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Abstract

A transformer-based Machine Learning algorithm is developed to predict the Higgs
jet mass from boosted Higgs bosons decaying into bottom-quark pairs, H → bb̄. It
does so using data of simulated proton-proton collision at a centre-of-mass energy of√
s = 13 TeV, containing jet, track and subjet information. Two target variables are

investigated: the true jet mass (reconstructed from truth particles ending up in the large-
R jet in the detector) and the kinematic mass (the invariant mass of the bottom pair).
Furthermore, selections of the input variables are tested as well as different architectures
to optimise the predictions. The model trained on the kinematic mass provided the best
predictions, i.e. the strongest Higgs peak, the least affected pT and |η| distribution and
the best resolution at high pT . The Higgs peak using the regressed masses is described
by µ = 128 GeV and σ = 10 GeV, whereas the reconstructed large-R jet mass peak
is described by µ = 125 GeV and σ = 22 GeV. In terms of the RMSE, this is an
improvement of factor 2.
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Chapter 1

Introduction

Back in 1964, the Higgs boson was first hypothesised by Peter Higgs. [1] It would explain
how the particles in the old version of the Standard Model could be massive without
violating the symmetries in the theory. It took 48 years to prove its existence, as it was
discovered in 2012 by ATLAS and CMS at CERN. [2, 3] This particle finally completed
the theory now well known as the Standard Model (SM) of particle physics. It is able to
describe particle interactions well, which for instance take place at CERN. However,
some parameters of the model are free, meaning that we do not have a derivation
for them and they can only be fitted using data. Moreover, some experiments show
results that cannot be described by the SM or that slightly deviate from theoretical
predictions. Take for example the potentially deviating magnetic moment of the muon
[4], unpredicted neutrino oscillations [5] and unexplained dark matter [6]. Even more
unsatisfying is the fact that we cannot yet describe gravity and particle physics using
one theory. Hence the search for new physics continues.

A key element in this search is the Higgs boson, because still little is known about
this particle. For instance, the measurement of the Higgs self-coupling constant is yet
inconclusive. Therefore, we do not know if nor why we live in a meta-stable universe.
[7] Besides, the coupling of the Higgs boson to other elementary particles is related
to the Higgs boson mass. The corresponding coupling constants are expected to be
proportional to the particle masses. Any deviations can then be used to probe physics
beyond the SM. In other words, many open questions are linked to the Higgs boson and
the ability to answer them depends on the resolution of related measurements.

Right now the Higgs mass is measured to be 125.11 ± 0.11 GeV/c2. [8] This value is
found using H → γγ and H → ZZ∗ → 4l decays.1 However, H → γγ has a branching
ratio of about 0.2% and H → ZZ of about 3%. [9] Meanwhile, the decay H → bb̄ has
a branching ratio of about 57%. Hence using these events in physics analyses would
greatly increase the statistics. However, the production rate of the Higgs boson is low,
resulting in only a small signal on top of a large multi-jet background. Distinguishing
this specific process from the background is a challenging task as multiple processes
produce similar decay products. The mass, which is reconstructed from decay products
in the detector, can be a useful discriminating variable, as the mass of the decaying
particle is very characteristic of a process. Therefore, we aim to improve the resolution
of the reconstructed mass. This could then aid in selecting H → bb̄ events using jet
taggers.

1The asterisk in Z∗ denotes an off-shell particle.
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CHAPTER 1. INTRODUCTION

Currently, the mass of a decaying particle is derived using traditional (though state-
of-the-art) algorithms. When the decay products are easily distinguishable, e.g. in
four-lepton events, the invariant mass can easily be calculated. In hadronic decays, the
resolution of the mass is reduced, because signal and background particles may end
up in the same jet. In this thesis, we are interested in the boosted regime, since it is
more sensitive to physics beyond the SM. In boosted Higgs decays, i.e. when the Higgs
bosons have high momenta, the two b jets overlap in the detector. This complicates
the reconstruction of the jet and the objects inside of it, as well as the discrimination
of background particles. Currently, in such decays, the reconstruction algorithms aim
to remove background particles in the detector, correct the measured values of the
remaining particles and construct the mass from that. However, sometimes too few or
too many particles are removed causing the subsequent adjustments to be incorrect. This
is where Machine Learning (ML) algorithms could play an important role, as they could
potentially perform this complicated task better. Therefore, we aim to improve the mass
resolution by performing a regression task using a transformer-based ML algorithm.

In Chapter 2, the ATLAS detector is described, as well as the physics behind the process
of interest, i.e. H → bb̄. In Chapter 3, the simulation and contents of the training
and physical SM evaluation samples are described, after which selections on the input
variables and objects are made. Furthermore, the possible architectures of the ML
models and their properties are described. In Chapter 4 the ML models trained on the
two different target variables are optimised, presented, tested and discussed. Finally, in
Chapter 5 we conclude our findings.
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Chapter 2

Particle physics

2.1 The Standard Model

The Standard Model of particle physics is a model that contains a set of particles and
that describes the interactions between them. The particles can be divided into two
groups: fermions having half-integer spins and bosons having integer spins. Fermions
are the building block of matter and can be divided into quarks and leptons. All particles
have an antiparticle, which has the same mass and spin, but opposite charge. Neutrinos
do not have an electrical charge, but they are expected to have antiparticle variants. The
Z boson and the photon, on the other hand, are their own antiparticles. All particles of
the SM and their properties are shown in Figure 2.1.

