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Abstract
Finding a quantum theory for gravity could be the most difficult problem in physics.

The direct approach not leading to any solutions, many methodologies are explored to
solve this complicated problem. One such method is quantum Regge calculus. In this
thesis we consider the 3D gravitational action, specifically the Einstein-Hilbert action
along with the Gibbson Hawking term and a massive point particle. We support the
Hamilton-Jacobi and one-loop determinant results obtained in the discretized setting,
by analyzing the gravitational action in the continuum. As claimed in this thesis both
scenarios the one loop determinant display the massive BMS3 character, showing the
possibility of gravity being a ‘Holography’ theory similar to the entropy of a black
hole. We further analyze the behaviour of metric perturbations in the continuum in the
presence of a massive point particle in 3D gravity.
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1 Why theory of Quantum gravity?

1.1 Quantum theory vs General relativity

Quantum theory and the standard model is universally accepted theory with many ex-
perimental tests such as determining the Lamb shift with high accuracy [28] and the
casimir effect [29]. Other than a few ongoing discussions of the interpretational founda-
tions such as to whether the quantum nature obeys the the copenhagen interpretation
[30] or the pilot wave theory [6] (among others) the standard model is a well established
theory leading to development of practical applications such as the quantum comput-
ers and quantum entangled communications [33]. The standard model accommodates
three of the four known fundamental forces of the universe. Electromagnetic, weak
and strong forces are well described in the standard model. The only interaction not
included in the standard model is the gravitational field. But the gravitational inter-
actions is well described by another theory, Einsteins general theory of relativity also
called geometrodynamics. The fundamental equations of general relativity is presented
in simple geometric terms and is a well proven theory by many experimental tests. One
best example is the the decrease of the orbital period of the binary pulsar PSR 1913+16.
This phenomenon is fully explained by the emission of gravitational waves as predicted
by general relativity. There exists other phenomena that hints at a more fundamental
theory than general relativity such as dark energy and dark matter. As stated by Claus
Kiefer in his book“Quantum Gravity” [20] every theory with regards to the gravity
must contain general relativity at certain limits. Also from the“singularity theorems”
by Hawking and Penrose in 1996 it is clear that general relativity is not complete and
breaks down under very general conditions because the existence of space-time singu-
larities are unavoidable. These encountering space time singularities are predicted to be
of quantum in nature. Hence paved way to unify the gravitational field into a quantum
framework.

1.2 Why quantize gravity?

There are three main motivations to quantize gravity. Unification, the existence of
singularities in cosmology and black holes and the concept of time. The reasons for uni-
fication are for one is to hoping to solve the divergence problem of quantum field theory
although its being unsuccessful so far (as yet to prove any quantum gravity theory)
canonical quantum gravity and string theory are possible candidates for a divergence
free theory. Another reason for unification is, its possible to implement gravity into the
standard model if there existed a universal coupling of gravity to all forms of energy. But
the main reason for unification of gravity with quantum is the failure of constructing a
semi-classical theory where gravity stays classical and other fields remaining quantum.
A good example for the invalidation of a semi-classical theory is proven by Ford [16]
for the inconsistent results in the emission of the gravitational radiation by quantum
systems. The emission of gravitational radiation energy of a quantum system with a
superposition of coherent states as predicted by linearized gravity in the semi-classical
theory and quantization of the linear theory differ by macroscopic amounts. While for
non-superposition coherent states both yield identical results. Another invalidation for
the semi classical theory is that it does not predict the Casimir effect [20].

Breakdown of general relativity occurs at singularities involving the initial conditions
near the ’big bang’ and the final stages of a black hole evolution. Therefore it is required
an encompassing theory which can describe these phenomena more concretely. Since
these singularities reach Planck scales (and considering a historical analogy of quantum
mechanics [20]) this theory is expected to be a quantum theory.
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One would intuitively expect that time is of the same nature at the quantum scale
and the macroscopic scale (especially since the semi classical approach has not been
viable). But quantum theory and general relativity contain vastly different concepts
for time also known as“problem of time”. In quantum mechanics, time is considered as
an universal and absolute element similar to classical physics (in quantum field theory
Minkowiski space-time is an external absolute element). Time here mostly corresponds
to the evolving entanglements and propagation of particles. Very similar how time
is mostly involved in the movement and order of interaction of things (matter etc.) in
Newtonian physics. But in general relativity time is relative in other words it depends on
the observer. Also time is not an absolute but a dynamical element which is inextricably
interwoven with space such that the nature of space (curvature) in where the observer
lies affects the flow of time. Since time is as its very well proven to not to be an absolute
element, we try to bring the intertwined nature of space-time to quantum theory. With
these motivations physicists attempt to solve for the theory of quantum gravity. We will
now look into some approaches made in order to do so.

1.3 Approaches to quantum theory of gravity

The main aim when constructing a quantum theory of gravity is to have a consistent
theory that can be subjected to experimental tests. As discussed in the previous section
the gravitational field is of quantum nature in the fundamental level, a true fundamental
theory must have a rigid structure as to which it can predict values such as particle
masses and coupling constants in the low energy regime. Since no experimental evidence
for quantum gravity exists at the moment most approaches to quantum gravity focus on
constructing a mathematically and conceptually consistent framework. As described by
Isham [15] there is a distinction between the approaches to construct a theory. Namely,
‘primary theory of quantum gravity’ and a ‘secondary theory’.

In the primary approach one applies heuristic quantization rules for a classical theory.
Often being general relativity leading to ‘quantum general relativity’. In the primary
approach another distinction is the canonical and covariant approaches. The canonical
approach adopts the split of 4 dimensional space-time to 3+1 space and time dimensions.
Example that adoptes this is ‘Loop quantum gravity’[27]. The covariant approach pre-
serves the 4 dimensional covariance of space-time throughout the construction. Exam-
ples for this approach are ‘Regge gravity’[4] and ‘Causal dynamical triangulations’[22].

The the secondary theory approach begins from a fundamental quantum framework
for every interaction and attempts to derive general relativity under certain conditions
such as at high energy limits. The best example for this approach is ‘string theory’ [23].
A advantage of this approach as we start from a fundamental theory of all interactions
we automatically have a ‘Theory of Everything’, but a shortcoming is that the starting
point the fundamental theory itself is highly speculative.

This work is based on the results obtained in 3D Regge gravity mainly by the works
of Alicia [10] followed by the continuum regime by Seth [1]. A detailed discussion about
Regge gravity is in section 3. In the next section we will discuss a few concepts that will
be used in a later sections 3 and 4. Section 4 contains original work conducted for the
thesis.
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2 Symmetry Group BMS

2.1 Asymptotic BMS symmetry

A system if under a set of transformations preserves it’s invariance the system is said
to be ‘symmetric’. These set of transformations form a group and the main mathe-
matical tool used to analyze symmetries is group theory. Here we look at ‘asymptotic
symmetries’ which is also described as a generalization Poincaré symmetry in a weak
gravitational field. This is a symmetry on which set of co-ordinate transformations of
space-time, preserving the system’s invariance at (almost) infinite distances in a grav-
itational field. In other words symmetries observed at (almost) infinitely away from a
gravitational system. First we introduce the standard Poincaré group

Poincaré = Lorentz ⋊ Translations. (1)

The notation ⋊ is the semi-direct product of the Lorentz group of special relativity and
the Translations group [25].A semi-direct product is defined as follows.

Consider two Lie groups A and B with elements a, b ∈ A and α, β ∈ B. Let σ be a
function on : A×B such that σ : A×B −→ B : (a, α) is a smooth action of A on B. Let
σa be a automorphism of B such that B : (a, α) 7−→ σa(α). The semi-direct product of
A and B with respect to σ consists of the group operation

(a, α) · (b, β) = (a · b, α · σa(β)), (2)

and the group is denoted by A⋊B containing elements (a, α).
In a gravitational field of a asymptotically flat space-time it is found that a symmetry

group much larger than of the Poincaré group exists. This group is the ‘Bondi Metzner
Sacha group’ or BMS group and it is an infinite-dimensional extension of the Poincaré
group. While is it similar to the Poincaré group, the space-time translations are replaced
with a infinite-dimensional extension of a Abelian group called ‘supertranslations’ [25]

BMS = Lorentz ⋊ Supertranslations. (3)

This makes the Poincaré group a subgroup of the BMS group. After recent work by
Barnich and Troessaert [2] this is known as ‘global BMS group’ and the true physi-
cally relevant symmetry of four dimensional asymptotically flat space times is shown
by the ‘extended BMS group’. The extended BMS group is obtained by replacing
Lorentz transformations by local conformal transformations (conformal transformation
is a function that locally preserves angles, but not necessarily lengths). Local confor-
mal transformations of celestial spheres (see figure below) are ‘superrotations’ and is
considered as a infinite dimensional extension of Lorentz transformations,

BMSextended = Superrotations ⋊ Supertranslations. (4)
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Figure 1: This represents the Penrose diagram of Minkowski space in three dimensions.
The outgoing light ray (towards infinity) is shown by the wavy red arrow. In four
dimensional space-time the red circle will represent a celestial sphere at time u. [25]

2.2 Massive BMS3 character

It is needed to note that BMS group in four dimensions is poorly understood. The
study of toy model namely BMS in three dimensions (BMS3) is more well explored.
BMS in three dimensions is quite sufficient to capture key features of BMS symmetry.

We will look into the characteristic of BMS particles in three dimensions. In
Poincaré the irreducible unitary representations define ‘particles’. They can be clas-
sifield by the mass and spin. Since the Poincaré group is a subgroup of BMS with this
picture we can define a BMS particle as an irreducible, unitary representation of the
BMS group [25]. A massive BMS3 particle is defined as “whose supermomenta span a
Virasoro coadjoint orbit that admits a generic constant representative”. [25]

We are interested in the character (of irreducible representations of BMS group) for
a BMS3 massive particle and it is given by [25]

χ[(f, α)] = eisθeiα
0(m−c2/24)

∞∏
n=1

1

|1− qn|2
, (5)

where f, α rotations and supertranslations in induced representations of the BMS3

group. q = exp(iθ) and θ is a real angle, M is the rest BMS mass, c2 is the central
charge and α0 denotes the zeroth Fourier mode of a supertranslation. eisθ is the little
group representation where s is the spin of particle. If we are considering a massive
BMS3 particle without spin the above expression reduces to

χ[(f, α)] = eiα
0(m−c2/24)

∞∏
n=1

1

|1− qn|2
. (6)

2.3 Holography and AdS/CFT

The concept of holography in quantum gravity is that all information of a gravitational
phenomena taking place in a space-time manifold are stored in a lower-dimensional,
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“dual” theory [25]. The Bekenstein-Hawking entropy formula is a prime example for
a holography theory [19]. It states that the the entropy of a black hole is directly
proportional to the area of the horizon as opposed to the volume as one would generally
expect.

Maldecena being one of the first in her work on ‘string theory’ illustrated the holog-
raphy principle in the context of quantum gravity. It is now known as the Anti-de
Sitter/Conformal Field Theory (AdS/CFT ) correspondence. According to AdS/CFT
all gravitational observables’ information of AdS (bulk space) are stored at spatial infin-
ity (at the boundary) in terms of CFT . Two different theories contain the same physical
information is the concept of duality.

