝑑 = 2 triangulations. The dashed lines
indicate the corresponding dual graphs. In (𝑎) the triangles 𝑡𝑎 and 𝑡𝑏 have all
three vertices 𝑣1, 𝑣2 and 𝑣3 in common (a self-energy diagram in the dual graph);
this is a degeneracy of the first category with (𝑝, 𝑞) = (0, 2). In (𝑏) the triangle 𝑡𝑎
contains same vertex 𝑣1 twice (corresponds to a tadpole in the dual graph); this
is a degeneracy of the second category with (𝑝, 𝑞) = (0, 2). Adapted from [12].

1. Two distinct 𝑞-simplices share exactly the same set of 𝑝-dimensional sub-
simplices.

2. A 𝑞-simplex has duplicates among its 𝑝-dimensional subsimplices.

Here 𝑝 and 𝑞 should be specified in order to specify a particular type of degener-
acy. A visualization of these degeneracies is shown in figure 2.1. Triangulations
without degeneracies are commonly formally described by so-called simplicial
complexes. However, these rely on the use of sets, so duplicate simplices as they
occur in a degeneracy of the first type are not representable. Furthermore, in a
simplicial complex simplices are identified based on their subsimplices. This
implies that also degeneracies of the second category cannot be represented.

In the model studied in this work, we require that each edge connects two
distinct vertices. This excludes all degeneracies in the second category. In par-
ticular, this restriction implies that all vertices of each triangle and tetrahedron
are distinct. This is because their edges form complete graphs on their vertices.
Hence, duplicates in these vertices would result in an edge connecting a vertex
to itself. Building on this, we see that duplicate edges (within triangles or tet-
rahedra) and duplicate triangles (within tetrahedra) are also excluded. These
would require the identification of two (or more) vertices in their parent tri-
angle or tetrahedron.

We do still allow degeneracies of the first category. For example, two ver-
tices can be connected bymultiple edges, and triangles can sharemore than one
edge. Choosing exactly this restriction is convenient for simulation purposes,
as will be discussed in section 3.2.

Three Trees Now we consider the unique defining feature of the triple trees
model: the three trees. We shall denote the trees by 𝑏𝑣, 𝑏𝑑 and 𝑏𝑚, for vertex,
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dual and middle tree, respectively¹. Suppose that Σ[𝑇] is the set of all simplices
of 𝑇 ∈ 𝒯. Then 𝑏𝑣, 𝑏𝑑 and 𝑏𝑚 must partitionΣ[𝑇]. That is, each simplex can only
be part of one of the trees, and all simplices must be contained in some tree.
Furthermore, we consider two simplices within the same tree to be linked if
and only if one is a direct subsimplex of the other. Hence, simplices can only
be connected if their dimensionality differs by exactly one.

But what exactly are these trees? As a start, 𝑏𝑣 is a spanning tree of the
underlying graph. This means that all vertices must be contained in 𝑏𝑣. Ad-
ditionally, since 𝑏𝑣 is a tree it consists of a single connected component, and it
contains no loops. Tomatch our aforementioned requirements, we consider the
edges that connect vertices to also be part of the tree. That is, part of the edges
in Σ[𝑇] are contained in 𝑏𝑣. Similarly, 𝑏𝑑 is a spanning tree of the dual graph. It
therefore contains all tetrahedra, as well as part of the triangles of Σ[𝑇].

What remains of Σ[𝑇] is a subset of all triangles and edges of 𝑇, specifically
𝑏𝑚 = Σ[𝑇] ⧵ (𝑏𝑣 ∪ 𝑏𝑑). To clarify again, we consider a triangle and an edge to
be connected if the edge is a subsimplex of the triangle. In this sense, we can
define a ”middle” graph 𝑏𝑚 on the remaining triangles and edges. Note that 𝑏𝑚
can only be a tree if it contains a single connected component, and if it contains
no cycles.

In summary, adding the spanning trees 𝑏𝑣 and 𝑏𝑑, and requiring the remain-
ing graph 𝑏𝑚 to be a tree, will result in the partition function

𝑍 = ∑
𝑇∈𝒯

∑
𝑏𝑣∈ℬ𝑣[𝑇]

∑
𝑏𝑑∈ℬ𝑑[𝑇]

𝜃(𝐶[𝑏𝑚] = 1) 𝜃(𝐿[𝑏𝑚] = 0)
𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
, (2.5)

where ℬ𝑣[𝑇] and ℬ𝑑[𝑇] denote the set of possible spanning trees on 𝑇 and span-
ning trees on the dual graph of 𝑇, respectively. Furthermore, 𝐶[𝑏𝑚] and 𝐿[𝑏𝑚]
denote the number of connected components and the number of cycles in 𝑏𝑚.
An alternative way to view this is to redefine the configuration space to

𝒯triple trees = {(𝑇, 𝑏𝑣, 𝑏𝑑) ∣ 𝑇 ∈ 𝒯, 𝑏𝑣 ∈ ℬ𝑣[𝑇], 𝑏𝑑 ∈ ℬ𝑑[𝑇], 𝐶[𝑏𝑚] = 1, 𝐿[𝑏𝑚] = 0}.
(2.6)

An example of how such a triangulation can be constructed is shown in figure
2.2.

Now we make a crucial observation: there are many configurations 𝑇 for
which 𝑏𝑚 cannot be a tree, even considering all possible choices of 𝑏𝑣 and 𝑏𝑑.
This has a major effect on the configuration space𝒯. Furthermore, adding dec-
orations (such as trees) will also have a combinatorial effect on𝒯. To make this
effect more explicit we rewrite (2.5) to

𝑍 = ∑
𝑇∈𝒯

𝜔[𝑇]
𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
, (2.7)

where 𝜔[𝑇] can be interpreted as a weight. Thus, we can also view the triple
trees model as a modification to DT where we assign a (possibly vanishing)

¹Note that we use the symbol 𝑏 to denote a tree, from the Dutch ”boom”. The logical choice 𝑡
could be confused with 𝑇 for triangulation.
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Figure 2.2: Visual overview of the construction of a triple trees geometry. Left:
the middle tree 𝑏𝑚 (in green) and the vertex tree 𝑏𝑣 (in black). Right: the dual
tree 𝑏𝑑 (in blue) and the vertex tree 𝑏𝑣 (in black). Center: the middle tree 𝑏𝑚 is
used to define a gluing on the dual tree 𝑏𝑑. Adapted from [4].

weight 𝜔[𝑇] to each 𝑇 ∈ 𝒯. In the case of the triple trees model we have

𝜔[𝑇] = ∑
𝑏𝑣∈ℬ𝑣[𝑇]

∑
𝑏𝑑∈ℬ𝑑[𝑇]

𝜃(𝐶[𝑏𝑚] = 1) 𝜃(𝐿[𝑏𝑚] = 0), (2.8)

which is significantly different from the DT model where 𝜔[𝑇] = 1. From
this point onward, we shall drop the subscript “triple trees” from the symbol
𝒯triple trees. In other words, the symbol 𝒯 will now directly refer to (2.6).

2.3 Continuum Limit
At its core, DT is (an attempt at) an approach for regularizing the quantum
gravity path integral as presented in (1.2). The corresponding regularization
parameter is the physical edge length 𝑎. Hence, the goal is to eventually go back
to the continuum picture by taking an appropriate limit. In the case of DT, this
means taking the physical edge length 𝑎 to zero and the number of building
blocks𝑁 to infinity, while keeping the physical volume fixed. Before we can do
this we first need to be able to study the properties of the triangulations in our
ensemble as a function of 𝑁.

Volume Partitioning In order to investigate triangulations at a given volume,
we must partition the configuration space 𝒯 into components, each corres-
ponding to a specific volume:

𝒯 =
∞

⋃
𝑁=0

𝒯𝑁, (2.9)

where we have defined

𝒯𝑁 = {𝑇 ∈ 𝒯 ∣ 𝑁𝑑[𝑇] = 𝑁} (2.10)
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to be the set of all triangulations of volume 𝑁. Applying this partitioning to
the partition function in (2.4) results in

𝑍 =
∞

∑
𝑁=0

∑
𝑇∈𝒯𝑁

𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
=

∞

∑
𝑁=0

𝑍𝑁, (2.11)

where in our case 𝑆[𝑇] is the DT action in (1.6), and we have defined

𝑍𝑁 = ∑
𝑇∈𝒯𝑁

𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
. (2.12)

Rescaling Expectation values of observables on these fixed-volume configur-
ation spaces 𝒯𝑁 are given by

⟨𝒪⟩𝑁 =
1
𝑍𝑁

∑
𝑇∈𝒯𝑁

𝒪[𝑇]
𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
(2.13)

Suppose that such an expectation value grows as a power law in the limit of
large volume, i.e.