Figure 2.1: The Standard Model of particle physics. [10]
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CHAPTER 2. PARTICLE PHYSICS

Quarks (q), unlike leptons, have a so-called colour charge, causing them to only appear
in colourless combinations of quarks called hadrons. Hadrons with one quark and one
antiquark (qq̄) are called mesons and those with three quarks (qqq) are called baryons.
Those two are the most common kinds of hadrons. The best-known hadrons are the
proton (udd) and the neutron (uud). An example of a meson is the B meson containing
a bottom antiquark and either an up, down, strange or charm quark (qb̄). [11]

Leptons (l) can be divided into charged leptons (ℓ), having charge ±1e, and chargeless
leptons, called neutrinos (νℓ or simply ν). The antileptonic counterpart of a charged
lepton is denoted with a plus instead of a minus, e.g. e+ instead of e−, whereas the
antineutrino is denoted with a bar, just like the quarks, i.e. ν̄.

The bosons can be divided into four gauge bosons, which are the force carriers in the
SM, and one scalar boson, which is the Higgs boson. The gluon (g) is responsible for the
strong force, binding quarks into hadrons. It carries a colour charge and therefore only
couples to coloured particles, i.e. quarks and other gluons. All processes governed by
gluon interactions can be described by Quantum Chromodynamics (QCD). The photon
(γ) only couples to charged particles and it mediates the electromagnetic force. The
related processes are described by Quantum Electrodynamics (QED). The W± and Z0

bosons are called the weak bosons and they carry the weak force. They couple to all
fermions, including the neutrino. Hence the neutrino only couples to the weak bosons.
The weak bosons and the photon as well as their interactions can all be described by
the Electroweak force. [12]

The Higgs boson (H) is the particle that gives mass to all other particles in the SM
via the so-called Higgs mechanism. The coupling strength between the Higgs boson and
other particles is proportional to the mass of those particles. Hence heavier particles
are more likely to emerge in Higgs decays, provided that the sum of the masses of the
decaying particles is not larger than the Higgs mass. For instance, the decay H → tt̄
would not be kinematically possible, unless one of the top quarks is a virtual particle
decaying to another lighter real particle.

2.2 Higgs decay channels

In the ATLAS detector, millions of protons collide every second with enormous ener-
gies, allowing for the creation of new particles. Very rarely an on-shell Higgs boson is
produced, but due to its high mass, it quickly decays into other particles. The most
likely decay mode of the Higgs boson is H → bb̄, which is sometimes denoted as H → bb,
without the bar above the b. This decay mode is hard to extract from the detector data,
since many processes produce a bb̄-pair and thus similar jets in the detector. More-
over, after the decay the b quarks start to hadronise, meaning that two B hadrons1 (a b
quark with one or more other quarks) are created. These hadrons can then decay into
numerous other particles again, which complicates selecting the right jets.

To be able to discriminate H → bb̄ events more efficiently from background processes, it
is useful to look at the decay mode in which a weak boson is associated with the Higgs
boson as depicted in Figure 2.2a. One can then select events with 0, 1 or 2 charged
leptons ending up in the detector, which reduces the relative background contribution in
the 0-, 1- or 2-lepton channel respectively. Meanwhile, the neutrinos remain undetected
as they barely interact with matter. Below we list a few interesting signal events, as
well as some background processes that could spoil the measurements.

1We also imply their antiparticles.
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Figure 2.2: Feynman diagrams of (a) the general weak associated H → bb̄ decay, i.e. qq̄ →
V → V H → ll̄bb̄, as well as of example background processes involving (b) a top pair, i.e.
qq̄ → g → tt̄ → ℓν̄ℓqq̄bb̄ and (c) QCD multijets, i.e. qq̄ → g → gbb̄. In the latter process, the
rightmost gluon is able to produce even more jets. All processes result in a bottom pair and a
certain number of leptons and jets.

Signal events:

• Z → ZH → ℓℓbb (2-lepton channel)
• W → WH → ℓνbb (1-lepton channel)
• Z → ZH → ννbb (0-lepton channel)

Background events:

• QCD, which includes any process that involves gluons, but no Higgs boson, de-
caying into a bottom pair, e.g. g → bb̄.

• Top, which denotes any process in which a top pair is produced, which then decays
to a bottom pair via W bosons. The two W bosons could then decay into a pair
of quarks or to a lepton-neutrino pair. Therefore, this process can contribute to
the 0-, 1- and 2-lepton channels.

2.3 ATLAS

The ATLAS detector [13] at the Large Hadron Collider (LHC) is a particle detector that
can be used in numerous fields of research. It has a cylindrical geometry that is forward-
backward symmetric and it covers nearly the entire solid angle around the collision point.
A cut-away view of the detector can be found in Figure 2.3. The coordinate system used
in ATLAS is right-handed. Its origin is at the centre of the detector, i.e. at the so-called
nominal interaction point (IP). The z-axis is aligned along the beam, the x-axis points
from the IP to the centre of the LHC ring, and the y-axis points upwards.

Points in this coordinate system are denoted using the coordinates r, ϕ and η. The
cylindrical coordinates r and ϕ are used in the transverse plane, with ϕ ∈ [0, 2π) the
azimuthal angle around the z-axis. The pseudorapidity, denoted by η, is defined in terms
of the polar angle θ ∈ [0, π] as η = − ln tan(θ/2). Hence η ∈ (−∞,∞), but typically most
values lie within η ∈ [−3, 3]. Angular distance is defined by ∆R ≡

√
(∆η)2 + (∆ϕ)2.