2.4 Liouville’s Theory

Liouville theory is a two dimensional unitary conformal field theory. The classical equa-
tions of motion of Liouville theory (or action) yields the Liouville equation. The Liouville
equation describes for a surface of constant Gaussian curvature a non-linear partial dif-
ferential equation with a conformal factor. This is used to study conformal manifolds.
In the context of string theory Liouville theory is one of the simplest models to study
non-trivial, non-compact backgrounds. [31, 21].

Starting from the three dimensional Einstein-Hilbert action with negative cosmolog-
ical constant it has being shown that it can be reduced to a two dimensional bound-
ary Liouville theory by [11]. According to Chern-Simons theory the Einstein action is
equivalent to the SL(2, R)×SL(2, R) (gauge group) Chern-Simons action. SL(2, R) is a
special linear group with elements containing 2×2 real matrices and each matrix having
determinant value of one. For a gauge field Aµ the Chern-Simons action is defined as
[18]

SCS [A] ≡ k

4π

∫
d3xϵµνρTr

(
Aµ(∂νAρ − ∂ρAν) +

2

3
Aµ[Aν , Aρ]

)
. (7)

Upon imposing the conditions of opposite chiralities on each SL(2, R) factor in a space-
time with a cylindrical boundary the Chern-Simons action reduces to the non-chiral
SL(2, R) Wess-Zumino-Novikov-Witten (WZW) model. WZW model can be regarded
as the boundary theory for Chern-Simons theory. Next by imposing anti-de Sitter
boundary conditions (i.e. space-time is asymptotically AdS), the constraints reduces
the WZW model to the Liouville theory essentially reducing the 3D gravity to a 2D
boundary model making it a holographic theory. It is also shown that by [4] Liouville
like dual field theory can also be seen in finite boundary setting with flat space-time in
vacuum with no particles using Regge calculus. As we see later we have shown that this
could be extended for the case of having a massive BMS point particle.

For a boundary with background extrinsic curvature KAB and background intrinsic
metric hAB we consider the scalar field taking the same form as used by Seth [1],

ρ∆ρ = ρ(2(KCD −KhCD)DCDD − 2RK)ρ) (8)

where ρ is the Liouville field and DC is the covariant derivative with respect to the
metric hAB . The full lagrangian for this scalar field is given by [1]

L =
√
h(ρ∆ρ− 2ρδ(2R)). (9)

Here δ(2R) is the first order perturbation of the boundary Ricci scalar. Here it describes
on how the scalar field (Liouville field) couples to the first order perturbation of the Ricci
scalar. This lagrangian is the key component is proving that the effective action is of
‘dual field theory’ nature.
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2.5 Why study 3D gravity?

It is well established by Einstein’s theory of general relativity that this universe is
well represented in four dimensional space-time. In Newtonian mechanics it is straight
forward to translate from two spatial dimensional theories to three spatial dimensions.
For example calculating (Newtonian) momentum of collisions of objects in two or three
dimensions. But this is not the case in general relativity. We will discuss briefly one of
the main reasons for this.

In any spacetime the Riemann (curvature) tensor can be written in terms of Ricci
scalar R, Ricci tensor Rim and the Weyl tensor Ciklm and is given by [32]

Ciklm = Riklm +
1

n− 2
(Rimgkl −Rilgkm +Rklgim −Rkmgil)

+
1

(n− 1)(n− 2)
R(gilgkm − gimgkl)

(10)

where n is the number of dimensions of the manifold. The Weyl tensor is traceless,
conformally invariant and defined such that for any tensor contraction between integers
it value becomes zero i.e. Ci

kim = 0. Therefore for any dimensions three or lower the
Weyl tensor vanishes. This leads that for three dimensions the above equation reduces
to

Riklm = Rilgkm +Rkmgil −Rimgkl −Rklgim − 1

2
(gilgkm − gimgkl)R. (11)

Then with cosmological constant Λ any solutions for the Einstein field equations results
in [9],

Rim = 2Λgim. (12)

This means it has constant curvature, it is either locally flat for Λ = 0, de sitter and
anti-de sitter for Λ > 0 and Λ < 0 respectively. This leads to the conclusion that three
dimensional space-time has no local degrees of freedom (i.e. propagating degrees of
freedom) which means no gravitational waves are emitted in a three dimensional setting
[9]. Lack of local degrees of freedom greatly differentiates from a four dimensional setting
(physical reality) which contains propagating degrees of freedom hence it is very difficult
to translate the theory to higher dimensions. Another reason for it to differentiate is
that three dimensional gravity lacks of a good Newtonian limit [9].

So why study three dimensional gravity? The reason is the surprise discovery by Ba-
nados, Teitelboim, and Zanelli (BTZ) of a black hole solution in three dimensional grav-
ity (with Λ < 0) [8]. The BTZ black hole differed in some aspects to the Schwarzschild
and Kerr black holes such as not containing a curvature singularity at the origin. But
the BTZ black hole contains a event horizon, contains thermodynamic properties of a
four dimensional black hole and it is shown that the BTZ black hole is formed by the
gravitational collapse of matter [8]. This popularized the investigation into three dimen-
sional gravity especially in the study of the nature of observable such as the “problem of
time” as discussed previously. Some other reasons to study 3D gravity is that 3D gravity
contains the same conceptual foundations of 4D gravity while being vastly simpler to
analyze and calculate. Although it is quite unrealistic, 3D gravity is widely used as a
toy model to investigate a theory of quantum gravity.

3 Introduction to 3D Regge Gravity

As mentioned previously our main motivational basis is the works by Seth and Alicia,
in this section we will very briefly describe Alicia’s work on 3D Regge gravity with point
particle and introducing Regge calculus. As discussed in section 1.3 on the approaches
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for the construction of the theory the starting point for Regge calculus is the quantization
of the path integral. A very popular method used in quantum mechanics and general
relativity. In the case of quantum mechanics the probability amplitude for a propagator
(in this case a propagator carrying the force of gravity known as ‘graviton’) to go from
a postion x′ at time t′ to position x′′ at time t′′ is given by the path integral [20],

⟨x′′, t′′|x′, t′⟩ =
∫

Dx(t)eiS[x(t)]/ℏ (13)

Where Dx(t) is the formal notation for the limiting process. But this holds for a
propagator in external time and does not hold for quantum gravity since it is funda-
mentally timeless [20]. This path integral can be generalized to quantum field theory
but it loses its physical interpretation. But it is valuable and plays a key role in gauge
theories. As first formulated by Misner the quantum gravitational path integral takes
the form [20]

Z[g] =

∫
Dgµν(x)e

iS[gµν(x)], (14)

where it is considered the summation over all metrics in a four dimensional manifold
M and divided by (reducing) the diffeomorphism group DiffM. This is highly com-
plicated in terms of technical and conceptual stand point. To rectify this one usually
performs a Wick rotation to the Euclidean regime. But it leads to numerous issues
one especially being that the Euclidean gravitational action is not bounded from be-
low. This leads to the path integral being divergent, this is known as the ‘conformal
factor problem’. Since there isn’t a straight forward method to evaluate this integral
approaches are made to evaluate the path integral by discretization and performing the
continuum limit. There are several methods to perform this but here we will focus on
‘Regge Calculus’.

In Regge calculus the central concept is to define smooth manifolds using basic
topological principles using ‘Euclidean simplexes’ instead of co-ordinates. A simplex
is the space time manifold fundamental building block. Consider a two dimensional
wall, the simplexes would be the tiles covering the wall. Although in the case of Regge
calculus these tiles need not be of the same size, they must all fit perfectly like peices
of a puzzle and must be self-joining in a way covering the whole surface (manifold). A
good example of discretized curved surface is the Atibaia’s radio telescope in Brazil as
shown in the figure below.
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Figure 2: This image displays the discretization of a spherical surface using a set of
juxtaposed plane polygons [12].

Intensely curved surfaces require more simplexes to cover it. This shows that the
number of simplexes is directly related to the curvature. The curvature is measured at
the vertexes. consider the image below,

Figure 3: The curvature of the square pyramid (without base) shown on the left can
be shown to be associated with the vertex as the faces of the pyramid can be flattened
out on a 2D surface revealing a deficit angle [12].

in this scenario (ignoring the base of the pyramid for the sake of the argument), the
sum of the dihedral angles θn (in the n triangles) around the top vertex of the pyramid
(on the left) is below 2π in the flatten surface (to the right). This angular difference is
defined as the deficit angle ε which measures the curvature of the pyramidal surface.

ε = 2π −
∑
n

θn (15)

Under the same principle we can measure the extrinsic curvature of a boundary of a
manifold. For boundary deficit angles ω we consider the difference with π instead of 2π
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at the vertex [4].

ω = π −
∑
n

θn (16)

Here we see that the curvature is centered at vertexes and deficit angles quantify
the curvature. In General Relativity, the Riemann tensor Ra

bcd quantifies the space-time
curvature of continues manifolds. By studying the parallel transport of a vector along
an infinitesimal closed loop in a discrete and continues manifold, a relationship can
be obtained between deficit angles and the Riemann tensor [12] and in turn the Ricci
scalar. In a three-dimensional manifold the lengths of the edges contains information
of the metric (a very similar concept is adopted to discritize extrinsic curvature of a
boundary).

In quantum Regge calculus the considered path integral is given by [10],

Z =

∫
Dµ(l)exp

(
−SR

ℏ

)
. (17)

This implies integration of all edges of the triangulation with some measure µ(l). 3D
gravity which is a topological theory as it describes the dynamics using only global
topological variables, we expect 3D gravity to be discretization independent (invariant).
This should imply that at least for the case of linearized theory the invariance should
hold for the one loop determinant. The measure is given by [4]

Dµ(l) =
∏
σ

1√
12πVσ

∏
e∈bulk

ledle√
8πGℏ

∏
e∈bdry

√
le√
8πGℏ

. (18)

When integrating out edge variables the form of the measure must not change in
order to perserve the invariance of the measure. The integration process in terms of
Regge calculus is interpreted as a local change in triangulation. There are two local
changes (for 3D) of triangulation called Pachner moves. When integrating out edges it
has been explicitly shown that the form of the measure does not change [13]. A small
introduction of the Pachner moves is followed in the next section.

3.1 Pachner moves in 3D

In this section we will very briefly introduce the pachner moves for three-dimensions.
Pachner moves are local changes of triangulation of a given manifold. We will first look
at the 3-2 Pachner move.

Figure 4: This figure shows the 2 states of the 3-2 pachner move. The left configuration
consists of two tetrahedra and the right consists of three. The dashed line represents a
bulk edge. [13].

11



In the configuration to the right of the figure above all three tetrahedra (0123),
(0124) and (0134) have a common edge which is the only bulk edge (01). By removing
this bulk edge or integrating out this edge the configuration reduces to the configuration
as shown to the left of the figure above. This configuration consists of two tetrahedra
(0234) and (1234) sharing the triangle (234). As the name suggests the 3-2 move is
the transition from the three tetrahedra configuration to the 2 tetrahedra configuration
while retaining its structure. [14, 5]

Now we will discuss the 4-1 pachner move.