⟨𝒪⟩𝑁
𝑁→∞∼ 𝑁𝜈, (2.14)

where 𝜈 is some scaling exponent specific to the observable. In such cases we
can rescale the observables as

⟨𝒪⟩𝑁 ↦
⟨𝒪⟩𝑁
𝑁𝜈 , (2.15)

such that the rescaled observable has a well-defined limit for 𝑁 → ∞. Thus,
we look for observables that asymptotically scale as a power law.

Hausdorff Dimension As mentioned in section 1.1 we need a well-defined
Hausdorff dimension 𝑑𝐻 in order to apply our recipe for a continuum limit.
Starting from a point 𝑥 ∈ 𝑇 on a random triangulation 𝑇, we grow a geodesic
ball 𝐵𝑥∈𝑇(𝑟) of radius 𝑟. After averaging over 𝑥 and 𝑇, we hope to find a power
law dependence on 𝑟 of the volume

⟨|𝐵𝑥∈𝑇(𝑟)|⟩𝑥,𝑇 ∼ 𝑟𝑑𝐻, (2.16)

where the absolute value denotes the volume of the ball. To avoid discretization
and finite-size effects we only look at the range where 1 ll 𝑟 ll 𝑁. If 𝑑𝐻 is well-
defined and finite, we can say that distances scale as 𝜉 ∼ 𝑁1/𝑑𝐻. If we then set
the physical edge length

𝑎 = 𝑁−1/𝑑𝐻, (2.17)

we will see that physical distances of the form 𝑎𝜉 should approach constant
values in the continuum limit.



Chapter 3

Simulation Design

In the previous chapter we have seen that it is interesting to compute expecta-
tion values of the form

⟨𝒪⟩𝑁 = ∑
𝑇∈𝒯𝑁

𝒪[𝑇]
𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
, (3.1)

where 𝒯𝑁 is the volume-fixed configuration space of (2.10), applied to the con-
figuration space 𝒯 of triple trees from (2.6). The Boltzmann weight 𝑒−𝑆[𝑇] is
determined by the action of DT in 𝑑 = 3 given by (1.6). In this chapter we will
discuss the methods by which we obtain such expectation values.

3.1 Markov Chain Monte Carlo

Monte Carlo Directly computing expressions of the form of (3.1) does not
seem feasible. There is no clear way to parameterize 𝒯𝑁, and finite expansions
quickly become extremely unwieldy, since |𝒯𝑁| grows exponentially as a func-
tion of 𝑁. Instead, we can approximate these expectation values by taking 𝑛
random samples from the distribution defined by 𝒯𝑁 and 𝑆[𝑇], and comput-
ing the sample mean. In particular, to compute the expectation value of some
observable 𝒪 we independently sample 𝑛 triangulations 𝑇𝑖 ∈ 𝒯𝑁 (𝑖 = 1,… , 𝑛)
distributed according to the Boltzmann weights 𝑆[𝑇]. The expectation value
⟨𝒪⟩𝑁 can then be approximated with

⟨𝒪⟩𝑁 ≈
1
𝑛

𝑛

∑
𝑖=1

𝒪[𝑇𝑖]. (3.2)

The r.h.s. of (3.2) has expectation value ⟨𝒪⟩𝑁 and its standard deviation is pro-
portional to 1

√𝑛 . Therefore, for 𝑛 → ∞ it will approach ⟨𝒪⟩𝑁 almost surely.

13
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Markov Chain A practical question remains: How can we sample triangula-
tions 𝑇𝑖 from 𝒯𝑁? There does not seem to be a straightforward and systematic
way to pull a 𝑇𝑖 out of a hat (i.e. to directly sample 𝑇𝑖 ∈ 𝒯). Instead, we use a
Markov chain to generate the samples. We start with some initial configuration
𝑇0 ∈ 𝒯𝑁. Then we iteratively apply a specific, non-deterministic update rule to
transition from 𝑇𝑡 to 𝑇𝑡+1. This update rule should satisfy two criteria:

• It should be able to explore the entire configuration space 𝒯𝑁, at least in
principle. This is called ergodicity.

• It should result in the desired distribution. This can be achieved by sat-
isfying detailed balance, as in (3.3).

We will see that the update rules used in this work are local. This means that 𝑇𝑡
and 𝑇𝑡+1 will be very similar, and thus they cannot be considered as independ-
ent samples. However, the idea is that after many of these updates the samples
will be effectively independent. Still, we should check whether this actually
the case. This will be investigated in 4.3.

3.2 A Markov Chain for DT
Before attempting to construct an ergodic update rule for the triple trees model
we shall consider the case of dynamical triangulations without decorations. It
has been argued by Thorleifsson [12] that for a model in three dimensions with
non-degeneracy restrictions as described in section 2.2 it is sufficient to use two
types of so-called (𝑝, 𝑞) moves (and their inverses). In such a move, a group of
𝑝 tetrahedra is replaced by a group of 𝑞 tetrahedra.

In particular the moves used in [12] are the (1, 4) and (2, 3) moves, with
inverse moves (4, 1) and (3, 2). Executing a (1, 4)move means inserting a vertex
of order four into a tetrahedron, and a (2, 3) move corresponds to replacing a
triangle by an edge. A visual representation of these moves is shown in figure
3.1.

However, in this work we use a (0, 2) move instead of the (1, 4) move. This
move replaces a triangle by a complex consisting of two tetrahedra sharing
three triangles. Note that the boundary of such a complex is a two-sided tri-
angle. We use this move because the (4, 1)move requires a vertex of order four,
which is relatively rare. It turns out that this substitution results in an equival-
ent set of moves. This can be shown by the fact that a (1, 4) move can be emu-
lated by performing a (0, 2)move on some triangle followed by a (2, 3)move on
that triangle. The inverse move (4, 1) can be constructed accordingly.

One thing we still need to consider is whether we accidentally create degen-
erate manifolds. The only restriction we have imposed is to exclude edges with
duplicate vertices. Edges can only be created in the (0, 2) and (2, 3) moves. For
the (0, 2)move we create three new edges connecting an already existing vertex
to a newly inserted one. So in this case we cannot create degenerate edges and
the constraint is automatically satisfied. Only in the case of a (2, 3) move we
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Figure 3.1: Visual representation of (2, 3) move (top) and (1, 4) move (bottom),
including inverse moves. Regular moves are shown going from left to right,
while inverse moves go from right to left. Adapted from the lecture series
“Monte Carlo methods in Dynamical Triangulations” by Timothy Budd.

need to check whether the two vertices at the tips of the complex are distinct.
If not, the move is rejected. According to Thorleifsson [12] this does not affect
the ergodicity of the moves.

From this point onward we shall assign names to these moves. We will refer
to the (0, 2) and (2, 0) moves collectively as shard moves, since they involve in-
serting or removing a shard (i.e. a complex of two tetrahedra sharing three
triangles). Similarly, we will refer to the (2, 3) and (3, 2) moves as flip moves.
This is because a triangle is flipped into an edge and vice versa. A visual rep-
resentation of these moves is shown in figure 3.2.

In order to execute shard and flip moves we need to be able to determine
whether 𝑇 has the desired local geometry near a given half-edge. The (0, 2)
and (2, 3) moves can always be performed on an arbitrary triangle in 𝑇. Note
that each triangle has exactly six half-edges corresponding to it. For the (3, 2)
move we require an edge of order three, again corresponding to exactly six half-
edges. Finally, the (2, 0) move requires two tetrahedra that share three of their
triangles, i.e. a shard. The shard has a boundary of two triangles. This once
again corresponds to exactly six half-edges when considering only half-edges
on the interior of the shard.

Note that these moves will change the volume 𝑁 = 𝑁3[𝑇] of the triangula-
tion, while we ideally wish to investigate a fixed-volume configuration space
as defined in (2.10). This issue will be addressed in section 3.5, but it will not
affect the methods discussed here.
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Figure 3.2: Visualization of the shard move (left) and flip move (right), includ-
ing inverse moves. Regular moves correspond to arrows pointing to the right,
while inverse moves correspond to arrows pointing to the left. Adapted from
the Tensor Journal Club talk “A family of triangulated 3-spheres constructed
from trees” by Timothy Budd.

3.3 Extension to Triple Trees
Keeping the Forest Alive A logical next step is to try and apply the shard and
flip moves on the triple trees model. However, one needs to take care in hand-
ling the trees, as various simplices will be created, destroyed and rearranged
during these moves. Somehow the end result should still contain exactly the
three trees as described in section 2.2. The approach we take is to modify the
trees only locally, while imposing that their connectivity inside this local region
remains the same. This ensures that no loops or disconnected components are
created.

This approach does have an impact on ergodicity, unfortunately. It turns out
for some given tree configurations there are some shard and flip moves that are
no longer possible due to this constraint. That is, there are cases for which there
is no valid tree configuration that preserves local connectivity after performing
the move. If this is the case, we are forced to reject the entire move. Hence, at
this stage it is far from obvious whether the update rule is still ergodic.