To understand the contents of the data that we will be using, we will briefly describe
the components of the detector. The detector consists of an inner tracking detector,
electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner track-
ing detector, or just the Inner Detector (ID), is surrounded by a thin superconduct-
ing solenoid providing a 2 T axial magnetic field. This provides the reconstruction of
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CHAPTER 2. PARTICLE PHYSICS

charged-particle tracks in the range |η| < 2.5.

The ID system consists of three subsystems: a Pixel Detector, a Semiconductor Tracker
(SCT), and a Transition Radiation Tracker (TRT). The Pixel Detector’s inner radius
is 34 mm and it can detect small energy deposits using silicon pixels. It contains an
insertable barrel layer (IBL), which is the innermost pixel layer (out of four) covering
the vertex region. The Pixel Detector is surrounded by the Semiconductor Tracker
consisting of silicon strips. Both subsystems usually provide four 2D space points per
track. The surrounding Transition Radiation Tracker (|η| < 2.0) containing drift tubes
provides radially extended track reconstruction and electron identification information.

The ID is surrounded by electromagnetic (EM) calorimeters, which measure showers of
electrons, photons and to some extent hadrons. They are again surrounded by hadronic
calorimeters, which measure the energy deposits from hadrons passing through the EM
calorimeters. Both calorimeters cover |η| < 4.9. The EM calorimetry is provided by
barrel and endcap high-granularity lead/liquid-argon (LAr) calorimeters (|η| < 3.2).
Hadronic calorimetry is provided by three steel/scintillating-tile barrel calorimeters
(|η| < 1.7), and two copper/LAr endcap calorimeters (1.5 < |η| < 3.2). Finally,
the forward regions (3.2 < |η| < 4.9) are covered by copper/LAr and tungsten/LAr
calorimeters, optimised for EM and hadronic showers respectively.

The muon spectrometer consists of triggering and high-precision tracking chambers. The
muon trigger system (|η| < 2.4) is composed of resistive plate chambers in the centre
region and thin gap chambers in the endcap regions. The separate precision chamber
(|η| < 2.7) measures the deflection of muons in a magnetic field that is generated by
three superconducting toroidal magnets. It contains three layers of monitored drift tubes
and, in the forward region, it contains cathode strips. [14]

Figure 2.3: A cut-away view of the ATLAS detector. [13]
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Chapter 3

Methods

In this chapter, the necessary definitions and properties related to the simulated data
and the ML algorithm are explained. In this project, a transformer-based ML model
was used to improve the resolution of the reconstructed jet mass. For the training of this
model, a suitable dataset is generated and a representative SM dataset is used for the
evaluation of the model. From the signals in the different parts of the detector, many
different objects and variables can be defined and constructed. We will be using the
variables describing tracks, jets and subjets as input for the ML model. This chapter
will explain these objects and variables and from them, a suitable selection is made
for the training. After that, the transformer model is explained, as well as related ML
hyperparameters that need to be investigated and optimised.

Note that the data, model and code are similar to those used by the Boosted Hbb/cc
Tagger Task Force. This group trains classification ML algorithms, also called taggers,
like the GN2X tagger. It aims to filter boosted H → bb̄ and/or H → cc̄ events from
the background using a transformer-based neural network. [15] Since we are aiming
to improve the mass resolution of similar events, which could then aid these taggers,
it makes sense to use a similar setup. However, different input objects and variables
will eventually be used. Also, the architecture is adjusted and optimised for our task
and the code is adjusted to be able to perform regression as a main task rather than
classification.

3.1 Data generation

Simulation data at ATLAS can be generated for many different purposes, for example for
calibrations, physics analyses, or - like in our case - for training ML models. This data
is generated using Monte Carlo (MC) simulations. Using probability density functions,
these simulations aim to deliver events that together provide the desired distributions,
e.g. distributions as predicted by the SM.

The data used in this thesis consists of jets that are simulated from proton-proton (pp)
collisions at a centre-of-mass energy of

√
s = 13 TeV. Four processes are considered,

namely H → bb̄, H → cc̄, top and QCD and they are simulated separately. The specific
decay chains that are included are detailed in tables 3.1 and 3.2. Only H → bb̄ and
H → cc̄ jets that are associated with a Z boson (ZH) are considered.

The training and evaluation data are simulated in two different ways. The training data
containing ZH production is generated with a biased phase-space sampling using an

7



CHAPTER 3. METHODS

Table 3.1: Simulation details of the training data with corresponding generator versions, tunes
and PDF sets.

Jet Process Generator Tune NNPDF
H → bb̄ qq̄ → ZH,Z → µ+µ− pythia 8.306 [17] A14 [18] 2.3 LO [19]
H → cc̄ qq̄ → ZH,Z → µ+µ− pythia 8.306 A14 2.3 LO
Top Z ′ → tt̄ pythia 8.235 A14 2.3 LO
QCD Multijet pythia 8.235 A14 2.3 LO

Table 3.2: Standard Model simulation details of the evaluation data with corresponding
generator versions, tunes and PDF sets. Here Z → ℓℓ̄/νν̄/qq̄, where ℓ = e, µ.

Jet Process Generator Tune NNPDF
H → bb̄ qq̄/gg → ZH powheg v2 + pythia 8.212 [20] AZNLO [21] 3.0 NLO
H → cc̄ qq̄/gg → ZH powheg v2 + pythia 8.212 AZNLO 3.0 NLO

artificially wide Higgs decay width of 400 GeV. Then selecting only kinematic masses
between 50 and 200 GeV results in a nearly uniform mass distribution within that
range. [16] Having a uniformly distributed target variable, rather than a peaked one,
prevents an ML model from solely predicting the mean value, i.e. the artificially set
Higgs mass. This would make the model insensitive to physics beyond the Standard
Model (BSM) and background processes. The final training dataset does not contain a
completely flat kinematic mass distribution due to for instance the selection criteria in
the jet reconstruction algorithms. Similarly, top events are created with a hypothetical
Z ′ boson to obtain a flatter pT (transverse momentum) distribution.