Figure 5: The two configurations of the 4-1 move. The dashed lines represents the
internal bulk edges. The left and right configurations consists of one and four tetrahedra
respectively. [13].

Similar tot he 3-2 move but as we can clearly see the as in the figure to the right
the four tetrahedra shares a common vertex (0) instead of an edge. But integrating or
removing all edges connected to this vertex the configuration reduces to a single tetra-
hedra (1234). These are the ways one can integrate out edge variables while preserving
the same form of the measure in the path integral for quantum Regge calculus in 3D.

3.2 Regge gravity for a Point Particle

We will now introduce the Regge action. A term is added to the Regge action in vacuum
which adds the affect of deformation of the triangulation due to a massive particle in
it’s rest frame, located at the center of a torus [10].

Sp = − 1

8πG

∑
e⊂T o

leϵe −
1

8πG

∑
e⊂∂T

leωe +
∑

e⊂WL

8πGMle (19)

with
ϵe = 2π −

∑
e⊂σ

θσe , (20)

ωe = π −
∑
e⊂σ

θσe . (21)

Here T o and ∂T represent the bulk and boundary edges respectively. The first sum is
over all bulk edges of triangulation T and the deficit angles measured around the edge
e. The angle θσe denotes for the tetrahedron σ the interior dihedral angle measured at
the edge e. The second sum corresponds to the Gibbons-Hawking-York and involves the
boundary angles on a given edge e measuring the extrinsic curvature. The last term is
the discretized worldline of a massive point particle in it’s rest frame. The equations of
motion with respect to length variables yields,

ϵe = 0 e ̸⊂ WL (22)
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ϵe = 8πGM e ⊂ WL (23)

The path integral cannot be computed analytically due to the complexity of the func-
tions of the length variables and having to consider the range of integration due to
Regge calculus having need to satisfy the generalized triangle inequalities. This issue is
circumvented by considering linearized Regge calculus.

This is done by first choosing a background structure or solution. According to Rick-
les [26] a theory contains dynamic structures and background structures. The dynamic
structure represents the physical degrees of freedom of a theory such as the electromag-
netic field in Maxwell’s theory and the metric in general relativity. The background
structures are the values (parameters) put ‘by hand’ such as quantities involving the
shape of space-time (like triangulation), topology, fields and the metric (not in general
relativity). A good example of this is general relativity is a background independent
theory as the metric is a solution of the Einstein’s field equations while in quantum field
theory we assign Minkowski space-time for the theory making it background dependent.
Although ideally we would want background independence in our theories (making it a
more fundamental theory) this is a very difficult condition to maintain (another reason
as to why gravity have not yet unified with other forces). Here the background structure

considered is the triangulation having fixed edge lengths l
(0)
e already satisfy the triangle

inequalities and integration are performed for the length perturbations λe [4].

le = l(0)e + λe (24)

we consider Regge action up to the second order in the perturbation variables λe as the
hessian produces the interesting properties need to study the path integral,

S = S(0)

∣∣∣∣
le=l

(o)
e

+
∂S

∂le

∣∣∣∣
le=l

(o)
e

λe +
∂2S

2∂le∂le′

∣∣∣∣
le=l

(o)
e

λeλe′ . (25)

The zeroth order and the first order term of 25 vanishes for the bulk edges, because of
the Schläfli identity (

∑
e∈m leδθ

m
e = 0 where θme is the interior dihedral angle at the

edge e in the tertrahedron m [4])and specifically we take the background solution to be

(locally) flat, that is ω
(bulk)
h = 0.

3.3 The Triangulation

We will now look at the triangulation configuration. The space-time topology is of a
solid torus. The cylindrical height of the torus is denoted as β and it contains (divided
into) NT cylinders of height T each. Each cylinder is divided by NA radial lines of
length R with boundary edge length A. Each of the prisms are triangulated into three
tetrahedra as shown in the figures below.

Figure 6: Chosen background triangulation of torus. The red dot represents the point
particle. [10]
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Figure 7: Subdivision of each prism into three tetrahedra. The left and right figures
shows the bulk and boundary fluctuations of its lengths respectively. [4]

It is useful to define the following quantity for the relation between the background
lengths A and R [10],

x =
A2

2R2
= 1− cos

(
2πµ

NA

)
(26)

with µ = 1− 4GM . By imposing flatness condition to all of the triangles, the boundary
deficit angle along the time axis (which spans along the center of the torus where the
particle lies as shown in figure 6) θb becomes [10],

θb = π − 2πµ

NA
. (27)

We denote the vector for the length fluctuation of the triangulation as follows [10],

λ(s, n) = (t(n), r(s, n), d(s, n), τ(s, n), α(s, n), η(s, n)) . (28)

The partition function (17) in this triangulation considering the linearized action takes
the following form [10],

Z =

∫ ∏
n

dt(n)
∏
(s,n)

dr(s, n)dd(s, n)dτ(s, n)dα(s, n)dη(s, n)µ(l)exp

(
−
SLR
p

ℏ

)
. (29)

As discussed earlier integrating out bulk edges preserves the form of the measure. First
we evaluate the bulk edge fluctuations (i.e integrating out), for this we rewrite (29) as
[10],

Z =

∫
dτ(s, n)dα(s, n)dη(s, n)µ(l)Z(τ(s, n), α(s, n), η(s, n)) (30)

where

Z(τ(s, n), α(s, n), η(s, n)) =

∫ ∏
n

dt(n)
∏
(s,n)

dr(s, n)dd(s, n)µ(l)exp

(
−
SLR
p

ℏ

)
. (31)

Here µ(l) is the density of the measure Dµ(l), for this triangulation it gives the following
form [10],

µ(l) =
RNANT TNT (R2 + T 2)NANT

(8πGĥ)NT (2NA+1)/2

√
ANANT TNANT (A2 + T 2)(NANT /2)

(8πGĥ)3NANT /2

1

(12πVσ)3NANT /2

(32)

where the tetrahedron background volume is given by Vσ = (ATR
√
4− 2x)/2.

14



By considering the linearized action for the Regge action we get the first order and
zeroth order terms for the bulk edges as zero. The Hamilton jacobi functional also
known as effective boundary action is “the on-shell action, for 3D linearized gravity, for
a large class of boundaries”[1] gives the boundary terms (edges) for the first and zeroth
order of the linearized action [10].

S
(0)
(p) = − β

4G
µ (33)

S
(1)
(p) = − 1

8πG

2πµ

NA

∑
s,n

τ(s, n) (34)

The second order terms of the linearized action of the bulk and the boundary edges
form the Hessian. The Hessian is defined as the square matrix containg all second order
partial derivatives of all variables of a scalar function or scalar field [3]. For Hessian for
one prism Hpr

ee′ we obtain a matrix of the form [10],

Hpr
ee′ =

∑
σ∈pr

∑
σ⊃e,e′

∂θσe′

∂le
=

LeLe′

6Vσ
Mpr

ee′(x) (35)

where Mee′ is dimensionless and the only background length dependence appears is as
function of the ratio x. We replace fluctuation variables λe with rescaled variables [10]

λ̂e :=
Le√
6Vσ

λe . (36)

Now when considering the hessian for the full triangulation since we choose a solid
twisted torus it is suitable to Fourier transform the fluctuation variables in temporal
and angular directions [10],

λ̂(k, n) =
1√
NA

∑
s

e
−i 2π

NA
k.s

λ̂(s, n) (37)

λ̂(k, ν) =
1√
NT

∑
n

e
−i 2π

NT
(ν− γ

2π k).nλ̂(k, n) (38)

where k ∈ {0, 1, 2, ..., NA − 1} and ν ∈ {0, 1, 2, ..., NT − 1}. The parameter γ is called
the twist angle and it measures the angular rotation made before identifying t ∼ t+ β.
It is given by [10]

γ = 2π
Nγ

NA
, (39)

whereNγ is the number of prisms its rotated (Nγ = 0, 1, ...., NA−1). It is also convenient
to define υ = ν − γ

2πk. By implementing the above transformed variables we can write
the second order term of the linearized Regge action as follows [10],

S
(2)
P =

1

16πG

∑
k,ν

(λ̂(k, ν))t.M̃(k, ν).(λ̂(k, ν)) (40)

with
(λ̂(k, ν))t = (t̂(ν), r̂(k, ν), d̂(k, ν), τ̂(k, ν), α̂(k, ν), η̂(k, ν)) . (41)

The Hessian matrix M̃(k, ν) takes the same form for both vacuum and particle cases,
only difference being the function ratio x and it given by the matrix [10],
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

0 −2x
√
NAδk,0 0 0

√
NAδk,0 0

−2x
√
NAδk,0 ∆k 2x(1− ωυ)− δk (ωk − 1 + 2x)ωυ ωkωυ − 1 ωυ − ωkωυ

0 2x(1− 1
ωυ

)−∆k ∆k
1
ωk

− 1 1
ωυ

− 1 ωk − 1

0 1
ωυ

( 1
ωk

− 1 + 2x) ωk − 1 1 ωk

2 − 1
2ωυ

−ωk√
NAδk,0

1
ωkωυ

− 1 ωυ − 1
ωk

1
2ωk

− ωυ

2 1 −ωυ

2 − 1
2

0 1
ωυ

− 1
ωυωk

1
ωk

− 1 − 1
ωk

− 1
2ωυ

− 1
2 1


(42)

where
ωk = e

i 2π
NA

k
, ∆k = 2− ωk − ω−1

k , (43)

ωυ = e
i 2π
NA

υ
, ∆υ = 2− ωυ − ω−1

υ . (44)

As mentioned previously we integrate the bulk variables of the Hessian. We do this by
first identifying the null vectors of the Hessian. The null vectors represent the symmetries
of the system. Also when integrating bulk variables we consider only the null vectors
which contains only bulk terms. These represent the gauge modes of the system which
we will discuss on how they contribute to the partition function in the next section.

3.4 Gauge Modes

To find the null vectors of the gauge modes we analyze the bulk part of the hessian
matrix. First we consider the k=0 case, this matrix is given by [10]

M̃bulk(k = 0, ν) =

 0 −2x
√
NA 0

−2x
√
NA 0 2x(1− ωυ)

0 2x(1− ω−1
υ ) 0

 (45)

The matrix has one null vector [10]

(nt)(k = 0, ν) = (
1− ωυ√

NA

, 0,−ωυ, 0, 0, 0). (46)

The next step is to integrate out the r̂(0, ν) and d̂(0, ν) variables. We negate the negative
sign (by considering it as positive) of one of the eigenvalues arising due to the conformal
factor mode problem. This gives the eigenvalue [10]∫

dr̂(0, ν)dd̂(0, ν)dr̂(0,−ν)dd̂(0,−ν)×

exp

(
−1

2
(t̂(ν), r̂(0, ν), d̂(0, ν)).M̃bulk(k = 0, ν).(t̂(−ν), r̂(0,−ν), d̂(0,−ν))t

)
=

4π2

4x2∆ν
.