Moving Trees One attempt to regain ergodicity (or at least reduce autocor-
relations) is to introduce moves that act solely on the trees (and not on the
geometry). The idea is that in cases where a shard or flip move is not possible,
we can massage the trees in such a way that they no longer block that specific
shard or flip move. However, we know that the triple trees model restricts the
geometry itself, so this is not always possible. In fact, currently it is not even
clear whether all geometries that are allowed are reachable in this manner.

Still, this will not stop us from trying to define an update rule on the trees.
We will consider two types of moves: one for 𝑏𝑣, and one for 𝑏𝑑. These moves
will each modify both their corresponding tree, and 𝑏𝑚. The third tree remains
untouched.

First we consider the problem of aMarkov chain for uniform spanning trees
on a fixed graph. We can construct an ergodicmove for this system by following
the algorithm in [10]. We start by uniformly selecting an edge 𝑎 that is not part
of the spanning tree. Adding 𝑎 to the spanning tree will create a loop. We
uniformly select an edge 𝑏 ≠ 𝑎 from this loop and remove it from the spanning
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Figure 3.3: Overview of a spanning tree move as described in [10]. Top left:
uniformly select an edge 𝑎 (blue) which is not in the spanning tree (red). Top
right: consider the loop (orange) that would be created after including 𝑎 in the
spanning tree. Bottom left: choose an edge 𝑏 ≠ 𝑎 (green) which is part of this
loop, and remove it from the spanning tree. Bottom right: add 𝑎 to the spanning
tree.

tree, thus breaking the loop. A visualization of this procedure is shown in figure
3.3. This procedure can be applied on either the underlying graph (modifying
𝑏𝑣) or on the dual graph (modifying 𝑏𝑑).

Note that this move as it stands can destroy 𝑏𝑚. Whenever an edge is added
to 𝑏𝑣, it is by definition removed from 𝑏𝑚, and vice versa. In order to prevent 𝑏𝑚
from being cut, we impose that 𝑎 must be a leaf of 𝑏𝑚 before being added to 𝑏𝑣.
Additionally, only one of the triangles around 𝑏 can be in 𝑏𝑚, otherwise a loop
would be created in 𝑏𝑚. That is, 𝑏 will be a leaf of 𝑏𝑚 after the move. Similar
conditions must hold for the 𝑏𝑑 move. We can modify the algorithm presented
in [10] to accommodate for these conditions. However, due to these constraints
it is not obvious whether the moves are still ergodic.

Ergodicity As we have seen, we are still stuck with two uncertainties regard-
ing the ergodicity of the update rule:
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• Are the flip and shard moves that are still allowed in triple trees ergodic
on subset of geometries (disregarding trees) allowed by triple trees?

• Can, for a fixed geometry, all valid tree decorations be obtained using only
the two types of spanning tree moves described above?

Answering “Yes” to both of these questions would prove ergodicity of the up-
date rule used in this work. However, they are not necessary conditions, and
it seems plausible that one or both statements are false, while still satisfying
ergodicity on the full set of triple trees configurations. Hence, they are merely
mentioned to highlight the difficulties in proving ergodicity.

Another approach is to consider inductive methods. For example, a proof
could also consist of showing that starting from an arbitrary triple trees con-
figuration one can always reduce the volume by executing a finite sequence
of moves, until reaching a minimal configuration. As the moves are reversible,
one can also reach any configuration starting from the minimal one. Therefore,
one can always go from one configuration to another by going via the minimal
configuration. Unfortunately, as of present there is no clear path for a proof in
this direction either.

3.4 Detailed Balance
If the update rule satisfies so-called detailed balance, in addition to ergodi-
city, it will result in the correct distribution. Suppose that the configuration at
Markov chain time 𝑡 is 𝑇𝑖 ∈ 𝒯, and that the configuration at time 𝑡 + 1 is 𝑇𝑗 ∈ 𝒯.
Then the transition probability 𝑃𝑖𝑗 = 𝑝(𝑇𝑖 → 𝑇𝑗) should satisfy

𝜋𝑖𝑃𝑖𝑗
!= 𝜋𝑗𝑃𝑗𝑖, (3.3)

where 𝜋𝑖 = 𝑝(𝑇𝑖) is the desired distribution as defined by (2.4). If the move is
rejected we have 𝑖 = 𝑗 (i.e. there is no transition) and thus we automatically
arrive at 𝑃𝑖𝑗 = 𝑃𝑗𝑖, as required by (3.3). For some action 𝑆[𝑇] we have

𝜋𝑖 ∝
1

|ℓ[𝑇𝑖]|!
𝑒−𝑆[𝑇𝑖]. (3.4)

For the tree moves we simply have 𝜋𝑖 = 𝜋𝑗, since the volume and vertex count
do not change. This immediately leads us to 𝑃𝑖𝑗 = 𝑃𝑗𝑖, i.e. a tree move and its
inverse should be equally likely. Given the tree move described above this is
always satisfied¹, so we need not consider the tree moves any further.

However, the shard and flip moves are somewhat more involved. Without
loss of generality, we can assume that 𝑁3[𝑇𝑖] < 𝑁3[𝑇𝑗]. That is, the transition
𝑇𝑖 → 𝑇𝑗 increases𝑁3. If this is not the case, we simply consider the inversemove

¹The selection probability for a treemove is 𝑃𝑖𝑗 = 1
𝑁2(𝐿𝑖𝑗−1)

, where 𝐿𝑖𝑗 is the length of the loop that
is created by inserting an edge. A move and its inverse correspond to the same loop, so 𝐿𝑖𝑗 = 𝐿𝑗𝑖.
Since 𝑁2 does not change this implies 𝑃𝑖𝑗 = 𝑃𝑗𝑖.
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by relabelling 𝑖 and 𝑗. We adopt the notational shortcut Δ𝑁𝑑 = 𝑁𝑑[𝑇𝑗] − 𝑁𝑑[𝑇𝑖]
for 𝑑 = 0, 3. Combining this with (3.3) results in

𝑃+
𝑖𝑗(𝑁3)

𝑃−
𝑗𝑖(𝑁3 + Δ𝑁3)

!=
|ℓ[𝑇𝑖]|!
|ℓ[𝑇𝑗]|!

𝑒−Δ𝑆, (3.5)

where Δ𝑆 = 𝑆[𝑇𝑗] − 𝑆[𝑇𝑖]. Our goal is then to construct an update rule such that
𝑃𝑖𝑗 satisfies (3.5).

Breakdown of probabilities Now we consider a breakdown of the transition
probabilities by investigating which steps are taken in performing shard or flip
moves. Since the steps are very similar, we consider them simultaneously:

1. Choose according to some probability 𝑠±(𝑁3) whether the next move will
increase (+) or decrease (−) the volume 𝑁3.

2. Uniformly sample 𝛾 ∈ Γ±[𝑇𝑖] a site from the set of possible sites Γ±[𝑇𝑖].

3. If the particular move is not possible at 𝛾, reject the move.

4. Choose a new local configuration of the trees according to some transition
matrix 𝐹𝑖𝑗.

5. Accept and perform the move according to a Metropolis-Hastings accept-
ance probability 𝐴±(𝑁3), otherwise reject it.

6. Uniformly relabel all half-edges after the move is performed².

In summary, the probability that a particular move occurs is given by

𝑃±
𝑖𝑗(𝑁3) =

𝑠±(𝑁3)𝐴±(𝑁3)𝐹𝑖𝑗
|Γ±[𝑇𝑖]| |ℓ[𝑇𝑗]|!

. (3.6)

We can choose a site for performing a shard or flip move by uniformly choosing
one of 12𝑁3 half-edges. We have seen in section 3.2 that for all moves six half-
edgeswill correspond to the same site 𝛾. Thus, effectively the number of unique
sites is

|Γ±[𝑇]| =
12𝑁3[𝑇]

6
∝ 𝑁3[𝑇]. (3.7)

Furthermore, we choose a symmetric tree transition matrix such that 𝐹𝑖𝑗 = 𝐹𝑗𝑖.
The exact form of the transition matrix is described below in more detail.