The evaluation data is a simulation of certain SM events, where the Higgs mass is set
to 125 GeV. In the evaluation data, only H → bb̄ and H → cc̄ events are considered.
Throughout this thesis, we will only present the results on H → bb̄ events. In the
appendix, the predictions on H → cc̄ events and background processes, i.e. QCD and
top, are presented as well.

The exact generation methods for the training and evaluation data are detailed in Table
3.1 and 3.2 respectively, together with the versions of the generator, tunes and parton
distribution functions (PDF). The specific tune determines how the data is adjusted,
and it aims to better match the properties and distributions of the processes with the
experimental data. The PDFs describe the probability distribution of the momentum
and energy carried by quarks and gluons within a proton or other hadrons involved in
a collision. In the training data, the decays of bottom and charm hadrons are modelled
by evtgen v1.6.0, and in the evaluation data evtgen v1.2.0 is used. [22]. The events
are then passed through the ATLAS full detector simulation [23]. This simulation takes
into account the effect of multiple pp interactions per bunch crossing, as well as the
effect on the detector response due to interactions from previous and upcoming bunch
crossings. [15]

In this thesis, two different datasets are considered. One dataset was originally produced
by the Boosted Hbb/cc Tagger Task Force to train for instance the GN2X tagger. [15]
This dataset contains only one of the two target variables that we want to train our ML
on, i.e. the true jet mass. Therefore, we will call this sample the true jet mass sample.
The other dataset is generated for this project and it contains the other target variable,
i.e. the kinematic mass. Therefore, we will call this sample the kinematic mass sample.

8



CHAPTER 3. METHODS

3.2 Jet definition

When the proton beams collide in the detector, particles are produced and emitted in all
directions. These particles sometimes have high momenta, hence when they decay their
decay products somewhat end up in the same direction. Moreover, particles hitting
the calorimeter create electromagnetic or hadronic showers, creating localised energy
deposits. In other words, particle decays can create structures in the detector. This can
help us identify and reconstruct the actual process that took place during a collision.

In boosted H → bb̄ decays, all the particles resulting from the Higgs boson belong to one
so-called jet, which is a somewhat cone-shaped object in which all the particles end up.
The next decaying particle, i.e. the b hadron, could create a jet on its own, which usually
results in a slightly smaller jet in the detector. That is because the daughter particle is
less energetic, causing it to decay into fewer particles. Also, it decays slightly further
away from the interaction point, which prevents the decay products from spreading as
much before they hit the detector. Different kinds of cone-shaped jets can therefore be
defined and reconstructed.

3.2.1 Large-R jets

Jets in the ATLAS detector are reconstructed using FastJet [24] with the anti-kt
algorithm [25] and a specific radius parameter R denoting the typical angular dimension
of the jet. This reconstruction allows for measurements on the particles within the jet,
while excluding much of the background. When the primary decaying particle does not
have a high momentum, i.e. in the resolved case, we are more likely to have multiple
smaller separated jets ending up in the detector, rather than one big jet. Such jets are
best described by small-radius jets or small-R jets, which have R = 0.4.

With the aim of finding BSM physics, we are interested in the so-called boosted regime,
in which the decaying Higgs boson has a high transverse momentum of about 250 GeV or
higher. The angular separation between its decay products can be approximated by R ∼
2mH/pT , with mH being the mass of the Higgs boson and pT its transverse momentum,
i.e. p2T = p2x + p2y. For pT of about 250 GeV, this opening angle is approximately
1. For higher momenta the decay products of the two bottom quarks will overlap,
making it impossible to correctly describe two small-R jets with the correct constituents.
Therefore, in the boosted regime it is more useful to consider large-radius jets, or large-R
jets with R = 1.0.

Figure 3.1: An illustration of the small-R jet in the resolved case versus the large-R jet in
the boosted case. [26]

3.2.2 UFO jets

The large-R jet can be built from different kinds of objects, each having its advan-
tages and disadvantages. Besides the information from localised energy deposits in
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the calorimeter, tracker information can be used to define different detector objects.
Particle-Flow (PFlow) Objects, or PFOs for short, best describe low pT jets. Track-
CaloClusters (TCCs) on the other hand best describe high pT jets. These objects can
be used as input for the jet reconstruction algorithm. Unified Flow Objects (UFOs) take
advantage of PFOs and TCCs to achieve optimal performance across a wide kinematic
range. [27] The data used in this thesis therefore consists of large-R jets constructed
from UFOs.

The resulting UFO large-R jets are only angular selections on the η,ϕ-plane and therefore
are still able to for example contain particles piling up from the underlying event. The
variables that can be calculated from the large-R jet constituents will thus be slightly
off. To improve the jet definition, many grooming techniques have been developed, like
Trimming, Pruning and Soft-Drop. The UFO large-R jets in this thesis are adjusted with
the Soft-Drop algorithm [28] along with Constituent Subtraction [29] and SoftKiller [30]
in order to remove background from the same event and pile-up from other simultaneous
collisions. Soft-Drop (SD) is a technique for removing soft and wide-angle radiation as
depicted in Figure 3.2. Constituent Subtraction (CS) mainly aims to remove pile-up by
uniformly adding ghost particles, which represent background particles, and removing
them from their nearest neighbouring particle. After that SoftKiller (SK) applies a
certain pT cut onto all jets to remove soft radiation. The application of these three
algorithms is motivated in [27].