(47)
Taking the product over the ν modes the square root value of (47) becomes the contri-
bution to the partition function. A corresponding measure needs to be removed due to
the overlapping contribution of the gauge orbits describing the invariance of the Regge
action along the t vector. For each vertex p(n) along t the removed measure factor is
given by [10]

1

2π

∏
a=1,..,n

1√
8πGℏ

dxa. (48)

Where xa are Cartesian coordinates of the vertex p(n). Since there exist only null gauge
mode in the t vector, after translating the variables to t(ν) we obtain the measure term
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corresponding to gauge orbits as [10],

1

2π

1

(8πGℏ) 1
2

∏
ν

1√
∆ν

dt(ν) (49)

From the integration over the modes (k = 0, ν) and removing (dividing) the measure
over the gauge orbits we obtain a factor [10]

(8πGℏ)
3
2NT

(
2π

2x

)NT (6Vσ)
3
2NT

R2NT TNT
. (50)

3.5 Physical modes

All modes with k ̸= 0 do not have null vectors, therefore they correspond to the physical
modes of the theory. To evaluate the physical modes the full hessian is considered in
order to integrate the bulk variables. We proceed by integrating d̂ variables. In order to
accomplish this we first solve for δS

δd̂(k,ν)
= 0 and δS

δd̂(−k,−ν)
= 0 for d̂(k, ν) and d̂(−k,−ν).

Then substituting these values to the matrix (42), the resulting matrix M̃r is used to
compute the gaussian integrals and summing over all the modes (k ̸= 0, ν). Following
this procedure we obtain the following factor [10],

NA−1∏
k=1

NT−1∏
ν=1

∫
dd̂(k, ν)dd̂(−k,−ν)exp

(
− 1

2× 8πGℏ
(d̂(k, ν)) ·∆k · (d̂(−k,−ν))

= (8πGℏ)
NT (NA−1)

2

NA−1∏
k=1

NT−1∏
ν=1

(2π)1/2√
∆k

= (8πGℏ)
NT (NA−1)

2 (2π)
NT (NA−1)

2 N−NT

A .

(51)

3.6 One loop determinant

The one loop determinant is the determinant of the Hessian consisting of only the bulk
variables. For k > 0 the Hessian is [10]

M̃bulk(k ̸= 0, ν) =

(
∆k −2x(1− ωυ)

−2x(1− ω−1
υ )−∆k ∆k

)
, (52)

integrating out the d̂ variables of the partition function relating to the Hessian of the
above matrix leads to a scalar value [10],

2x∆υ

(
1− 2x

∆k

)
. (53)
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Now we take the product of all the modes (k ̸= 0, ν) we get [10],

NA−1∏
k=1

NT−1∏
ν=0

2x∆υ

(
1− 2x

∆k

)

= 2xNT (NA−1)

(
NA−1∏
k=1

(
1− 2x

∆k

)NT
)(

NT−1∏
ν=0

NA−1∏
k=1

∆υ

)

= (2x)NT (NA−1)


(

1

1−x+
√

(x−2)x
; e

i2πi
NA

)
NA

(
− 1

1−x+
√

(x−2)x
; e

i2πi
NA

)
NA

2

((
e

i2πi
NA ; e

i2πi
NA

)
NA−1

)2


NT

×

(
NA−1∏
k=1

(2− 2cos(γk))

)

(54)

where (.; .)N is the q-Pochhammer symbol [10].
Now equation (31) is evaluated through the expansion of the Regge action to the

second order in the bulk and boundary fluctuations. The calculations results in the form
for (31) as [10],

Z(τ(s, n), α(s, n), η(s, n)) = e−
1
ℏS

(0)
R De−F (τ(s,n),α(s,n),η(s,n)) (55)

where D is the one loop determinant and F is the boundary part of the Hamilton-Jacobi
functional. We will evaluate F by integrating the boundary fluctuations.

The initial measure for the path integral is [10],

∏
σ

1√
12πVσ

∏
e∈bulk

Ledλe√
8πGℏ

∏
e∈bdry

√
Le√
8πGℏ

=
∏

e∈bdry

√
Le√
8πGℏ

(6Vσ)
NANT+NT /2

(12πVσ)
3
2NANT

1

(8πG)NANT+NT /2

∏
e∈bulk

dλ̂e

(56)

Now evaluating all the factors contributing to the path integral from the integration
over the bulk variables. First integration over the gauge modes (k = 0, ν) we receive a

factor as in expression (47). Next integration over the d̂ variables for all modes (k ̸= 0)
yields a factor as shown in (51). Finally for the integration of r̂ variables for all modes
(k ̸= 0) using the expression (54) [taking the square root reciprocal of the expression
and adding the constants] leads to the following factor with the integration over the r̂
modes [10]

(8πGℏ)
NT (NA−1)

2 (2π)
NT (NA−1)

2 (2x)−
NT (NA−1)

2 f(x,NA)
−NT

2

[
NA−1∏
k=1

(2− 2cos(γk))

]−1/2

(57)
Taking all those into account we finally receive an expression for D [10]

D = 2−NT (2π)−
NT NA

2

(R
A

)NT (NA−1)
(ART )−

NT NA
2 (A2T )NT

(
4− A2

R2

)−NT (
NA
4 +1)

×
(

N2
A

2NA−2
f(x,NA)

)−NT
2

 ∏
e∈bdry

√
Le√
8πGℏ

(NA−1)/2∏
k=1

1

|1− qk|2

 ,

(58)
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where q = eiγ . Now, using this result and the zeroth and first order parts of the
action, we can write the resulting partition function

Z(τ(s, n), α(s, n), η(s, n)) = exp

(
β

ℏ4G
µ

)
D̃

∞∏
k=1

1

|1− qk|2
eF (τ(s,n),α(s,n),η(s,n)) (59)

As we can see here the one loop correction of the partition function shows character
of a massive BMS3 particle. By making the choice that α0 = iβ the following relations
are obtained [10]

m =
M

ℏ
, c2 =

6

Gℏ
. (60)

where m is the BMS3 mass, M the geometrical mass and c2 the central charge. Com-
pared to the massless vacuum case as computed in [4] we see here an extra physical
Fourier mode. This of course corresponds to the existence of the BMS3 particle and
how it existence makes the radial component not a gauge mode.

In order to verify the discretized calculations (since discretization is essentially an
approximation) we must consider continuum limit of the discrete results and compare
it with results obtained directly from the continuum theory. In order to do this length
variables are matched to metric fluctuations.

The relation between the (boundary) length fluctuations λb and the metric fluctu-
ations in the boundary δhab are determined by where hab = diag(T 2, A2) and basis
vectors are (eaτ , e

a
α) [10],

(hab + δhab)e
a
τe

b
τ =hττ + δhττ = T 2 + 2Tτ +O(τ2)

(hab + δhab)e
a
αe

b
α =hαα + δhαα = A2 + 2Aα+O(α2)

(hab + δhab)(e
a
τ + eaα)(e

b
τ + ebα) =hαα + hττ + 2hτα + δhαα + δhττ + δ2hτα

=A2 + T 2 + 2
√
A2 + T 2η +O(η2)

(61)

Taking into account the rescaling the following relation was obtained [10]:δhττ

δhαα

δhτα

 =
√
6Vσ

 2 0 0
0 2 0
−1 −1 1

τ̂
α̂
η̂

+O(λ2) (62)

We can calculate S
(2)
HJ in terms of metric perturbation [10],

8πGS
(2)
HJ =

1

2

∑
k,ν

(δh(k, ν))t · M̃h
b (k, ν) · (δh(−k,−ν)) (63)

We implement the continuum limit by setting for ϵ ≪ 1 [10]

A = εA0 , T = εT0. (64)

In order to compare discreet results to the continuum as in [4] the action is eval-
uated on perturbations of the metric induced by infinitesimal diffeomorphisms. These
infinitesimal diffeomorphisms in the discrete are given by vertex displacements outwards
to the boundary (radial nh

b,r) and time nh
b,τ and angular nh

b,α directions along the bound-
ary. These vectors describing of metric perturbations (vertex displacements) are given
by δh [10],

(nh
b,τ )

t(k, ν) = −(2(1− ων), 0, ων(1− ωk))Xτ (k, ν) (65)
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(nh
b,α)

t(k, ν) = (0, 2(1− ωk), ωk(1− ων))Xα(k, ν) (66)

(nh
b,r)

t(k, ν) = Asin(
π

NA
)(0, 2(1 + ωk), ωkων(1− ω−1

ν ))Xα(k, ν) (67)

Here Xτ , Xα give the distance between old and new vertex positions. In the con-
tinuum limit Xτ = εX0

τ (k, ν), Xr = εX0
r and Xα = εX0

α(k, ν). The above equations
results in the continuum results in [10],

(nh
b,τ )

t(k, ν) = ε2(2iυ̂, 0, ik̂)X0
τ (k, ν) +O(ε3) (68)

(nh
b,α)

t(k, ν) = ε2(0, 2ik̂, iυ̂)X0
α(k, ν) +O(ε3) (69)

(nh
b,r)

t(k, ν) = ε2
A2

0

R
(0, 2, 0)X0

r (k, ν) +O(ε3) (70)

These vertex displacements evaluated to the Hamilton Jacobi functional (63) is given
by [10],

8πGS(2)[(nh
b,τ )] =

1

2

∑
k,ν

(nh
b,τ (k, ν))

t · M̃h
b (k, ν) · (nh

b,τ (−k,−ν))

=
1

2

∑
k,ν

ε2
A0

RT 3
0

υ̂2X0
τ (k, ν)X

0
τ (−k,−ν) +O(ε3)

(71)

8πGS(2)[(nh
b,α)] =

1

2

∑
k,ν

(nh
b,α(k, ν))

t · M̃h
b (k, ν) · (nh

b,α(−k,−ν))

=
1

2

∑
k,ν

ε2
1

A0RT0
υ̂2X0

α(k, ν)X
0
τ (−k,−ν) +O(ε3)

(72)

8πGS(2)[(nh
b,r)] =

1

2

∑
k,ν

(nh
b,r(k, ν))

t · M̃h
b (k, ν) · (nh

b,r(−k,−ν))

=− 1

2

∑
k,ν

ε2
A0

RT0
υ̂2X0

r (k, ν)X
0
r (−k,−ν) +O(ε3)

(73)

This shows that after considering the continuum limit the second order part of the
action does not depend on the mass. But this is not a inconsistant theory as the mass
appears in the action as the zeroth order term but it is invariant in the continuum
limit. Here we see that the difference of 8πGS(2)[(nh

b,r)] between the massless case is
that there exists an extra mode (k = 1) in the expression (which resulted in because of
the additional physical degrees of freedom).