²This step is not actually executed in practice. All operations performed on the triangulation
are designed such that they are independent of labels. Hence, relabelling is redundant.
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ReducingRejections Plugging all the above into (3.5) and rearranging results
in the requirement

𝑠+(𝑁3)𝐴+(𝑁3)
𝑠−(𝑁3 + Δ𝑁3)𝐴−(𝑁3 + Δ𝑁3)

!=
𝑁3

𝑁3 + Δ𝑁3
𝑒−Δ𝑆 ≡ 𝑟(𝑁3), (3.8)

where we have defined 𝑟(𝑁3) for convenience. There is still some amount of
freedom in choosing 𝑠±(𝑁3) and𝐴±(𝑁3), so we try to choose them in a particular
way as to reduce rejections as much as possible. To prevent rejections due to
𝑠±(𝑁3), we impose the constraint

𝑠+(𝑁3) + 𝑠−(𝑁3)
!= 1. (3.9)

Ideally, we would like to choose 𝑠±(𝑁3) such that 𝐴±(𝑁3) = 1. However, due to
the combination of (3.8) and (3.9) this is not always possible³. Instead, we will
choose

𝑠+(𝑁3) =
1

𝑧(𝑁3)
min {1, 𝑟(𝑁3)}, (3.10)

𝑠−(𝑁3) =
1

𝑧(𝑁3)
min{1,

1
𝑟(𝑁3 − Δ𝑁3)

}, (3.11)

where we have introduced the normalization

𝑧(𝑁3) = min {1, 𝑟(𝑁3)} +min{1,
1

𝑟(𝑁3 − Δ𝑁3)
}, (3.12)

which ensures that (3.9) is satisfied. In order to satisfy (3.8) we choose the
Metropolis-Hastings acceptance probabilities

𝐴±(𝑁3) = min{1,
𝑧(𝑁3)

𝑧(𝑁3 ± Δ𝑁3)
}. (3.13)

Note that if 𝑟(𝑁3) varies mildly, then 𝐴±(𝑁3) is close to unity. This is the case if
Δ𝑁3 ll 𝑁3 and ifΔ𝑆 ll 1. Sincewe are interested in large𝑁3, the first condition
is reasonably satisfied. The second condition depends on the particular action
that is used.

TransitionMatrix As mentioned above, we wish to choose the tree transition
matrix such that 𝐹𝑖𝑗 = 𝐹𝑗𝑖. Recall that 𝑖 and 𝑗 each denote the tree configurations
on the meta graph before and after the move, respectively. In order to better
understand the structure of 𝐹𝑖𝑗, we consider the transition graph. This graph
encodes all valid transitions, where nodes represent valid configurations, and

³There is a minimal volume 𝑁min
3 beyond which the triangulation cannot shrink, meaning

𝑠−(𝑁min
3 ) = 0. By (3.9) this leads to 𝑠+(𝑁min

3 ) = 1. Requiring 𝐴±(𝑁3) = 1 in (3.8) then imposes
𝑠−(𝑁min

3 +Δ𝑁3) = 1
𝑟(𝑁min

3 ) . For a certain range of 𝜅 this will result in probabilities larger than unity.

Hence, imposing both (3.9) and 𝐴±(𝑁3) = 1 is not possible in general.
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edges correspond to valid transitions. This means that 𝐹𝑖𝑗 = 0 if there is no edge
between 𝑖 and 𝑗 in the transition graph. In order to ensure the triple tree con-
straint, we disallow edges between nodes for which the local tree connectivity
changes. This means the graph will contain many disconnected components,
each corresponding to a particular local tree connectivity. There are two types
of configurations (initial and final states), and the transition must be between
an initial and a final state (in any direction). This means the transition graph
must be bipartite, where its parts represent initial and final states. In fact,
since equivalence of tree connectivity is a transitive property, each component
is a complete bipartite graph.

For the following discussion, we only consider one of these components at
a time. We denote the number of initial and final states in this component by
𝑛 and 𝑚, respectively. Without loss of generality we can impose 𝑛 ≥ 𝑚 ≥ 2. By
symmetry, we see that each allowed transition has an equal probability, in both
directions. This means that 𝐹𝑖𝑗 depends on a single free parameter 𝑝, denoting
the transition probability for any non-identity transition. This means that 𝐹𝑖𝑗 =
𝑝 if 𝑖 ≠ 𝑗 and if 𝑖 → 𝑗 is allowed. The values for 𝑖 = 𝑗 are chosen such that
probability is conserved.

We can tune 𝑝 in order to optimize the mixing of the Markov chain. In
particular, we choose to minimize the absolute value of the second-largest ei-
genvalue of a Markov chain on a complete bipartite graph. According to [3]
this, for a complete bipartite graph, corresponds to

𝑝∗ = min {
1
𝑛
,

2
𝑛 + 2𝑚

}. (3.14)

Uniformly choosing a final state results in a selection probability of 1
𝑚 . In order

tomatch (3.14) we introduce an acceptance probability𝐴 = 𝑚𝑝∗. In conclusion,
this procedure provides an efficient method for choosing a local configuration
of the trees.

There are only a finite number of local configurations possible for each type
of move. Hence, to save on computation time we compute the entire matrix
𝐹𝑖𝑗 only once at the start of the simulation. By doing this it becomes very easy
to find the final states to which the initial state can transition. Note that also
the number of initial and final configurations corresponding to the same local
connectivity is easily obtained. These values are required to determine the ac-
ceptance probability in (3.14).

3.5 Controlling the Volume
Quadratic Potential Term We have seen in section 3.2 that the volume 𝑁 of
the triangulations will fluctuate during the Markov chain. In fact, depend-
ing on our choice of 𝜆 the volume will either keep growing indefinitely, or the
geometry will collapse and fluctuate near zero. Additionally, we have seen in
section 2.3 that we would like to investigate expectation values as a function
of volume 𝑁. In order to investigate a particular volume 𝑁, we should only
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consider measurements matching this volume, throwing away everything else.
However, considering the aforementioned behaviour this will be unreasonably
inefficient.

To come up with a solution to this, first notice that we can add an arbitrary
function of𝑁3[𝑇] to the action without changing ⟨𝒪⟩𝑁. Suppose our new action
is of the form

𝑆′[𝑇] = 𝑆[𝑇] + 𝑉(𝑁3[𝑇]), (3.15)

where we have added a potential term𝑉(𝑁3[𝑇]) to the action. The fixed-volume
expectation values do not change:

⟨𝒪⟩′𝑁 =
1
𝑍′
𝑁

∑
𝑇∈𝒯𝑁

𝒪[𝑇]
𝑒−𝑆

′[𝑇]

|ℓ[𝑇]|!
(3.16)

=
1
𝑍𝑁

∑
𝑇∈𝒯𝑁

𝒪[𝑇]
𝑒−𝑆[𝑇]

|ℓ[𝑇]|!
(3.17)

= ⟨𝒪⟩𝑁 . (3.18)

This is because the potential term can be absorbed into the normalization:

𝑍′
𝑁 = 𝑒−𝑉(𝑁)𝑍𝑁. (3.19)

Thus, as long as we only consider samples of the correct volume, adding a po-
tential 𝑉(𝑁) to the action will not change the expectation values ⟨𝒪⟩𝑁.

To maximize the number of samples that match the desired volume, we
should introduce a potential 𝑉(𝑁) for which we can control the location of its
minimum. In particular, we choose a quadratic potential

𝑉(𝑁) =
1
2
(
𝑁 − �̄�

𝜎
)
2

, (3.20)

where �̄� is the volume at which 𝑉(𝑁) is minimal, and 𝜎will describe the width
of the resulting peak in the volume distribution. In the actual simulation we
will set 𝜎 at a reasonably low value such that the volume distribution is strongly
peaked around the desired value. We will then keep all measurements, even
those with a slightly wrong volume, at the cost of introducing a small meas-
urement error. This will however yield drastically more measurements, thus
decreasing the overall statistical error.

Critical Lambda Adding a potential term to the action does force a peak to
appear in the volume histogram, however itmay not necessarily occur at the de-
sired �̄�. To see this, we have to consider the large 𝑁 behaviour of the canonical
partition function. We assume that it grows exponentially,

𝑍𝑁 = ∑
𝑇∈𝒯𝑁

𝑒𝜅𝑁0[𝑇]

|ℓ[𝑇]|!
𝑁→∞∼ 𝐶(𝜅)𝑒𝜆𝑐(𝜅)𝑁, (3.21)
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where 𝜆𝑐(𝜅) is the critical cosmological constant. Combining this with (2.11)
results in

𝑍 𝑁→∞∼
∞

∑
𝑁=0

exp
⎡⎢⎢⎢⎢⎣
(𝜆𝑐(𝜅) − 𝜆)𝑁 −

1
2
(
𝑁 − �̄�

𝜎
)
2⎤⎥⎥⎥⎥⎦
. (3.22)

Therefore, a peak will occur at

𝑁max = �̄� + 𝜎2(𝜆𝑐(𝜅) − 𝜆). (3.23)

In other words, the peak will shift away from �̄�, unless we choose 𝜆 = 𝜆𝑐(𝜅).
Suppose that we run the simulation with a 𝜆 reasonably close to the critical
value. Then we can use the observed offset of this peak to determine 𝜆𝑐(𝜅).
Rearranging (3.23) results in

𝜆𝑐(𝜅) = 𝜆 +
𝑁max − �̄�

𝜎2 . (3.24)

Finally, we will use this newly computed 𝜆𝑐 to run the actual simulation.

3.6 Implementation

The model described above has been implemented as a computer simulation
written in the Rust programming language. The actual code used in this work
can be found in the src directory on the corresponding GitHub repository⁴.
What follows is an overview of the core functionality of the simulation code.