Figure 3.2: An illustration of the Soft Drop grooming method. [31]

Besides large-R jets, we will be making use of subjets. These are jets with a variable
radius (VR) defined as R = ρ/pT , where pT is the transverse momentum of the subjet
and ρ = 30 GeV. The minimal radius is 0.02 and the maximum is 0.4. The subjets are
reconstructed with the VR anti-kt algorithm. [32] The VR subjets are associated with
the large-R jet, they are required to have pT > 7GeV. These subjets are to be the jets
resulting from hadronisation and nuclear fragmentation, which result in a number of
final-state hadrons or leptons, as well as from secondary decays, e.g. the decays of the
B hadrons.

3.2.3 Jet mass

Now that we have defined a jet, we can look into different definitions of the mass. First,
a few definitions will be presented, after which we will discuss the target variable of the
ML algorithm.

The kinematic mass

The kinematic mass (mkin) is the mass that can be calculated using all the truth particles
resulting from the Higgs decay within the simulation. That is at generator level in the
Monte Carlo (MC) simulation of the event, in which all the truth information about
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the particles is available. Using all the momenta and energies of the truth particles, the
kinematic mass can be calculated using the energy-momentum relation as follows: [33]

m2
kin =

(∑
i

Ei

)2

−

(∑
i

p⃗i

)2

, where i ∈ truth (3.1)

In the SM the Higgs decays would result in a sharp kinematic mass peak centred at the
Higgs mass, as the decay width of the Higgs boson is expected to be only about 4.1
MeV. [34] In the MC simulation an artificially wide decay width of 400 GeV is chosen
to create a flatter mass distribution.

The kinematic mass is hard to approximate from detector level information, since quite
some information is missing. For instance, muons and neutrinos carry away energy that
does not (completely) end up in the tracker or the calorimeter. Moreover, truth particles
might not end up inside the large-R jet, reducing the mass of the jet. Yet it is the most
informative variable as it can be directly related to the theory.

The true jet mass

It may be easier to choose a different target variable, like the true jet mass, denoted by
mtrue. This is the mass that is reconstructed and calculated from all the truth particles
that end up inside the ungroomed large-R jet at detector level. This means that the
energies and momenta as measured by the detector in the MC simulation are used to
calculate the true jet mass:

m2
true =

(∑
i

Ei

)2

−

(∑
i

p⃗i

)2

, where i ∈ truth ∩ jet (3.2)

To simplify the problem even further, we also include the leptons that decay from the
associated weak boson and end up in the large-R jet. This has the advantage the ML
algorithms do not have to discriminate between situations in which the jet from the weak
boson ends up in the large-R jet or not. This gives the model more space to learn other
aspects that are needed to calculate the mass. This also reduces the need to use muon
chamber information, which we will not be using. The disadvantage is that this affects
the minimal achievable resolution of the Higgs peak. This approach would also reduce
the necessity of using the object-based transformer network, which could use separate
tracks as input. Still, this architecture could be beneficial if it were to compensate for
e.g. pile-up effects.

Note that in this definition of the large-R jet, no grooming techniques have been applied,
as this would remove some truth particles. Since all the truth-level information in the
MC simulation is available, it is not needed to try and remove background particles.

The reco mass

Along with the latter definition, it is very useful to include the reco mass in the ML
model. The reco mass is the mass reconstructed from the groomed UFO large-R jet as
defined in Section 3.2.2. This mass, denoted as mUFO, is not reconstructed at truth level
and can therefore be used as an input variable. This variable may include background
and besides that, some truth particles may be removed while creating the large-R jet.
Moreover, the precision of the energy/momentum reconstruction of the individual par-
ticles is limited due to background particles. Hence this mass variable will be slightly
different from the true jet mass, but at least it is closely related, making this variable
very informative.

11
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m2
UFO =

(∑
i

Ei

)2

−

(∑
i

p⃗i

)2

, where i ∈ jet (3.3)

Target variable

In this project, we are aiming to sharpen the H → bb̄ mass peak in the SM signal sample
by improving on the reco mass. The reco mass can be very useful for filtering signal from
background events as the mass of a particle is a very characteristic property. Improving
the resolution of the jet mass therefore ideally improves the classification performance
and thus the signal strength.

When using ML models, this task is easier when training on a target variable that is
closely related to mUFO, since in that case using mUFO alongside some other variables
can be very beneficial. This method also allows us to more effectively use other variables
that can be calculated from the large-R jets. The latter might not be as effective when
training on the kinematic mass, which in itself is a complicated task as much information
is missing. Yet, being able to predict the kinematic mass would be more informative
as it is directly related to the theory. Both target variables will be investigated in this
thesis.

3.3 Jet variables

The enormous amounts of low-level data collected in the ATLAS detector can be con-
verted to high-level variables that describe the properties of the large-R jet. Some are
designed to discriminate between different kinds of processes, which is useful for tag-
gers. Sometimes taggers suffer from mass sculpting, which is any unphysical distortion
in the mass distribution. This could for instance occur when jets have masses close to
the mass of a certain particle, since then these events may be predicted to originate
from that particle, irrespective of the actual origin of the jet. Consequently, background
processes can be wrongly classified around that mass, which would result in deviating
mass distributions. To prevent this effect, some variables have been defined that should
be independent of the mass, which is undesired in our case. In this section, we will list
and explain the available jet variables, after which we will test their usefulness and their
relation to the mass. From this, a selection of variables will be made for each target
variable.