Direct calculation of the k = 1 mode of the above second order action contribution
does not yield a valid result without assigning a function for X. In order to analyze
what this extra term entails we attempt to derive the second order action contribution
due to perturbation in the boundary of a foliation of a solid torus using first order
metric perturbations without discretization (in the continuum). We will use similar
methodology as used in [1] to arrive at the second order action in the continuum!
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4 The Hamilton–Jacobi Functional for 3D Gravity
with Point Particle

4.1 Metric in Gaussian coordinates

In sections 4.1, 4.2 and 4.4 we will introduce some background concepts and sections
4.3, 4.5 and 4.6 the original contributions for this thesis is presented. It should be
emphasized that this work is conducted by closely following Seth’s work on [1]. Its
is proven in Seth’s work the massless BMS3 character can be obtained in the case of
flat space-time in vacuum and we can analyze (73) in non-discreet terms (in terms of
diffeomorphic inducing vectors). So one would expect following a similar procedure we
should expect the massive BMS character is a case of a massive point particle on flat
space-time in a vacuum. Here we have shown that (not exactly calculated) we could
expect the massive BMS3 character.

In this section we will choose our metric coordinate system and address some prop-
erties derived from the metric. We need to create a similar environment as used in the
case of Regge gravity as described in the previous section. Just as we considered fixed
lengths for background solutions in Regge gravity here we choose background solutions
to have homogeneous curvature Rabcd = Λ(gacgbd − gadgbc). Also we need to imple-
ment infinitesimal diffeomorphisms in the boundary of a torus. It is convenient to use
Gaussian coordinates for the background solution [1]

gabdx
adxb = dr2 + hABdy

AdyB . (74)

Some assumptions are made to implement smoothness and convenience in order to
introduce boundary diffeomorphisms for the manifold M. Firstly, r = 0 defines a
point or a one-dimensional sub-manifold of M. Also a boundary ∂M of the manifold is
a surface spanned by a fixed r = rb radial coordinate. Here a, b, ... denotes space–time
indices and A,B, ... = 1, 2 denotes “spatial” indices for the constant r surfaces. With
the background solution introduced we will now consider metric perturbations for it [1]

gfullab = gab + γab. (75)

Here γab contains components γ⊥⊥ , γ⊥A and γAB which are the metric perturbations
defined on the boundary, ⊥ denotes the index for the radial coordinate. It is further
assumed that the background boundary curvature is homogeneous (i.e. ∂A

2R = 0)
and also the background boundary has a non–vanishing extrinsic curvature. 2RAB =
1
2
2RhAB can be used to determine the Ricci tensor for a two dimensional boundary

metric. The Christoffel symbols with the extrinsic curvature tensor given by KAB =
1
2∂⊥hAB for a Gaussian metric are [1]

Γa
⊥⊥ = 0 , Γ⊥

⊥B = 0 , Γ⊥
AB = −KAB (76)

ΓA
⊥B = KA

B , ΓA
BC =2 ΓA

BC . (77)

With this we can determine the relations between space–time covariant derivatives and
spatial covariant derivatives and for a vector ξ this is given by [1],

∇AξB = DAξB +KABξ⊥, (78)

∇Aξ⊥ = DA(ξ⊥) +KB
A ξB (79)

The symbol ∇ is denoted for the covariant derivative with respect to metric g,
and D is denoted for the covariant derivative with respect to h. Since ξ⊥ is a vector

21



perpendicular to the boundary surface it is treated as a spatial scalar, implying DAξ⊥ =
∂Aξ⊥. As it is used later we will mention here the Gauss–Codazzi relations for a surface
embedded into a 3D vacuum solution [1]

K2 −KABK
AB = 2R− 2Λ , DAK

A
B −DBK = 0. (80)

4.2 A basis for the boundary metric perturbations

Since we are attempting to replicate the results obtained in the discrete we need to
compute the Hamilton Jacobi functional for linearized gravity but in the continuum.
A space-time with a homogeneous intrinsic curvature and non-zero extrinsic curvature
is considered. As shown by Seth in [1] the metric perturbations becomes the on-shell
solutions for the Hamilton Jacobi functional if the functional is expressed in terms of
diffeomorphism generating vectors. We need this condition in order to replicate equation
(73) in the continuum setting. But unlike the massless case as computed in [1] as we see
later the Hamilton Jacobi does take a much more complicated form when paired with a
massive test particle. We introduce vector components ξ⊥ and ξA parametrized to γAB

[1],

γAB = [Lξg]AB =∇AξB +∇BξA

=2ξ⊥KAB + [Lξ||h]AB

(81)

This parametrization is possible because the solutions of the equations of motion
for 3D gravity is diffeomorphism equivalent to a homogeneously curved space-time. We
will assume that the transformation from (ξ⊥, ξ1, ξ2) to (γ11, γ22, γ12) is invertible. This
means the extrinsic curvature tensor KAB is non-vanishing. With this we can determine
the vector components ξ⊥ and ξA [1]

∆ξ⊥ =ΠABγAB

DA
Bξ

B =2(KBC −KhBC)δ
2
ΓA
BC

(82)

where

∆ =2(KCD −KhCD)DCDD − 2RK,

DA
B =2(KBC −KhCD)DCDDhA

B − 2RKA
B ,

ΠAB =DADB − hABDCD
C − 1

2
2RhAB ,

δ
2
ΓA
BC =

1

2
hAD(DBγAC +DCγBA −DAγBC).

(83)

From here the operators ∆ and DA
B is inverted. Seth suggests a relationship be-

tween ΠABγAB and the first variation of the boundary Ricci scalar δ(2R) given by [1],

ΠABγAB =(DADB − hABDCD
C)γAB − 1

2
2RhABγAB

=(DADB − hABDCD
C)γAB − 1

2

2
RABhABγAB

=δ(2R)

(84)

with 2RAB = 1
2
2RhAB for two dimensional metrics. This relationship arises due to

ξ⊥ being invariant under linearized boundary tangential diffeomorphisms, that leads to
ΠAB vanishing on perturbations induced by tangential diffeomorphisms.

The lapse γ⊥⊥ and shift γ⊥A of the metric perturbations can be written as functions
of the generating vector fields (ξ⊥, ξA) given by [1],
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γ⊥⊥ =2∂⊥ξ
⊥,

γ⊥A =∇⊥ξA +∇Aξr

=∂⊥(hABξ
B)− ΓB

⊥AξB + ∂A(g⊥⊥ξ
⊥)− ΓB

A⊥ξB

=DAξ
⊥ + hAB∂⊥ξ

B .

(85)

4.3 Hamilton jacobi functional first order

In this section we will compute the Hamilton–Jacobi functional. To replicate the dis-
crete setting we consider 3D linearized gravity, with Euclidean signature and vanishing
cosmological constant on a manifold M with smooth boundary ∂M coupled with a
point particle. We are interested in studying how a massive point particle couples to
Regge gravity. We start by analysing the classical continuum solution to this problem in
order to get geometrical information that help us in the discrete setting. We will work
in a 3D Euclidean torus since we want to compare its one-loop partition function with
a massive BMS3 character.

The (Euclidean) Einstein–Hilbert action, with Gibbons-Hawking-York boundary term
and a massive point particle in vacuum is given by [10],

Sp = − 1

16πG

(∫
d3x

√
gR− 2

∫
d2y

√
hK

)
+M

∫
dτ
√

ẋµẋνgµν . (86)

where G is the newton’s constant. The Einstein-Hilbert’s action, the Gibbons-
Hawking-York boundary term and worldline of a point particle with rest mass M are
the first, second and third terms of the action respectively. Next is to solve for Einstein’s
Equations [10]

Rµν − 1

2
Rgµν = 8πGTµν (87)

for an energy-momentum tensor of the particle is decribed by (t, r̄) = (M, 0̄) with
r̄ = (r, θ) [10],

T00 = Mδ(2)(r̄), Ti0 = 0 = Tij . (88)

The solution yields [10]

ds2 = (1− 4GM)2dt2 + (1− 4GM)2dr2 + r2dθ2, (89)

rescaling t and r by (1− 4GM), and θ results in the following metric [10]

ds2 = dt2 + dr2 + r2dθ2, (90)

with 0 ⩽ θ ⩽ 2π(1 − 4GM), which describes a cone. 8πGM is the deficit angle at
he center see figure 4.3. The identification t + β ∼ t is considered which determines a
torus.
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Figure 8: Conical spatial geometry caused by the presence of a point particle [10].

The extrinsic curvature tensor, KAB is associated to the foliation by surfaces of con-
stant radius. Using Gaussian coordinates the extrinsic curvature tensor is defined by
KAB = 1

2∂⊥hAB [1]. The equations of motion demand Rab = 0 for vanishing cosmolog-
ical constant and thus R = 0. This leads to a classical background solution [10]

Sp =
1

8πG

∫
d2y

√
hK +M

∫
dτ
√

ẋµẋνgµν . (91)

We will now calculate the first variation of the gravitational action. Also it should be
emphasized that the calculations in this work are mainly focus on the particle segment of
the action. As for the first order and second order variations of Einstein-Hilbert action
and the Gibbson-Hawking boundary term the result is exactly the same as [1]. Here we
consider a test particle case hence and only consider the variation with respect to the
metric and not the degrees of freedom of the particle. Any variation with respect to the
metric on the particle mass and its (rest) coordinates will be nullified.

δS =− 1

16πG

∫
d3x

√
g

(
1

2
Rgab −Rab

)
δgab +

1

16πG

∫
d2y

√
h(KhAB −KAB)δgAB

+M

∫
dτ

(
1

2
√
ẋµẋνgµν

ẋC ẋDδgCD

)
(92)

is used to determine the first order on-shell action, the (background) equations of
motions and the momentum conjugated to the metric πAB =

√
h(KAB−KhAB). Using

the parametrization δgab = γab = Lξgab = γAB since only hAB varies for the boundary
metric fluctuations, the first order of the on-shell action evaluates to,
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S
(1)
HJ =

1

16πG

∫
d2y

√
h(KhAB −KAB)(∇AξB +∇BξA)

+M

∫
dτ

(
ẋC ẋD

2
√
ẋµẋνgµν

)
(∇CξD +∇DξC)

=
1

16πG

∫
d2y

√
h(KhAB −KAB)(DAξB +KABξ

⊥)

+M

∫
dτ

(
ẋC ẋD

2
√
ẋµẋνgµν

)
(2ξ⊥KCD + Lξ||hCD)

=
1

16πG

∫
d2y

√
h((−DBK +DAK

AB)ξB + (K2 −KABK
AB)ξ⊥)

+M

∫
dτ

(
ẋC ẋD

2
√
ẋµẋνgµν

)
(2ξ⊥KCD + Lξ||hCD)

=
1

16πG

∫
d2y

√
h(2R)

+M

∫
dτ

(
ẋC ẋD

2
√
ẋµẋνgµν

)
(2ξ⊥KCD + Lξ||hCD)

(93)

where we have used the Gauss–Codazzi relations. The bulk and boundary terms
of the gravitational action are not uniquely determined. This can be redefined using
integration by parts (see 113). These terms are chosen such that the bulk term vanishes
on-shell. This leads to the second order on-shell action being only contributed by the
boundary term and the particle term in the equation above.

We now calculate the second order of the Hamilton- Jacobi functional. As calculated
in [1] the first sum of the first order Hamilton-Jacobi equation remain the same. Hence,

S
(2)
HJ =

1

32πG

∫
d2y

√
h(ξ⊥∆ξ⊥ − ξADABξ

B)

+M

∫
dτδ

[(
ẋC ẋD

2
√
ẋµẋνgµν

)
(2ξ⊥KCD + Lξ||hCD)

]
=S

(2)

HJV + S
(2)

HJM

(94)

Where S
(2)

HJV is the second order Hamilton Jacobi for the vacuum and S
(2)

HJM for the
second sum of the equation which involved to the point particle. We will now calculate

S
(2)

HJM .