Data Structures The core functionalities of the simulation are firstly creat-
ing triangulations using a Markov chain, and secondly measuring observables
on these triangulations. The current state of the Markov chain is kept in a
Triangulation structure which is modified in each step of the chain. Mean-
while, measurements are performed on the fly and are directly written to a file.

The main data structure keeping the current state of the triangulation is
defined as follows:

struct Triangulation {
vertices: Shelf<Vertex>,
edges: Shelf<Edge>,
triangles: Shelf<Triangle>,
tets: Shelf<Tetrahedron>,
forest: Shelf<Node<Simplex>>,
tet_bag: Bag<Tetrahedron>,
middle_edges: Bag<Edge>,
middle_triangles: Bag<Triangle>,

}

⁴https://github.com/TomGerstel/dynamical-triangulations-3d

https://github.com/TomGerstel/dynamical-triangulations-3d
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Here the Shelf and Bag types are custom collection data types. The Shelf is
a data structure that can store objects with efficient access, deletion and inser-
tion. It does all of this without moving objects around, thus ensuring the object
labels remain valid. This means that gaps can occur when an object is removed,
analogous to taking a book from a shelf. The Bag is a structure that keeps track
of labels referring to objects in a Shelf. It can be used to uniformly sample
from a (subset of) a Shelf. These two collection data types are described in
more detail in appendix A.1.

Notice that theTriangulation contains aShelf for each of the four types
of simplices: Vertex, Edge, Triangle and Tetrahedron. Each of these
contains a label referring to a Node<Simplex> contained in the forest Shelf.
A collection of Node objects will collectively describe a link-cut tree (LCT). The
LCT is an efficient data structure that can keep track of, modify and extract
information from a collection of trees (i.e. a forest). In this case, we use an
LCT of Simplex objects to keep track of the three trees. It is described in more
detail in appendix A.2.

Finally, notice that all tetrahedra are stored in a Bag. This is done in order
to be able to easily and uniformly sample a Tetrahedron (ormore specifically,
a Mouse, see the next paragraph) from the triangulation. This is a requirement
for being able to perform the flip and shard moves or for calculating certain
observables. Furthermore, we keep track of the Triangles and Edges in 𝑏𝑚
using two Bags. This is done in order to more easily sample Triangles and
Edges for the tree moves.

Mice It would be convenient to have some kind of abstraction for navigating
the geometry. In particular, we need to be able to identify certain local geo-
metric structures on the fly so that we can determine whether it is possible to
perform a particular move. Moreover, whenwe decide tomake amove we need
to be able to edit the local geometry. The approach we take is to keep track of
a certain half-edge, which we dub a Mouse, from which we can always jump to
another half-edge using one of three distinct transformations.

These three transformations are a ”next” transformation 𝑛 and two ”adja-
cent” transformations 𝑎2 and 𝑎3. By applying 𝑛 to themouse we canmove to the
next half-edge within the same triangle. Furthermore, 𝑎2 will move the mouse
to the other half-edge within the same tetrahedron that is also part of the same
edge. Finally, 𝑎3 will move the mouse to the same position on the other side of
the triangle, thus moving to a new tetrahedron. A visual overview of 𝑛, 𝑎2 and
𝑎3 is shown in figure 3.4.

Since 𝑎3 connects adjacent tetrahedra, it can be used to store gluing rela-
tions. In particular, at each half-edge 𝑖 in each Tetrahedronwe store a mouse
referring to 𝑎3(𝑖). Because we are only using tetrahedra as building blocks this
is all the information we need to reconstruct the geometry. Furthermore, each
Vertex, Edge and Triangle contains a Mouse referring to one of the half-
edges that is incident to the simplex. This is required for being able to go from
the simplices to the geometry which they form a part of.
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Figure 3.4: Visualization of the 𝑛, 𝑎2 and 𝑎3 transformations that can be applied
to a mouse. Adapted from the lecture series ”Monte Carlo methods in Dynam-
ical Triangulations” by Timothy Budd.



26 CHAPTER 3. SIMULATION DESIGN



Chapter 4

Data Analysis

4.1 Observables
In previous chapters we have discussed how to compute expectation values of
observables ⟨𝒪⟩. However, it is not yet clear what these observables actually
are. What follows is an overview of various observables that can be studied in
the triple trees model.

Simplex Counts The most straightforward class of observables we can con-
sider is simply counting the number of simplices of each type. Since our model
has 𝑑 = 3we can count four types of simplices on 𝑇. This results in the four ob-
servables 𝑁𝑑[𝑇], with 𝑑 = 0, 1, 2, 3 for vertices, edges, triangles and tetrahedra,
respectively. We shall omit the argument 𝑇 for now.

However, not all of these numbers are independent. Each triangle is in-
between two tetrahedra, and each tetrahedron has four triangles at its bound-
ary. This gives us 𝑁2 = 2𝑁3. Furthermore, since we are only considering 𝑆3

topologies, the Euler characteristic is fixed, resulting in the constraint

𝜒 = 𝑁0 − 𝑁1 + 𝑁2 − 𝑁3 = 0. (4.1)

Since we have four variables and two constraints we end upwith two independ-
ent variables. We take these to be the volume 𝑁 = 𝑁3 and the vertex count 𝑁0.

We could also look at how many simplices of each type are part of each
of the three trees. To denote which type of tree we are considering we will
include a superscript 𝑣, 𝑑 or 𝑚, corresponding to the vertex, dual and middle
trees, respectively. For instance, 𝑁 (𝑚)

2 denotes the number of triangles in the
middle tree. Since 𝑏𝑣 and 𝑏𝑑 are spanning trees, we know that 𝑁 (𝑣)

0 = 𝑁0 and
𝑁 (𝑑)

3 = 𝑁3. Furthermore, a tree always has exactly one more node than it has
edges, resulting in 𝑁 (𝑣)

1 = 𝑁0 − 1 and 𝑁 (𝑑)
2 = 𝑁3 − 1. Finally, 𝑁 (𝑚)

1 and 𝑁 (𝑚)
2

can also be expressed in terms of 𝑁0 and 𝑁3 using the considerations above.
An overview of all simplex counts is shown in table 4.1. Crucially, all simplex

27
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𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 = 3
𝑏𝑣 𝑁0 𝑁0 − 1 0 0
𝑏𝑚 0 𝑁3 + 1 𝑁3 + 1 0
𝑏𝑑 0 0 𝑁3 − 1 𝑁3
Total 𝑁0 𝑁0 + 𝑁3 2𝑁3 𝑁3

Table 4.1: Overview of simplex counts for all three trees and their sum. All
simplex counts can be expressed in terms of 𝑁0 and 𝑁3.

counts can be expressed in terms of only𝑁0 and𝑁3, meaning these are the only
relevant observables in this category.

Distances Another very important class of observables, especially in the con-
text of metric spaces, is distances. The following discussion applies to any type
of graph, as long as there are no disconnected components. In particular, we
can consider the underlying graph of 𝑇, the dual graph and any of the three
trees. On a graph 𝐺, the distance d(𝑥, 𝑦) between two nodes 𝑥 and 𝑦 is simply
the number of edges in the shortest path connecting 𝑥 to 𝑦.

Just looking at the distance between two nodes does not result in a coordin-
ate independent observable. Instead, we can look at the distribution of dis-
tances between all pairs of nodes in some graph 𝐺. The quantity that describes
this is the distance profile 𝜌𝐺(𝑟), defined as

𝜌𝐺(𝑟) =
1
𝑁𝐺

∑
𝑥∈𝐺

∑
𝑦∈𝐺

𝜃(d(𝑥, 𝑦) = 𝑟), (4.2)

where 𝑁𝐺 is the number of nodes in 𝐺. Of course, we wish to compute the
expectation value of (4.2). However, actually calculating (4.2) is rather time-
consuming, since it involves a double summation over all vertices in𝐺. Instead,
we choose to randomly sample a vertex 𝑋 ∈ 𝐺 and only sum over vertex pairs
containing 𝑋. Effectively we are then also averaging over all vertices. We can
rewrite the expectation value of (4.2) to

⟨𝜌(𝑟)⟩𝐺 = ⟨∑
𝑦∈𝐺

𝜃(d(𝑋, 𝑦) = 𝑟)⟩
(𝐺,𝑋)

, (4.3)

thus validating that the computed values actually correspond to the desired
quantities. In practice 𝑁𝐺 can fluctuate somewhat, but this does not affect the
equality. This can be shown by first writing out the average over 𝑋, and then
over 𝐺.

Simplex Degrees Another class of quantities we can investigate are simplex
degrees. That is, the number of sub- or supersimplices of a certain type that are
part of the given simplex 𝜎 or in which the given simplex 𝜎 is contained. These
quantities may not be as physically relevant as distances, but they can provide
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deg𝑝 𝜎𝑞 𝑞 = 0 𝑞 = 1 𝑞 = 2 𝑞 = 3
𝑝 = 0 1 2 3 4
𝑝 = 1 𝑑𝑣 1 3 6
𝑝 = 2 3(𝑑𝑣 − 2) 𝑑𝑒 1 4
𝑝 = 3 2(𝑑𝑣 − 2) 𝑑𝑒 2 1

Table 4.2: Overview of all combinations of simplex degrees in 𝑑 = 3.

useful insights on a potential phase transition. We denote the number of sub-
or supersimplices of dimension 𝑝 related to a simplex 𝜎𝑞 ∈ Σ𝑞 of dimension 𝑞
by deg𝑝 𝜎𝑞.