First, the variables in the true jet mass sample will listed and discussed 1:

• pT
• η
• |η|
• mUFO

• τ1

• τ2
• τ3
• τ4
• τ21
• τ32

• τ42
• ECF1

• ECF2

• ECF3

• C1

• C2

• D2

•
√
d12

•
√
d23

•
√
d34

• z12
• z23
• z34
• kt∆R
• τa

• P

The first four variables are relatively simple variables that are based on the constituents
of large-R jets. The jet pT represents the transverse momentum of the large-R jet,
which is the sum of all the transverse momenta inside the groomed UFO large-R jet.
The variable η is the pseudorapidity of the centre of the large-R jet and |η| is its absolute
value. The variable mUFO, denoted by mass in the code, is again the reco mass.

1For the notation as used in the code see Table A.1.
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3.3.1 Jet substructure variables

To increase the amount of data and insightful information on which the ML can learn,
we could include more high-level variables called jet substructure variables. They can
be computed using the lower level data as measured in the detector or slightly higher
level data that is derived from the aforementioned reconstruction algorithms. We aim to
include potentially more useful combinations of the available data. Some substructure
variables turn out to be correlated with the true jet mass and hence they may be able to
improve the predictions. In the rest of this section, the available substructure variables
are briefly described.

N-subjettiness

The N-subjettiness inclusive jet shape, or τN , tries to define some sort of probability
that a certain jet has N subjets. We know that more energetic particles are more likely
to produce more jets and hence the values of τN for different N together may indicate
how energetic the jet was and thus how heavy the decaying particle was. We define:

τN =
1

d0

K∑
i

pT,i min{∆R1,i, . . . ,∆Ri−1,i,∆Ri+1,i, . . . ,∆RN,i} (3.4)

Here d0 is a normalisation factor defined by d0 =
∑

i pT,iR0, where R0 is the radius
used in the jet clustering algorithm. The index i sums over all K particles, ∆Rj,i is
again the rapidity-azimuthal distance between a candidate subjet j and the particle i.
For N = 1 this subjet is just the large-R jet and for N > 1 the N hardest (highest
pT ) VR anti-kt subjets are used. If τN ≈ 0 then all the energy ended up in N or fewer
subjets, but if τN ≈ 0 then there are at least N +1 subjets. [35] This means that if the
average distance to N + 1 subjets is smaller than to N subjets, then we would obtain
τN+1 < τN . This better match means that we are more likely to have N +1 rather than
N subjets. Since the latter could be useful to know, combinations of these variables
called the N-subjettiness ratios are defined:

τNM =
τN
τM

(3.5)

Small ratios would then indicate we are more likely to have N than M subjets. [36] If
N or M is more than the number of reconstructed subjets, then τNM = −999.

Energy Correlator Functions

Since the introduction of τN , more variables have been developed for the same purpose.
For now, we will mainly focus on C1, C2 and D2. For these variables, we first need
to define the N-point Energy Correlator Function (ECF) that is suitable for hadron
colliders [37, 38]:

ECF (N, β) =
∑

i1<i2···<iN∈J

(
N∏

a=1

pTia

)(
N−1∏
b=a

N∏
c=b+1

Ribic

)β

(3.6)

Here R2
ij = (yi−yj)

2+(ϕi−ϕj)
2, where y = 1

2 ln
E+pz

E−pz
. For relativistic particles E ≈ |p|

and hence y ≈ η. The computation time grows exponentially with N and therefore only
values up until N = 3 are taken into account. For N = 1 the right two products of
equation 3.6 are equal to 1 and hence ECF (1, β) =

∑
i∈J pTi. After choosing β, as will

be done below, this variable can be dropped to give the simplified notation ECFN .
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Using equation 3.6 one can define the Energy Correlator Double Ratio:

C
(β)
N =

ECF (N + 1, β)ECF (N − 1, β)

ECF (N, β)2
(3.7)

The parameter β is used to focus on a specific type of jet as it controls how important
the wide-angle radiation in the outer regions of a jet is as compared to the collinear
radiation in the centre. A value of β = 1 is used as it focuses on both regions making
it the best discriminating value. Similarly to τN , CN should be sensitive to jets with N
subjets or N -pronged jets.

The substructure variable D2 again tries to improve on C2 and is defined using the
normalised Energy Correlator Function:

e
(β)
N =

ECF (N, β)

ECF (1, β)N
(3.8)

This function can be used to define the dimensionless variable D2 [39] as:

D2 = D
(α=1,β=1)
2 =

e
(α)
3(

e
(β)
2

)3α/β =
e
(1)
3(

e
(1)
2

)3 (3.9)

Splitting Measures

The splitting measures, denoted by
√
dij , represent distances between two clustering

objects, which are two subjets that are identified by the anti-kt algorithm and then
merged into one large-R jet. [40] These variables are defined using the splitting scales:

dij = min(p2Ti, p
2
Tj) ·∆R2

ij/R
2 (3.10)

where pTi and pTj are the transverse momentum of the subjets, ∆Rij is the angular
distance between the subjets and R is the radius of the large-R jet, which is equal to 1.
For reclustered large-R jets with only one subjet,

√
dij is equal to zero. The variable

d12 represents the splitting scale of the last two remaining subjets and thus the hardest
splitting. The variables d23 and d34 represent the splitting scales of the second and third
last merged subjets respectively.