S
(2)

HJM =
M

2

∫
dτ(−1

2
)
ẋE ẋF δgEF

(ẋµẋνgµν)3/2
ẋC ẋD(2ξ⊥KCD + Lξ||hCD)+

M

2

∫
dτ

ẋC ẋD√
ẋµẋνgµν

δ(2ξ⊥KCD + Lξ||hCD)

(95)

By definition δξ⊥ = δξA = 0. Therefore,

S
(2)

HJM =
M

2

∫
dτ(−1

2
)
ẋE ẋF (2ξ⊥KEF + Lξ||hEF )

(ẋµẋνgµν)3/2
ẋC ẋD(2ξ⊥KCD + Lξ||hCD)+

M

2

∫
dτ

ẋC ẋD√
ẋµẋνgµν

(2ξ⊥(δKCD) + Lξ||(δhCD))

(96)
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We know δhCD = 2ξ⊥KCD + Lξ||hCD

S
(2)

HJM =− M

4

∫
dτ

ẋE ẋF (2ξ⊥KEF + Lξ||hEF )

(ẋµẋνgµν)3/2
ẋC ẋD(2ξ⊥KCD + Lξ||hCD)+

M

2

∫
dτ

ẋC ẋD√
ẋµẋνgµν

(2ξ⊥(δKCD) + Lξ||(2ξ
⊥KCD) + Lξ||Lξ||hCD)

(97)

According to [1] it is considered πABLξ||hAB is modulo a total divergence andDAπ
AB

is a vanishing momentum constraint. Also πABLξ||hAB vanishes. Similarly as πAB is the

momentum constraint for the case of vacuum, for point particle we will consider ẋAẋB

the momentum constraint (I would like to note that the basis of this consideration
is not entirely clear as we try to achieve our desired results using minimal number
of assumptions). Let ẋAẋB = ẊAB then ẊABLξ||hAB is modulo a total divergence

and DAX
AB = 0. ≃ indicates calculations are performed considering modulo total

divergences.
We have for the term,

ẋC ẋDLξ||(2ξ
⊥KCD)

=ẊCDLξ||(2ξ
⊥KCD)

=Lξ||(Ẋ
CD2ξ⊥KCD)− 2ξ⊥Lξ||(Ẋ

CDKCD) + 2ξ⊥ẊCDLξ||(KCD)

≃− 2ξ⊥Lξ||(Ẋ
CDKCD) + 2ξ⊥ẊCDLξ||(KCD)

(98)

where the first term on the RHS is dropped because the total derivative of a Lie
derivative of a scalar density is zero. This results in

S
(2)

HJM ≃− M

4

∫
dτẊCDẊEF

(ẋµẋνgµν)3/2
(4ξ⊥KCDKEF ξ

⊥+

2ξ⊥KCDLξ||hEF + 2ξ⊥KEFLξ||hCD + Lξ||hCDLξ||hEF )+

M

2

∫
dτ√

ẋµẋνgµν
(2ẊCDξ⊥δKCD − 2ξ⊥Lξ||(Ẋ

CDKCD)+

2ξ⊥ẊCDLξ||(KCD) + ẊCDLξ||Lξ||hCD)

≃− M

4

∫
dτẊCDẊEF

(ẋµẋνgµν)3/2
[4ξ⊥KCDKEF ξ

⊥ + 8ξ⊥KCD(DEξF ) + (DCξD)(DEDF )]

M

2

∫
dτ√

ẋµẋνgµν
(2ẊCDξ⊥δKCD − 2ξ⊥Lξ||(Ẋ

CDKCD)+

2ξ⊥ẊCDLξ||(KCD) + ẊCDLξ||Lξ||hCD)
(99)

by running similar methodology as [1] we look at the term

ẊABLξ||Lξ||hAB

=− 2ẊAB(ξCDADBξ
C − ξCDCDAξB + ξCDADCξB)+

[2ẊAB(DA(ξCDBξ
C) +DA(ξ

CDCξB))]

≃− 2ξCẊABDADBξ
C − 2ẊAB 2RABCDξCξD

(100)

The term in square bracket was dropped, due to it being a total divergence of a
momentum constraint DAẊ

AB = 0. Now 2RABCD = 1
2
2R(hABhCD −hADhCB) yields,
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ẊABLξ||Lξ||hAB

≃− 2ξCẊABDADBξC − 2ẊAB 1

2
2R(hABhCD − hADhCB)ξ

CξD

≃− 2ξCẊABDADBξC − ẊAB 2R(hABξ
CξC − ξAξB)

(101)

We will now calculate the term δKAB ,

δKAB =δ

(
1

2
∂⊥hAB

)
=
1

2
ξp∂p(δhAB)

=
1

2
ξ⊥∂⊥(2ξ

⊥KAB + Lξ||hAB)

=
1

2
ξ⊥∂⊥(DAξB +DBξA) + ξ⊥∂⊥(ξ

⊥KAB)

=
1

2
ξ⊥∂⊥(DAξB +DBξA) + ξ⊥∂⊥(ξ

⊥)KAB + ξ⊥ξ⊥∂⊥(KAB)

(102)

With these terms we substitute to S
(2)

HJM

S
(2)

HJM ≃− M

4

∫
dτẊCDẊEF

(ẋµẋνgµν)3/2
[4ξ⊥KCDKEF ξ

⊥ + 8ξ⊥KCD(DEξF ) + (DCξD)(DEDF )]+

M

2

∫
dτ√

ẋµẋνgµν
(ẊCDξ⊥ξ⊥∂⊥(DCξD +DDξC) + ξ⊥(2ξ⊥∂⊥ξ

⊥)KCD+

2ξ⊥ξ⊥ξ⊥∂⊥KCD − 2ξ⊥Lξ||(Ẋ
CDKCD) + 2ξ⊥ẊCDLξ||(KCD)+

ẊCD(−2ξCẊABDADBξC − ẊAB 2R(hABξ
CξC − ξAξB)))

(103)
Here we see that for both SHJV and SHJM the Hamiltonian-Jacobi can be expressed

in terms of the diffeomorphism generating vector fields. But unlike the Hamiltonian-
Jacobi for the massless 3D gravity (SHJV ) when a test particle is introduced the form

of the Hamiltonian-Jacobi is much more complicated. In a massless segment (S
(2)

HJV )

case we can see that the boundary normal component ξ⊥ and the boundary tangential
components ξA of the diffeomorphism generating vector field decouple. But clearly as
shown in equation (103) this does not hold in our case.

In the next section we will discuss as shown by Seth [1] that the length of the
geodesics which are normal to the boundary will be given by ξ⊥ and that the geodesic
length is a viable boundary field to consider as part of the dual boundary field theory.

Ideally we would analyze each and every part of S
(2)

HJM but for this work we will pay

attention to the segments of S
(2)

HJM with quadratic terms of ξ⊥ (our main focus being to

analyze (73) we expect quadratic terms of ξ⊥ will help us in order do to so),

S
(2)

M⊥ ≡− M

4

∫
dτẊCDẊEF

(ẋµẋνgµν)3/2
[4ξ⊥KCDKEF ξ

⊥]+

M

2

∫
dτẊCD√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(DCξD +DDξC) + ξ⊥(2ξ⊥∂⊥ξ
⊥)KCD)

(104)

as mentioned ˙XCD is considered at the center of the torus.
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ẊCD = ẋC ẋDδ(r) = δCDδC1δ(r) (105)

ẋC takes the form,

ẋC = (ẋt, ẋθ, ẋr) = (ẋA, ẋ⊥) = (1, 0, 0) (106)

With this ẋC ẋDδ(r) = δCDδC1δ(r). S
(2)

M⊥ reduces to,

S
(2)

M⊥ =−M

∫
dτδ(r)

(ẋµẋνgµν)3/2
δCDδEF δC1δE1[ξ⊥KCDKEF ξ

⊥]+

M

2

∫
dτδ(r)√
ẋµẋνgµν

δCDδC1(ξ⊥ξ⊥∂⊥(2DCξD) + 2ξ⊥(ξ⊥∂⊥ξ
⊥)KCD)

S
(2)

M⊥ =−M

∫
dτδ(r)

(ẋµẋνgµν)3/2
ξ⊥K2

11ξ
⊥+

M

∫
dτδ(r)√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(D1ξ1) + ξ⊥(ξ⊥∂⊥ξ
⊥)K11)

(107)

We see here a much more simplified form of the Hamilton-Jacobi for the test particle
segment of the action. Here we can see decoupled terms of ξ⊥ and ξA components along
with a coupled term. As to what this entails will be discussed in the conclusions chapter
of this thesis. The complete new Hamilton Jacobi will take the form,

S
(2)
HJ =S

(2)

HJV + S
(2)

M⊥

=
1

32πG

∫
d2y

√
h(ξ⊥∆ξ⊥ − ξADABξ

B) −

M

∫
dτδ(r)

(ẋµẋνgµν)3/2
ξ⊥K2

11ξ
⊥+

M

∫
dτδ(r)√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(D1ξ1) + ξ⊥(ξ⊥∂⊥ξ
⊥)K11)

(108)

4.4 Geodesic Length as a boundary field

Here we attempt to define a local field theory defined on the boundary ∂M, whose
Hamilton-Jacobi functional is equivalent (not exactly equal but agrees with under cer-
tain conditions) to the Hamilton-Jacobi functional of gravity. This is known as ‘dual
boundary field theory’. As shown in [1] geodesic length from a boundary point to the
central bulk point at r = 0 is considered as a field defined on the boundary itself. As we
will see this will act as our Liouville field defined on the boundary. The main reasons for
using geodesic length as a boundary field are that it is an geometric observable in the
gravitational theory, and it can describe the shape of the boundary. Another motivation
to use geodesic lengths from boundary to a central axis while considering it as boundary
field variables as shown by [13], although in a discrete setting it is shown that one can
easily integrate out all variables except these boundary field variables. Another property
that we will use in our computations. Finally in [7] it is argued that choosing geodesic
lengths as boundary variables gives rise to boundary degrees of freedom (as boundary
breaks diffeomorphsims).

We consider the same Gaussian metric defined earlier (74) this makes the tangent
vector to the geodesic orthogonal to the boundary. This makes the geodesic length in-
variant under boundary diffeomorphisms and evaluated on the boundary is proportional
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to ξ⊥. This will lead the geodesic length being related to the first order variation of
the Ricci scalar. This is important as we see in the Liouville Lagrangian (9) we have a
scalar field term coupled with the first order variation of the Ricci scalar. As stated by
Seth this allows to ‘guess’ a candidate for the dual field theory [1], and it should meet
the following two conditions.

• It should reproduce the equation of motion for this geodesic length

• It should reproduce the boundary diffeomorphism invariant part of the gravita-
tional Hamilton–Jacobi functional as the on shell solution.