If 𝑝 < 𝑞 we are considering subsimplices, and the number of these is con-
stant for any combination of 𝑝 and 𝑞. If 𝑝 = 𝑞we are in a degenerate case and the
degree is always one. Finally, for 𝑝 > 𝑞 (i.e. when counting supersimplices) we
find only two independent values. We refer to these as the vertex degree 𝑑𝑣(𝜎0)
(the number of vertices connected to 𝜎0) and the edge degree 𝑑𝑒(𝜎1) (the number
of triangles, or equivalently tetrahedra, connected to 𝜎1). Note these can take
on any integer value such that 𝑑𝑣 ≥ 3 and 𝑑𝑒 ≥ 2, given the (non)-degeneracy
of the configuration space considered in this work. An overview of all degree
types is shown in table 4.2.

However, the values 𝑑𝑣(𝜎0) and 𝑑𝑒(𝜎1) only provide local information, as they
depend on the particular simplices 𝜎0 and 𝜎1. As an alternative, we can look at
the distribution of 𝑑𝑣 and 𝑑𝑒 for a given geometry 𝑇. In particular, for 𝑑𝑣 we
define

𝛽(𝑣)
𝑇 (𝑠) = ∑

𝜎0∈Σ0[𝑇]

𝜃(𝑑𝑣(𝜎0) = 𝑠), (4.4)

where the summation is over the set of all vertices Σ0[𝑇] in the configuration 𝑇.
Analogously, we define 𝛽(𝑒)

𝑇 (𝑠) to be the distribution of edge degrees on a given
𝑇.

In addition to 𝑑𝑣 and 𝑑𝑒 we can also consider degrees within any one of the
three trees. In the case of the spanning trees 𝑏𝑣 and 𝑏𝑑, only the degrees of the
vertices and tetrahedra, respectively, are variable. We denote these quantities
by 𝑚0 and 𝑚3, respectively. For 𝑏𝑚, both the degrees of the edges and the tri-
angles can vary. These are denoted by 𝑚1 and 𝑚2, respectively. In summary:

• 𝑚0 = number of edges connected to a vertex in 𝑏𝑣.

• 𝑚1 = number of triangles connected to an edge in 𝑏𝑚.

• 𝑚2 = number of edges connected to a triangle in 𝑏𝑚.

• 𝑚3 = number of triangles connected to a tetrahedron in 𝑏𝑑.

Note that 𝑚2 ∈ {1, 2, 3} and 𝑚3 ∈ {1, 2, 3, 4}. Furthermore, 𝑚1 and 𝑚2 are only
defined if the corresponding simplex is in 𝑏𝑚. Once again, we can define dis-
tributions of these degrees completely analogous to (4.4). We denote these dis-
tributions by 𝜇(𝑑)

𝑇 (𝑠), for 𝑑 = 0, 1, 2, 3.



30 CHAPTER 4. DATA ANALYSIS

4.2 Phase Transitions
In 𝑑 = 3 DT (and in the triple trees model) we have a free parameter 𝜅 that
couples to the number of vertices 𝑁0[𝑇]. It is this parameter in which we look
for phase transitions. We say that there is a phase transition if the partition
function 𝑍𝑁(𝜅) of (2.12) is non-analytic at some 𝜅𝑐 in the limit 𝑁 → ∞. If this
is the case, the critical cosmological constant

𝜆𝑐(𝜅) = lim
𝑁→∞

ln𝑍𝑁(𝜅)
𝑁

, (4.5)

will also be non-analytic at 𝜅𝑐. In particular, if 𝜆′
𝑐(𝜅) is discontinuous (i.e. when

𝜆𝑐(𝜅) is non-differentiable) at 𝜅𝑐, the transition is discontinuous. Otherwise, it
is continuous.

Vertex Count The parameter 𝜅 couples directly to the number of vertices
𝑁0[𝑇]. Thus, when searching for a phase transition in 𝜅 it makes sense to first
look at the behaviour of ⟨𝑁0⟩𝑁. In this case we can directly relate the first two
moments of the observable to derivatives of the partition function (2.12), and
therefore to derivatives of 𝜆𝑐(𝜅):

⟨𝑁0⟩𝑁 =
𝜕 ln𝑍𝑁
𝜕𝜅

𝑁→∞∼ 𝑁𝜆′
𝑐(𝜅), (4.6)

⟨𝑁2
0⟩𝑁 − ⟨𝑁0⟩

2
𝑁 =

𝜕2 ln𝑍𝑁
𝜕𝜅2

𝑁→∞∼ 𝑁𝜆′′
𝑐 (𝜅). (4.7)

Thus, seeing a discontinuity in

𝜆′
𝑐(𝜅) = lim

𝑁→∞

⟨𝑁0⟩𝑁
𝑁

, (4.8)

or a divergence in

𝜆′′
𝑐 (𝜅) = lim

𝑁→∞

⟨𝑁2
0⟩𝑁 − ⟨𝑁0⟩

2
𝑁

𝑁
, (4.9)

could be considered evidence in favour of a discontinuous transition.

Other Order Parameters However, at finite 𝑁 evidence for phase transitions
does not always appear in every observable. To have a better chance at catch-
ing a glimpse of the real order of the transition we must cast a bigger net by
considering different observables. One caveat is then that other observables do
not relate to derivatives of 𝜆𝑐(𝜅) as directly as 𝑁0 does.

Therefore, we must use complementary methods to determine the order of
the phase. It has been observed that near a phase transition the susceptibility
(i.e. variance) of an observable can form a peak. The position and height of this
peak depend on 𝑁. It was shown in [5] that, for a particular class of spin sys-
tems, the position of this peak changes linearly with the inverse of the system
size. Thus, in the context of our model this would mean

𝜅max = 𝜅𝑐 + 𝑁−1, (4.10)
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where the maxima occur at 𝜅 = 𝜅max. Observing such a dependence could then
be considered evidence for a discontinuous phase transition.

4.3 Error Analysis
All errors presented in this work are 1𝜎 symmetric confidence intervals. Most
errors in this work are estimated using the bootstrappingmethod. This method
can be used to estimate a plethora of statistical estimators by resampling (with
replacement) the original data. In this work it is mainly used to estimate the
sample standard deviation 𝜎𝑥. For 𝑛 random samples 𝑥𝑖 we use

𝜎𝑥 = √ 1
𝑛 − 1

𝑛

∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2, (4.11)

where ̄𝑥 is the sample mean

̄𝑥 =
1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖. (4.12)

Note that both 𝜎𝑥 and ̄𝑥 are statistical estimators, meaning their exact values
are random and depend on the particular sample.

Dealing with Correlations As briefly mentioned in section 3.1 we do not
know a priori how correlated consecutive configurations 𝑇𝑖 in theMarkov chain
are. In order to investigate the correlation quantitatively, we need an observ-
able 𝒪[𝑇]. In particular, we look at the autocorrelation function

𝜌(𝜏) =
⟨𝒪[𝑇𝑖]𝒪[𝑇𝑖+𝜏]⟩ − ⟨𝒪[𝑇]⟩2

⟨(𝒪[𝑇])2⟩ − ⟨𝒪[𝑇]⟩2
. (4.13)

Generally speaking we observe that 𝜌(𝜏) follows an exponential decay:

𝜌(𝜏) = 𝑒−𝜏/𝜏𝑐, (4.14)

where 𝜏𝑐 is the correlation time. Note that 𝜏𝑐 can heavily depend on the type of
observable used.

The error estimate of (4.11) assumes that all samples 𝑥𝑖 are independent.
However, if 𝜏𝑐 > 0 we know that this is not the case. Due to correlations, we
can say that we effectively have fewer independent (i.e. uncorrelated) samples.
Thus, in order to correct for correlation effects we use the heuristic

𝜎′
𝑥 = √max{1,

𝜏𝑐
𝜏𝑚

}𝜎𝑥, (4.15)

where 𝜏𝑚 is the Markov chain time between taking measurements, in the same
units as 𝜏𝑐. This correction factor is motivated by the fact that the estimator of
the standard error scales with the inverse square root of the number of samples.
Thus, without this extra factor we would have underestimated the error.
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Chapter 5

Results

5.1 Vertex Count
As mentioned in section 4.2 it is most natural to first investigate the expec-
ted vertex count ⟨𝑁0⟩. This is because 𝑁0 is the variable conjugate to our free
parameter 𝜅. In accordance with (4.8) we divide ⟨𝑁0⟩𝑁 by 𝑁. The depend-
ence of ⟨𝑁0⟩ /𝑁 on 𝜅 is shown in figure 5.1. It is clear that, certainly for large
volumes, this dependence quickly collapses to a sigmoid-like curve that inter-
polates between 0 and 0.5. Furthermore, the response of the vertex count to 𝜅 is
as expected. Negative 𝜅 suppresses geometries with many vertices, while pos-
itive 𝜅 encourages these. We do not observe a clear discontinuity or divergence
in this observable.