The splitting scales represent some angular distance. For high momenta, the opening
angle between the two jets that (presumably) result from the Higgs boson can be ap-
proximated as R12 ∼ 2mH/pT . If the reclustered subjets are indeed b-jets, then these
splitting scales can be related to the Higgs mass up to some extent.

Using these splitting scales one can define new variables that are less correlated to the
jet and subjet invariant masses, which could therefore be less useful in our case. These
variables are called energy sharing variables and are defined by zij as:

zij =
dij

dij +m2
ij

(3.11)

where mij is the invariant mass of the two subjets combined. Hence apart from its
dependence on the splitting scale, this variable is also directly related to this mass
variable, which thus may be a strong discriminating variable.
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KtDR

The variable KtDR, denoted by kt∆R, is the angular distance between the last two
subjets before reclustering [41], which is simply defined by:

(kt∆R)2 = R2
ij = (ηi − ηj)

2 + (ϕi − ϕj)
2 (3.12)

The indices i and j represent the last two subjets. It aims to describe the jet radius
for different kinds of processes and thus different distributions of the energy ending up
in the jet. The actual radius of a jet is interesting as again it is related to the opening
angle.

Angularity

The variable Angularity is denoted by τa (not to be confused with the N-subjettiness
τN ) and is defined by:

τa =
1

M

∑
i

Ei sin
a θi[1− cos θi]

1−a (3.13)

where M is the jet mass, Ei is the energy of the ith jet constituent and θi is its angle
with respect to the centre of the jet. The parameter a can be chosen to emphasise
radiation near the edges (a < 0) or core (a > 0) of the jet. The angularity variables are
sensitive to the degree of symmetry in the energy flow inside a jet. Extremely boosted
jets will exhibit a higher degree of symmetry as compared to a resolved jet in which the
two b-quarks create two distinct subjets inside the large-R jet. The τ−2 observable is
used as it helps to distinguish QCD jets from boosted particle decays, because of the
broader tail expected in the QCD jets. [33]

Planar Flow

The last variable, Planar Flow, is denoted by P and is defined by:

P = 4
det(IE)

Tr(IE)2
(3.14)

where IE is a two-dimensional matrix defined by:

IklE =
∑
i

1

Ei
pi,kpi,l (3.15)

Here Ei is the energy of the ith jet constituent and pi,k and pj,l are the k and l com-
ponents of its transverse momentum calculated w.r.t. the jet axis, i.e. k, l ∈ {x, y}.
Collinear energy depositions like two-pronged decays result in P ≈ 0, whereas isotropic
energy distributions like many-body decays result in P ≈ 1. [42]

3.3.2 Choice of variables

Even though it is possible to train an ML model with all the available variables, it may
be more efficient and better to train the model with fewer parameters. In some parts
of the ML model, the number of trainable parameters and thus the computation time
scales quadratically with the number of input variables. Moreover, when you have too
many useless variables, you may confuse your model in the sense that it has trouble
finding out what combination of variables to use. Consequently, it may take longer to
reach the optimal configuration, increasing the computation time even further. It may
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even increase the chance that you end up in a local minimum if the input and thus the
model is dominated by less useful variables. Hence if you could ignore some variables
safely, this could speed up the optimisation of your model drastically and give better
results.

Since one cannot simply test all combinations of input variables2, you need to make
more educated guesses on what variables should be used. One could run a training and
then see what variables have been used by looking at the weights, such that you can
remove the variables that turned out to be not so useful. However, whether a variable
is useful depends on the size and architecture of your ML model and vice versa, the
optimal architecture depends on the input variables.

Instead, one could make scatter plots of the target variable vs. the input variables. Any
form of structure indicates that the variable could be used to derive the target value.
Sometimes the structure is hard to spot, so additionally we plot the correlation between
the input variable and the target. These correlation values can give a clear quantitative
measure of how useful a certain variable can be, however, uncorrelated variables may
still exhibit structures. Hence both methods will be used to decide which variables we
should use.

For the scatter plots, we created a resampled dataset with a completely flat mass dis-
tribution. This is done to be able to distinguish the structure in the distribution of
the target variable from the structure caused by the mass dependence. This flat mass
sample is produced using undersampling and it only contains masses between 60 and
200 GeV. Despite the limited range, this will still give us valuable information.

In the scatter plots and correlations matrix, the true jet mass is used as the target
variable. As can be seen in Figure 3.3, the reco mass, the ECFs and the splitting scales
show clear structural behaviours. Also, pT , the four subjettiness variables, C1, C2, kt∆R
and the Angularity show slight structural behaviours.3 In Figure 3.4 we can see that
all their correlation values have values of more than 0.1, but so does τ21. The ratio τ21
has a similar goal as τ32 and τ42, but the latter two seem to exhibit no structure at
all, hence it seems that all N-subjettiness ratios can be ignored relatively safely. The
energy sharing variables, D2 and Planar Flow do not seem to have have much structure
or correlation w.r.t. the true mass. Hence they are probably not very informative and
therefore they will be left out as well.

Even though |η| is only a little correlated to the mass, it can still be informative since
it is a variable related to θ, which is used for describing physical processes theoretically.
Moreover, |η| as well as η could be useful when combining this information with the
track or subjet variable dη, which describes the pseudorapidity distance of the track or
subjet w.r.t. the centre of the large-R jet. The angular distance can in some cases be
related to the opening angle of the two decaying jets and thus the mass of the decaying
particle. Therefore knowing the correct angle per track could be useful and hence η will
be included as well.