The geodesic length l for the full metric gfullab given by to the first order metric
perturbations [1],

l =
1

2

∫ r2

r1

drγ⊥⊥(r) (109)

where r1 and r2 denotes to two end points of the geodesic (in which later we would
consider it a point on the boundary and the center bulk point). Considering Gaussian
coordinates and using (81) we can find that,

γ⊥⊥ = (Lξg)⊥⊥ = 2∂⊥ξ
⊥ (110)

and hence,
l = ξ⊥(r2)− ξ⊥(r1). (111)

We can express ξ⊥ as a functional of the boundary metric using (82) and (83) and it
results in,

ξ⊥ =
1

∆
ΠABγAB =

1

∆
δ(2R). (112)

It should be noted that it is assumed that rin = 0 describes a zero-dimensional locus
(can be considered as a central axis or a point).

We will now look into the derivation of the effective action for the geodesic length
observable from the gravitation action. Geodesic lengths are our dynamical variables
therefore expect those variables parametrizing geodesic lenghts, we integrate all other
degrees of freedom to obtain the effective action. The resulting effective action will be
the same as obtained in [1], but the difference will be the non-vanishing modes (similar
to as in the Hamilton-Jacobi in the discreet Regge gravity). It is difficult to perform
these integrations directly using the gravitational action therefore we will consider the
following second order action with a lagrangian multiplier term as utilized by Seth [1],

−8πGS(2) =
1

4

∫
M

d3x
√
gγab(V

abcdγcd +
1

2
Gabcdef∇c∇dγef )+

1

4

∫
∂M

d2y
√
hγab((B1)

abcdγcd + (B2)
abcde∇cγde)+

1

4

∫
(∂M)out

d2yλ(y)(ρ(y)− l[γ⊥⊥])

(113)

where

V abcd =
1

2

[
1

2
(R− 2Λ)(gabgcd − 2gacgbd)−Rabgcd − gabRcd + 2(gacRbd + gbcRad)

]
(114)

Gabefcd =gabgecgfd + gacgbdgef + gaegbfgcd − gabgefgcd − gafgbdgec − gacgbfged (115)

Babcd
1 =

1

2
(Khab −Kab)gcd − hachbdK − habKcd + hacKbd + hbcKad (116)
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Babecd
2 =

1

2
((haehbd − habhed)nc + (hachbe − habhce)nd − (hachbd − habhcd)ne. (117)

The first two terms of (113) represent the bulk and boundary terms of the gravita-
tional action respectively and these are not uniquely determined. It can take different
forms by using integration by parts and it is chosen such that the bulk term vanishes
on shell as mentioned earlier. The λ is a first order variable and it is the scalar density
with respect to the boundary metric. ρ is a scalar defined on the boundary. The la-
grangian multiplier term is introduced such that the equations of motion for λ evaluated
on (background) solutions yields the geodesic length [1]

l =
1

2

∫ rout

rin

dr γ⊥⊥. (118)

This interprets two scenarios. One is the existence of an outer and inner boundary.
In this case geodesics span from a point on the outer boundary to the inner boundary.
The other scenario is the existence of only an outer boundary. Here geodesics span from
the boundary to a point in the bulk at r = 0.

In order to calculate the solve for metric (perturbative) components and the la-
grangian multiplier we consider the equations of motion by varying the action (113)
with respect to the metric components this gives [1]

Ĝab := V abcdγcd +
1

2
Gabcdef∇c∇dγef =

1

4

λ(y)√
h
δa⊥δ

b
⊥, (119)

where since Gaussian coordinates are used we can write
√
g =

√
h. This does hold

the contracted Bianchi identities. With this we have the necessary tools to solve for the
three metric components γ⊥⊥ and γ⊥A in term of γAB and λ. In the next section we
will derive the effective action for a torus boundary embedded into flat space.

4.5 Twisted Thermal Flat Space with finite Boundary

We will now consider a background solution that directly and simplest to work with in
Gaussian coordinates. We will choose the twisted or spinning thermal flat space which is
also worked by Seth in the massless case. The reason for choosing this is to replicate the
results as mentioned in section 3 by Alicia [10] and compare the one loop determinant
that will be obtained in both discretized and in the continuum case. The metric of the
thermal spinning flat space is [1]

ds2 = dr2 + dt2 + r2dθ2. (120)

The periodic identification for this metric is (r, t, θ) ∼ (r, t+β, θ+γ) and the additional
identification for the angular variable θ ∼ θ + 2π(1− 4GM).

As described in the case of Regge gravity we need to consider a solid torus and it
is given when considered the space-time of range 0 ≤ r ≤ rout [1] and the height of
the cylinder is β with a twisting angle γ. For the twisted flat space we calculate the
boundary extrinsic (background) curvature, differential operator ∆ and DAB ,

KAB =
1

2
∂⊥hAB = rδθAδ

θ
B

K11 =rδθt δ
θ
t = 0

(121)
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∆ =2(KCD −KhCD)DCDC

=2(rhθChDθ − rδθAδ
θ
Bh

ABhCD)DCDD

=2

(
1

r3
∂θ∂θ − rhθθ

(
∂t∂t +

∂θ∂θ
r2

))
=− 2r−1∂2

t

(122)

DAB =2(KCD −KhCD)DCDDhAB

=2(rhθChDθ −KhCD)DCDDhAB

=2

(
1

r3
∂θ∂θ

)
− 2(rδθAδ

θ
Bh

ABhCD)DCDDhAB

=
2

r3
∂2
θ − 2

r

(
∂2
t +

∂2
θ

r3

)
hAB

=− 2

r
hAB∂

2
t

(123)

and the boundary intrinsic (background) curvature is vanishing 2R = 0. Substituting

these values to 107 we can further simplify S
(2)

M⊥ ,

S
(2)

M⊥ = M

∫
dτδ(r)√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(∂tξt)) (124)

With analogous to the Fourier transformation in [1],

γab(r, k
′
t, k

′
θ′) =

1√
2πβ

∫ β/2

β/2

dt

∫ π

−π

dθ′γab(r, t, θ
′)e−iθ′k′

θ′ e−i 2πt
β (k′

t−
γ
2π k′

θ′ ) (125)

we transform θ = θ′(1− 4GM) and let µ = 1− 4MG

γab(r, k
′
t, k

′
θ) =

1√
2πβ

∫ β/2

β/2

dt

∫ πµ

−πµ

dθγab(r, t, θ)e
−i( θ

µ )k′
θe−i 2πt

β (k′
t−

γ
2π k′

θ) (126)

where we will use the abbreviation kt =
2π
β (k′t−

γ
2πkθ′) and kθ = (

k′
θ

µ ) and k′θ′ , k′t ∈ Z.
The fourier inverse transformation is as follows

γab(r, t, θ) =
1√
2πβ

∑
k′
t,k

′
θ

γab(r, kt, kθ)e
iθkθeitkt . (127)

By Fourier transformation the equations of motions of (119) can be used to now
solve for the lapse and shift components γ⊥⊥ and γ⊥A of the metric perturbations [1].

γ⊥⊥ =2∂⊥

(
1

2r

(
γθθ +

k2θ
k2t

γtt − 2
kθ
kt

γθt

))
(128)

=2∂⊥ξ
⊥

γ⊥θ =ikθ
1

2r

(
γθθ +

k2θ
k2t

γtt − 2
kθ
kt

γθt

)
+ r2∂⊥

(
i

r2

(
kθ
2k2t

γtt −
1

kt
γθt

))
− ikθλ

1

4k2t
(129)

= ikθξ
⊥ + r2∂⊥ξ

θ − ikθλ
1

4k2t
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γ⊥t =ikt
1

2r

(
γθθ +

k2θ
k2t

γtt − 2
kθ
kt

γθt

)
+ ∂⊥

(
− i

2kt
γtt

)
− iktλ

1

4k2t
(130)

= iktξ
⊥ + ∂⊥ξ

t − iktλ
1

4k2t

By comparing these equations with (85) it can be deduced that [1]

ξ⊥ =
1

2r

(
γθθ +

k2θ
k2t

γtt − 2
kθ
kt

γθt

)
, (131)

ξθ =
i

r2

(
kθ
2k2t

γtt −
1

kt
γθt

)
(132)

and

ξt = − i

2kt
γtt. (133)

The λ dependence of ξ⊥ is implemented by rescaling ξ⊥ [1]

ξ̂⊥ = ξ⊥ − 1

2∆

λ√
h
= ξ⊥ − 1

4k2t
λ (134)

coming from the variation of the Lagrange multiplier as mentioned earlier we also
have [1],

ρ =
1

2

∫ r2

r1

drγ⊥⊥ = ξ̂⊥(r2)− ξ̂⊥(r1). (135)

We see that since the λ term in ξ⊥ is r independent for non vanishing radius (r1)
the scalar field ρ does not depend on λ. In the case of non-vanishing radius λ is not
solvable and will be a free parameter, the resulting action becomes the gravitational
Hamilton–Jacobi functional plus the Lagrange multiplier term which does not solve our
problem. To overcome this problem we follow the procedure as conducted by Seth
and that is to only consider having an outer boundary and implement r = 0 into the
bulk manifold M. When implementing this condition we have to consider smoothness
conditions for the metric perturbations at r = 0. With these conditions imposed ξ⊥ will
be λ dependent. This mechanism allows to solve for λ and compute an effective action
for the geodesics lengths. This action will help us to predict a possible gravitational
dual boundary field theory.

4.6 Implementing smoothness conditions for the metric at r = 0

With analogous to [1] we will impose the smoothness condition at r = 0. Smoothness
conditions are implemented by Taylor expanding the metric perturbations around the
origin. In cylindrical coordinates the metric perturbations become r [1],

γab = a
(0)
ab + a

(1)
ab r + a

(2)
ab r

2 +O(r3) for ab =⊥⊥, tt,⊥ t; (136)

γab = a
(1)
ab r + a

(2)
ab r

2 +O(r3) for ab =⊥ θ, θt;

γθθ = a
(2)
θθ r

2 +O(r3).

We will see that we now unlike the massless case we only need to consider two
separate cases, one is |kθ| ≥ 1/µ and kθ = 0. For the case of |kθ| ≥ 1/µ we Taylor
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expand all metric perturbations in the solutions for the lapse and shift variables (128,

129, 130) in r and we are able to obtain relations for the expansion coefficients a
(n)
ab .

Imposing the conditions that a
(n)
ab = 0 for n < 0 and that a

(0)
aθ = 0 as well as a

(1)
θθ then

the following conclusions obtained was the same as in [1]:

k2θ
k2t

a
(0)
tt = 0, (137)

(
1− 1

k2θ

)(
k2θ
k2t

a
(1)
tt − 2

kθ
kt

a
(1)
θt

)
=

λ

2k2t
. (138)

We have a
(0)
tt = 0 for kθ ̸= 0, this also implies a

(−1)
rθ and a

(−1)
rt vanishes. From the

second equation we see that for kθ = 0 needs special treatment. With this the value of
ξ⊥ at r = 0 can be calculated,

ξ⊥(0) = lim
r→0

1

2r

(
γθθ +

k2θ
k2t

γtt − 2
kθ
kt

γθt

)
=
1

2

(
k2θ
k2t

a
(1)
tt − 2

kθ
kt

a
(1)
θt

)
=
1

4

k2θ
(k2θ − 1)

λ

k2t
.