In order to further investigate a possible transitionwe consider the standard
deviation 𝜎 of the vertex count, as shown in figure 5.2. We normalize with √𝑁,
in accordancewith (4.9). It is clear that the distribution of𝑁0 increases inwidth
somewhere near 𝜅 = 0. However, no discontinuous or diverging behaviour is
observed for 𝑁 → ∞. Thus, in order to spot a potential phase transition we
must look at other observables.

5.2 Maximal Vertex and Edge Degree
Another observable that could reveal signs of a phase transition is the maximal
vertex degree max 𝑑𝑣. More precisely, it is given by

(max 𝑑𝑣)[𝑇] = max
𝜎0∈Σ0[𝑇]

𝑑𝑣(𝜎0), (5.1)

i.e. it takes on the value of the vertex with the highest coordination number. Its
expectation value is shown in figure 5.3. Firstly, it is clear that for very positive
𝜅 effectively all vertices have a low degree. Conversely, for very negative 𝜅 there
is typically at least one vertex with a very high degree. Also note the volume
normalization in figure 5.3. Since we do not have a clear theoretical value for
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Figure 5.1: Expected vertex count ⟨𝑁0⟩, normalized by 𝑁, as a function of 𝜅.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

𝜅

𝜎(
𝑁

0)
/√

𝑁

Vertex count width

200
400
800
1600
3200
6400

Figure 5.2: Vertex count distribution width as a function of 𝜅.
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Figure 5.3: Expectation value of the maximal vertex degree as a function of 𝜅.

the scaling exponent, we must set it by hand. The exponent 3/4 that is used
seems to be too small for very negative 𝜅 and too large for very positive 𝜅, at
least judging by eye. This hints at the possibility of different scaling exponents
in different regimes, i.e. different phases.

The emergence of a phase transition becomes especially clear when looking
at the width of the maximal vertex degree distribution, shown in figure 5.4.
Here we clearly observe a peak taking shape, suggesting a divergence in the
𝑁 → ∞ limit. We can use the position of these peaks as a function of volume
to quantify some properties of the phase transition. The peak positions are es-
timated numerically by finding the maximum of the quadratic function going
through the highest data point and its two neighbours. We fit the peak coordin-
ates (𝜅,𝑁) of 𝜎(max 𝑑𝑣) to the power law

𝜅 − 𝜅𝑐 ∝ 𝑁−𝜈, (5.2)

where 𝜅𝑐 is the critical value at which the phase transition occurs in the𝑁 → ∞
limit, and 𝜈 is a scaling exponent. The resulting curve and asymptote is shown
in figure 5.5. The corresponding estimates for the fit parameters are

𝜅𝑐 = −1.5 ± 0.4, 𝜈 = 0.4 ± 0.1. (5.3)

We seem to be able to rule out 𝜈 = 1 with a confidence level of at least 5𝜎. This
would suggest that the transition is continuous, at least according to (4.10).
However, this result should be taken with a grain of salt, as further discussed
in section 6.1.
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Figure 5.4: Max vertex degree distribution width as a function of 𝜅.
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Figure 5.6: Expectation value of the maximal edge degree as a function of 𝜅.

Max Edge Degree An alternative to the maximal vertex degree max 𝑑𝑣 is the
maximal edge degree max 𝑑𝑒. If an edge has a very high degree, then it is reas-
onable to assume that its two vertices also have a high degree. Therefore, we
expect max 𝑑𝑒 to follow patterns similar to those of max 𝑑𝑣. Similarly to (5.1)
we define

(max 𝑑𝑒)[𝑇] = max
𝜎1∈Σ1[𝑇]

𝑑𝑒(𝜎1). (5.4)

The dependence ofmax 𝑑𝑒 on𝑁 and 𝜅 is shown in figure 5.6. As expectedmax 𝑑𝑒
is large for 𝜅 ll 𝜅𝑐 and small for 𝜅 ≫ 𝜅𝑐. However, in contrast to the curves in
figure 5.3 we do not observe a clear plateau emerging in the 𝜅 ll 𝜅𝑐 regime.

The behaviour of𝜎(max 𝑑𝑒) is shown infigure 5.7. In this casewe can also see
a peak emerging, though less clearly than for the vertex degree. Additionally,
the background seems to be more complicated. Using exclusively this data set
it seems difficult to perform a quantitative analysis such as a fit to (5.2), since
we would only reasonably be able to extract 3 peak positions. Still, the data
seems to be consistent with the value for 𝜅𝑐 as determined in (5.3).

5.3 Maximal Dual Distance Scaling
Finally, we look at the maximal dual distance. More precisely, this is the max-
imum distance on the dual graph between a given randomly sampled point 𝑋
and any other point. More formally,

(maxd𝐷)[𝑇] = max
𝑦∈𝐷[𝑇]

d𝐷[𝑇](𝑋, 𝑦), (5.5)



38 CHAPTER 5. RESULTS

−4 −2 0 2 4
0

2

4

6

𝜅

𝜎(
m
ax

𝑑 𝑒
)/
𝑁

3/
8

Max edge degree width

200
400
800
1600
3200
6400

Figure 5.7: Max edge degree distribution width as a function of 𝜅.

where𝐷[𝑇] denotes the set of nodes in the dual graph of 𝑇 (i.e., the tetrahedra).
Note that since𝑋 is chosen randomly, expectation values are averaged over both
𝑇 and 𝑋. The dependence on 𝜅 and 𝑁 of ⟨maxd𝐷⟩ is shown in figure 5.8. Again
we use the normalization𝑁3/4. For 𝜅 ll 𝜅𝑐 the value of ⟨maxd𝐷⟩ seems to grow
faster than 𝑁3/4, suggesting a scaling exponent larger than 3/4 in this regime.
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Chapter 6

Conclusions, Discussion and
Outlook

6.1 Conclusions

We have numerically investigated the triple trees model using a Markov chain
Monte Carlo simulation written in Rust. We have strong evidence for the ex-
istence of a phase transition. The 𝜅 > 𝜅𝑐 phase exhibits behaviour similar to
the corresponding tree-like (“branched polymer”) phase in DT. However, the
𝜅 < 𝜅𝑐 phase seems to show both similarities and differences with the so-called
crumpled phase of regularDT. Two examples of configurations in these regimes
are shown in figure 6.1.

In particular, we have seen in figure 5.2 that the width of the vertex count
𝜎(𝑁0) does not seem to express a diverging behaviour, as it does in DT [12].
That is, the phase transition seems to be less extreme in some sense. On the
other hand, we do see a clear transition in the maximal vertex degree, and to
a lesser extent in the maximal edge degree. So far, we were unable to find
strong evidence for or against the continuity of the transition. However, this
also means that a continuous transition is still within the realm of possibilities.

Among the observables we have considered, the vertex count𝑁0 must be the
most elementary. Its response to variations in 𝜅 is as expected. However, from
the data gathered in this work it does not show clear evidence for a transition.
The transition is most clearly observed in the maximal vertex degree max 𝑑𝑣,
and to a lesser extent in the maximal edge degree max 𝑑𝑒. In these observables
a peak emerges in the width of their distributions, in the limit 𝑁 → ∞.

Using the peak positions of the width of max 𝑑𝑣 we estimate the critical
coupling to be 𝜅𝑐 = −1.5±0.4. Furthermore, we have found a finite-size scaling
of 𝜈 = 0.4±0.1. We seem to be able to exclude 𝜈 = 1with high confidence, thus
suggesting the transition is continuous. However, this should be taken with
a grain of salt as an exponent 𝜈 ≈ 0.3 has been obtained [12] for regular DT,
where the transition is known to be discontinuous.
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Figure 6.1: Dual graphs of two triangulations with𝑁 = 800 for different values
of 𝜅. The dual tree 𝑏𝑑 is shown in red. Left: 𝜅 = −4; Right: 𝜅 = 3.2.

Finally, we see that several rescaling exponents (as used for normalization)
seem to depend on 𝜅. Taking 𝜈 = 1/2 for the tree-like phase seems to be suitable
for various observables considered in this work. In particular, for the maximal
dual distance, but also for the maximal edge and vertex degrees. However, in
the 𝜅 < 𝜅𝑐 phase the proper rescaling exponent for the maximal dual distance
seems to be between 𝜈 = 3/4 and 𝜈 = 1. This range is purely based on visual
intuition, so no quantitative claims can be made here. The case 𝜈 = 1 would
result in a quite peculiar situation. In that scenario the “size” of the geometries
would grow linearly with the number of building blocks. This suggests that
the geometry might arrange itself into an effectively one-dimensional config-
uration, such as a line or perhaps a circle.