(139)

Next we look at the equation of motion imposed by the Lagrange multiplier [1],

ρ =
1

2

∫ r2

r1

drγ⊥⊥ = ξ⊥(r2)− ξ⊥(r1), (140)

where

ξ⊥(rout) =
1

2rout

(
γθθ(rout) +

k2θ
k2t

γtt(rout)− 2
kθ
kt

γθt(rout)

)
(141)

with this the solution for the lagrange multiplier is obtained (r2 = rout, r1 = 0),

λ = 4k2t

(
1− 1

k2θ

)(
ξ⊥(rout)− ρ

)
(142)

4.7 The Dual Boundary Field Action

We will now derive the Hamilton-Jacobi of a possible dual boundary field theory. Now
we will substitute solutions (128),(129) and (128) to the Lagrangian multiplier term 113.
Evaluation of the bulk term will be,

−8πGS
(2)
bulk =

1

4

∫
M

d3x
√
gγabĜ

ab

=
1

16

∫
M

d2ydrγ⊥⊥(r, y)λ(y)

=
1

8

∫
d2yλ(y)(ξr(rout, y)− ξ⊥(0, y)),

(143)

The boundary term contains two parts. The Hamilton-Jacobi (S
(2)
HJ) and the term

containing lagrangian multiplier. The first is the calculated term (108) and the λ de-
pendent term is the boundary integral over λξ⊥ [1] (and considering we only have an
outer boundary),

33



−8πGS
(2)
bdry = −8πGS

(2)
HJ(rout)−

1

8

∫
d2yλ(y)(ξr(rout, y)), (144)

To obtain the on-shell gravitation action we of course add (143) and (144) expres-
sions. With this we obtain,

−8πGS
(2)
λ =− 8πGS

(2)
bulk − 8πGS

(2)
bdry

=− 8πGS
(2)
HJ(rout)−

1

8

∫
d2yλ(y)(ξr(0, y))

(145)

We substitute the results for λ and ξ⊥(0, y) to the above expression

−8πGS
(2)
λ |solu =− 8πGS

(2)
HJ(rout)−

1

8

∫
d2y

[
4k2t

(
1− 1

k2θ

)(
ξ⊥(rout)− ρ

)] [1
4

k2θ
k2θ − 1

(
λ

k2t

)]
=− 8πGS

(2)
HJ(rout)−

1

2

∫
d2y

[
(ξ⊥(rout)− ρ)k2t

(
1− 1

k2θ

)
(ξ⊥(rout)− ρ)

]
(146)

We now fourier inverse transform,

−8πGS
(2)
λ |solu =− 8πGS

(2)
HJ(rout) +

1

2

∫
d2y

[
(ξ⊥(rout)− ρ)∂2

t

(
1 +

1

∂2
θ

)
(ξ⊥(rout)− ρ)

]
=− 8πGS

(2)
HJ(rout) +

1

2

∫
d2yξ⊥(rout)∂

2
t

(
1 +

1

∂2
θ

)
ξ⊥(rout)+

1

2

∫
d2y

[
ρ∂2

t

(
1 +

1

∂2
θ

)
ρ− 2ρ∂2

t

(
1 +

1

∂2
θ

)
ξ⊥(rout)

]
.

(147)
The Hamilton-Jacobi functional is given by (for twisted thermal flat space with finite

boundary using (121, 122, 123))

S
(2)
HJ = S

(2)

HJV + S
(2)

M⊥

=− 1

16πG

∫
d2y(ξ⊥∂2

t ξ
⊥ − ξAhAB∂

2
t ξ

B) +M

∫
dτδ(r)√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(∂tξt))

(148)
and with ξ⊥ = ∆−1δ (2R) = −2−1r∂−2

t δ (2R) we can write

−8πGS
(2)
λ |solu =− 1

4

∫
d2y

√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ (2R)

)
+

1

4

∫
d2y

√
h

(
ξ⊥∆

1

∂2
θ

ξ⊥ − ξADABξ
B

)
+

M

∫
dτδ(r)√
ẋµẋνgµν

(ξ⊥ξ⊥∂⊥(∂tξt))

(149)

This does define an action for the boundary field ρ, We see that it it very much the
same as the action in the vacuum case but with an additional term representing the
particle. By analyzing the Hamilton-Jacobi expression we can ‘guess’ a candidate for
the dual field action and it is predicted as follows,

8πGS′
ρ := −1

4

∫
d2y

√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ (2R)

)
. (150)
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We see that the expression for the dual field action S′
ρ is the same as in the massless

scenario [1]. We will discuss the results and conclude them in the next chapter.

5 Conclusion and Discussion

As mentioned previously the candidate for the postulated dual field action needs to
reproduce the geodesic length as a solution for the equations of motion and also should
reproduce the diffeomorphism invariant part of the gravitational-Hamilton Jacobi func-
tional. As shown in [1] the proposed Louville like action (9) does solve equation of
motion such that ρ = ξ⊥ and produces the gravitational gravitational-Hamilton Jacobi
functional (massless case) as the on-shell action [1].

Sρ|sol =
1

4

∫
d2y

√
h
(
ξ⊥∆ξ⊥

)
(151)

But this postulated action (9) does not display the gauge symmetries when calculated
the one-loop correction for the gravitational path integral. Hence the dual field action
(150) was found to be the better candidate for the dual field action. This does produce
(151) but multiplied with the non-local operator (1 + ∂−2) (can be compensated by
adding the gravitational action with ∂−2 inserted [1]).

But why was the postulated candidate for the case with a mass is the same as the
massless-case? Looking at the gravitational Hamiltonian-function with particle (108)
derived for our scenario we see that boundary diffeomorphism invariant part includes
the same term as the massless case and some additional terms involving the mass. But
these terms do couple with the extrinsic curvature of the boundary metric. But as shown
in (121) for the spinning thermal flat space (solid torus) this quantity vanishes leaving
only the same boundary diffeomorphism invariant part as in the massless case. Also
as shown in (149) there are no addition or modifications involving the boundary field
ρ. Therefore our predicted dual field action is the same as the massless case. But for
different boundaries this may not be the case, this is will require further research.

The dual action S′
ρ differs from the Louville action (9) by the insert of (1+∂−2

θ ). This
additional term has consequences. In the massless case the geodesic length vanishes for
modes kθ = ±1 and is ill defined for kθ = 0. But in this case for k′θ = ±1 the geodesic
length does not vanish but it is still ill defined for k′θ = 0. Exactly as in [1] kθ = 0 will

be a gauge mode and a
(0)
tt is considered as a gauge parameter. Which is also confirmed

in the Regge calculus setting [10] (also see section 3.4). We will now look at the k′θ = ±1
modes,

The above equation (138) we find that for k′θ = ±1

(
1− µ2

)( 1

µ2k2t
a
(1)
tt ± 2

1

µkt
a
(1)
θt

)
=

λ

2k2t
(152)

we know that µ = 1− 4GM

(8GM(1− 2GM))

(
1

(1− 4GM)2k2t
a
(1)
tt ± 2

1

(1− 4GM)kt
a
(1)
θt

)
=

λ

2k2t
. (153)

We see here that unlike for the massless case as described in [1] for kθ = ±1 the
value for λ ̸= 0. This means that ξ⊥(0) will be λ dependent and will not be considered
as a gauge parameter (like in the massless case) but a physical parameter. This claim
is also supported in the Regge calculus setting (see section 3.5 or [10]) where we found
two extra physical modes (compared to the massless case) corresponding to two Fourier
modes. It should be noted that for a specific mass value M = 1/2G the value for λ
becomes zero (Further study is required as to determine what does that entail).
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Now we look into the determining the one loop determinant for the postulated S′
ρ

(150). We already know the one loop determinant has been calculated in the discreet
setting (see section 3.6 or [10], one loop determinant has being calculated in the contin-
uum for massive particles but in AdS (anti-de sitter) setting [17] giving similar results.)
Since the dual action (150) obtained is the same as in [1] we can safely assume (predict)
the one loop determinant in our case. A simple lattice regularization for the Hessian
is adopted to calculate the one loop determinant, it is given by k2t (1 − k−2

θ ) [1]. The
Fourier modes when calculated produce the following expressions [1],

k2θ →
(
2− 2cos

(
2π

Nθ

))−1(
2− 2cos

(
2π

Nθ
κθ

))
(154)

k2t → N2
t

β2

(
2− 2cos

(
2π

Nt
(κt −

γ

2π
κθ),

))
(155)

where κ = 0, ..., Nθ − 1 and κt = 0, ....Nt− 1. With this choice unlike in the massless
flat gravity case we have that (1 − k−2

θ ) ̸= 0 for κθ = ±1. Therefore in this case our
dual action can be defined for |kθ| ≥ 1 so then we can consider ignoring some inessential
constant we can predict that the one loop determinant will take the following form as
in [1],

Nθ−1∏
κθ=1

Nt−1∏
κt=0

1√
k2t (1− k−2

θ )
∼

(Nθ−1)/2∏
κθ=1

1

|1− qκθ |2
(156)

where q = exp(iγ). As we can see we can reproduce the one loop determinant of the
gravitational theory with massive particle displaying the massive BMS3 character as
shown in [10, 24]. The results obtained do not contradict with the solutions obtained for

the 3D flat gravity (massless case) as we substitute M = 0 all results such as S
(2)
λ will

result in all expressions in the flat 3D case. This confirms the interpretation of S′
ρ as a

dual action for 3D gravity in vacuum with a massive point particle. Now we address a
a few aspects of this thesis that needs to be studied further.

Firstly, our original objective to analyze (73) in the continuum setting. Although
it is not explicitly analyzed in this thesis we can predict that the extra term arising
from the k = 1 mode in (73) could refer to the extra (mass) terms obtained in the
Hamilton-Jacobi functional for gravity S⊥

M (but 73 being mass independent could cause
contradictions in that case the integral of the affine parameter τ could play a significant
role). Another reason for studying specifically the quadratic ξ⊥ terms in the Hamilton-
Jacobi because X0

r (k, ν) in (73) is directly related to ξ⊥. In order to properly analyze
and compare SHJ (2) needs to be discretized woth analogus to the procedure as shown in
[4]. Another aspect to reconsider is the that we considered the smoothness at r = 0 to
obtain solutions for the Lagrangian multiplier term. If we consider the canonical defect
(at the center) as mentioned (section 4.3) we may have to re-evaluate our approach to
obtain solutions for the Lagrangian multiplier term. Finally, looking at equation (153)
we see that we need to pay special attention for when M = 1/4G.

This work can be expanded much further by looking into more examples of manifolds,
here we have studied a torus boundary embedded into flat space but we could also
consider hyperbolic AdS space or a spherical boundary embedded into flat space. Also
it is needed to study a more general approach such as adding spin to the particle,
or considering a particle with finite volume. I hope this thesis has contributed into
understanding more about solving different aspects of issues arise when studying a theory
for quantum gravity.
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