6.2 Discussion and Outlook
One way to extract more information out of the simulation is to either improve
its efficiency or to let it run significantly longer. By gathering more data we can
gain better statistics on the existing data, as well as extend the dataset to larger
volumes. In particular themaximal edge degreemax 𝑑𝑒 could benefit from such
an improvement. Withmore data, we could estimate 𝜅𝑐 and a finite-size scaling
exponent to compare with the results obtained for max 𝑑𝑣.

Another interesting change in perspective would be looking at observables
as a function of 𝑁, while keeping 𝜅 fixed. With such a setup we could properly
investigate properties that depend on the finite-size scaling of the model. In
particular, we could make estimates for the Hausdorff dimension 𝑑𝐻 in various
regimes, e.g. deep into both phases and near the transition. In particular, this
could illuminate the peculiar distance scaling that is observed for the 𝜅 < 𝜅𝑐
phase, as there is a possibility that this is just a finite size artefact. Other scaling
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exponents can also be investigated as a function of 𝜅. Furthermore, when such
data is available we could investigate the cumulant presented in [5] to further
investigate the order of the transition.

On the more theoretical side there is still the open question whether the
Markov chain used in this work is actually ergodic. To reconcile this, we have
compared vertex count measurements with the numerical model used in [4].
This resulted in an agreement within statistical error. We therefore have some
empirical evidence to believe that our Markov chain is ergodic, but a formal
proof would be ideal. Even still, it might be worth it to include new moves in
the Markov chain, simply to decrease autocorrelations. In particular, creating
or breaking up high-degree vertices could be beneficial in this sense.

Finally, we can consider possible extensions to the triple trees model. One
option that is actively being worked on is to allow 𝑏𝑚 to have loops and more
than a single component. However, instead of just extending the configura-
tion space we can assign weights to these objects. This would result in a three-
dimensional phase space (excluding 𝜆), thus allowing for a potentially more
complicated phase structure.

Another option is to extend the model to four dimensions, by introducing
a fourth tree. Such a model could consist of two spanning trees for the zero-
and four-dimensional simplices, and two “middle” trees for the remaining sim-
plices. Investigating such a model might as of present be somewhat prema-
ture, as there is still much to learn in three dimensions. In particular, finding a
universality class with a three-dimensional topology is still an open problem.
However, it is good to consider whether such a model even makes sense in four
dimensions, since after all we do live in a four-dimensional spacetime.
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Appendix A

Data Structures

A.1 Collections

In order to efficiently carry out the simulationwe need two newdata structures.
Firstly, the Shelf will be used to store objects. Secondly the Bag will be used
to sample objects from a Shelf

Shelf In order to explain the Shelf we must first establish what problem it
solves. For the simulation we need some collection data structure to store all
the simplex and tree node objects. It should meet the following requirements:

• Constant time insertion of an object,

• Constant time removal of an object when given its label,

• Constant time lookup of an object when given its label,

• Stable labels (i.e. labels do not change throughout the lifetime of an ob-
ject).

A simple array together with a None value already meets most of our require-
ments. Removal can be done simply by replacing the corresponding position
in the array with None. This is analogous to keeping books on a bookshelf: if
we take a book away, a gap will be created. However, this makes inserting a
new book non-trivial, since we first need to search for an empty spot. In or-
der to counter this, we need to keep track of where the gaps are on the Shelf.
We do this by writing an index value at every gap, each pointing to the next.
We also store an auxiliary index outside the array pointing to the start of the
trail. When inserting or removing objects we need to make sure that the trail
is updated accordingly. This can all be done in constant time.
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Figure A.1: Example representation of the sequence 1, 2, 3, 4, 5, 6 as a binary
tree.

Bag One practical issue with the Shelf is that we cannot easily sample from
it uniformly. Additionally, in some cases we wish to keep track of a subset of
objects on a Shelf, from which we would like to sample uniformly. The Bag
structure solves this problem by storing a bijective map between (a subset of)
𝑛 labels of Shelf objects and the integers from 0 to 𝑛 − 1. Conceptually it
rearranges (a subset of) objects on a Shelf as to eliminate any gaps, without
actually rearranging anything in memory. This allows us to sample an object
simply by uniformly choosing an integer 𝑖 ∈ [0, 𝑛−1]. If we then follow the Bag
to the proper label, we will find our object on the Shelf. Again, all necessary
operations can be performed in constant time.

A.2 Link-Cut Tree
The link-cut tree is a data structure that can represent a dynamic forest (i.e.
a set of trees). It can perform the link, cut and find_root operations in
amortized𝒪(log𝑁) time, where𝑁 is the number of nodes. Themain idea of this
data structure is that sequences are linked together to form trees, where each
sequence is represented as a binary tree. The original version of the link-cut tree
was proposed by Sleator and Tarjan in [11]. In this application, the link-cut tree
is modified so that it can also perform the evert, depth and index_depth
operations in amortized 𝒪(log𝑁) time. All these operations will be described
in more detail below.

From Trees to Sequences to Trees Again First consider the simpler problem
of efficiently representing a finite ordered sequence of nodes. One way to save
an ordered sequence efficiently is using a binary tree. Given a binary tree, an
ordering can be uniquely obtained by looking at the parent-child relations. We
define that a left child always occurs earlier in the sequence than its parent,
while a right child always occurs later in the sequence. For an example of this,
see Figure A.1.

At the level of the binary tree, the most important operation is splay. If a
binary tree data structure implements this operation, it is called a splay tree.
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This operation moves a given node to the root of the binary tree, while pre-
serving the ordering. It turns out that there is some freedom in the way we do
this. The splay operation does this in a particular way, such that the number
of vertical levels in the tree is minimized. That is, after many splays the max-
imum depth of the tree will be 𝒪(log𝑁). This is the main reason for why all
operations can be performed in 𝒪(log𝑁) time.

In order to construct trees from a set of sequences, these sequences should
be connected to each other in someway. If we can link the first node in sequence
𝐴 to any node in another sequence 𝐵, we will create a branch. By repeating this
process we can create any tree we like. This means that each sequence (except
the root) must contain a pointer to the node to which it is attached.

A connection of the type described here is known as a path parent, whereas
“standard” connections are referred to as binary tree parents. Each node must
have either a path parent, a binary tree parent or it is the root of a tree. Each
node can have at most one binary-tree children (The binary trees represent se-
quences, so a given node can only have one successor in the sequence.), while
the number of path children is unlimited. It is possible to switch the binary-tree
child of a given node by using the so-called splice method.

BasicOperations The operation at the heart of the link-cut tree is the expose
method. With this method we can take a given node 𝑢 and put it in the same
binary tree as the root by using splice operations. Additionally, wemake sure
that 𝑢 is the last in its sequence. Thus, we end up with a sequence starting from
the root and ending at 𝑢, represented in a single binary tree. Finally, we put 𝑢
at the root of that binary tree using the splay method. This means that 𝑢 will
be at the root of its binary tree, while the rest of the nodes are to its left. It can
be shown [11] that the time cost of an expose operation is amortized𝒪(log𝑁),
where 𝑁 is the number of nodes.

By moving a node into such a particular position we can make other oper-
ations easier. For example, to cut a node 𝑢 we first expose it, and then we
simply cut off its left child. To link two nodes we first both expose them,
then link one to the other by connecting their binary trees. Finally, we can find
the root of some node 𝑢 by first exposing it. Then we keep walking down the
binary tree through the left-side children, until reaching a node that does not
have a left child. This node will be the root. All of these operations require
one or two exposes, in addition to a few pointer reassignments. Thus, these
operations are all performed in logarithmic time.

Extra operations Finally, we add some additional operations to our imple-
mentation of the link-cut tree. Both of these require the storage of information
at each node. In particular, we store information using a delta representation.
That is, at each node we only store the change in value relative to its parent
node. Since the root node does not have a parent, we store the actual value
there. Thus, to obtain the value at a node we must sum over all of its ancestors.
By using this representation we can change the information at an entire branch
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of the tree by only changing one value.
One way in which this can be used is by assigning a “flipped-ness” to each

node. If a node is flipped we must swap its left and right children when con-
structing a sequence from its binary tree. To store this information we save a
delta-flip value at each node. Thus, changing the delta-flip value at a node 𝑢
will reverse the sequence order of all nodes that are binary tree descendants of
𝑢. We can use this to change the root (i.e. evert) to a given node 𝑢: First we
expose 𝑢, and then we change its delta-flip.

Due to the complex nature of the link-cut tree data structure, it is not a
straightforward task to find the distance of a given node to the root. Therefore,
we use the delta representation to save the depth of every node. Care needs
to be taken to ensure that the delta-depth value is properly updated during all
other operations. Additionally, we can use this depth information to efficiently
(i.e. in logarithmic time) select the 𝑖th node from a sequence from the root to a
particular node.
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