All in all, this will leave us with the following list of input variables for the training on
the true jet mass:

• pT
• η
• |η|

• mUFO

• τ1
• τ2

• τ3
• τ4
• ECF1

• ECF2

• ECF3

• C1

• C2

•
√
d12

•
√
d23

•
√
d34

• Kt∆R
• τa

2This scales as 2N , where N is the number of input variables.
3The latter two behaviours are better visible when plotting the x-axis on a logarithmic scale.
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Figure 3.3: A scatter plot of the target mass vs. the different input variables, depicting their
relationship.

Figure 3.4: The correlation between the different input variables and the target mass.
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For the training on the kinematic mass, we are not using the substructure variables. In
a certain training on the kinematic mass, we found that including them worsened the
results after sufficient epochs. That could be because they are defined using groomed
UFO large-R jets and thus it is harder to relate them to the kinematic mass than to the
true jet mass. Therefore, they are excluded and not further investigated in the training
on the kinematic mass. Furthermore, |η| is not available in the kinematic mass dataset,
but the energy E is. The energy could perhaps be related to the mass and it indeed
improved the results in a certain training, hence it will be included. All in all, in the
training on the kinematic mass the jet variables pT , η, E and mUFO are used.

3.4 Track variables

Only tracks that are associated with the large-R jet are available. This means that
some tracks originating from the Higgs decay that end up outside the large-R jet are
not present in the data. This limits the maximal achievable resolution, mainly at low
pT . Furthermore, only a maximum of 100 tracks can be stored, but this number is only
reached on rare occasions. In such cases, the tracks with the highest impact parameter
are left out. Usually, about 20 tracks end up inside the jet. The kinematic mass sample
allows for a maximum of 80 tracks per jet, but this would only alter 0.012% of the
events.

All the variables that are available for the tracks are listed and explained in Table 3.3 and
some are visualised in Figure 3.5. The first 11 out of 21 variables describe pixel-related
information. This is very low-level information that could potentially outperform the
high-level information as relatively few assumptions have been made by using recon-
struction algorithms. However, it is much harder to convert these variables usefully to
describe the jet mass as compared to using more physics-related variables like the latter
10 track variables.

When training on the true jet mass the pixel information did not show any improvements
as the algorithm more heavily relies on the substructure variables that are better related

Figure 3.5: A visualisation of the track variables θ, ϕ, pT , d0 and z0. [44]
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Table 3.3: Track variables with their name, notation and description. The sign in the last
two variables denotes the direction w.r.t. the beam axis. [43] The Insertable B-Layer (IBL) is
the innermost pixel layer and the SemiConductor Tracker (SCT) surrounds the pixel detector.
Split hits are hits identified as being created by multiple charged particles during the ambiguity
solver stage at pattern recognition level. Shared hits are hits contributing to the track fit and
to another track.

Name Description
numberOfInnermostPixelLayerHits Number of hits in the IBL ∈ {0, 1, 2}.
numberOfNextToInnermostPixelLayerHitsNumber of hits in the next-to-

innermost pixel layer ∈ {0, 1, 2}.
numberOfInnermostPixelLayerSharedHitsNumber of shared hits in the IBL.
numberOfInnermostPixelLayerSplitHits Number of split hits in the IBL.
numberOfPixelHits Combined number of hits in the pixel

layers (incl. IBL).
numberOfPixelHoles Combined number of crossed active

modules where no hit was found in the
pixel layers (incl. IBL).

numberOfPixelSharedHits Number of shared hits (not marked as
split hit) in the pixel layers (incl. IBL).

numberOfPixelSplitHits Number of split hits in the pixel layers
(incl. IBL).

numberOfSCTHits Combined number of hits in the SCT
layers divided by two.

numberOfSCTHoles Combined number of crossed active
modules where no hit was found in the
SCT layers.

numberOfSCTSharedHits Number of shared hits in the SCT layers
divided by two.

Name Notation Description
qOverP q/p Charge of the track particle divided by

its momentum magnitude.
deta dη Pseudorapidity between the track and

the jet.
dphi dϕ Azimuthal angle between the track and

the jet.
d0 d0 Transverse impact parameter (IP), clos-

est transverse distance of the track to
the primary vertex point.

z0SinTheta z0 sin(θ) Longitudinal IP projected onto the di-
rection perpendicular to the track.

qOverPUncertainty σ(q/p) Uncertainty on the track q/p.
thetaUncertainty σ(θ) Uncertainty on the track θ.
phiUncertainty σ(ϕ) Uncertainty on the track ϕ.
IP3D signed d0 significance s(d0) Signed transverse IP significance

(d0/σ(d0)) from the IP3D algorithm.
IP3D signed z0 significance s(z0 sin θ) Signed longitudinal IP significance

(z0/σ(z0)) from the IP3D algorithm.
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to the target variable. A training excluding the substructure variables and including the
pixel information showed a worse performance. Therefore the pixel information is left
out when training on the true jet mass. When training on the kinematic mass the pixel
information did show improvements, so they will be included in that case. As much
research has been performed on which track variables to use, all of the latter 10 track
variables will be included in both models.

As mentioned earlier, we would like to combine the jet and the track information to
be able to use combinations of these variables as input of the transformer, like η + dη.
These angular combinations could potentially be related to the opening angle and thus
the Higgs mass. We will combine the jet and track variables by concatenating to each
track all the jet variables. This will give us 28 variables for each track when training on
the true jet mass and 25 variables when training on the kinematic mass. As mentioned
earlier, in some parts of the transformer the number of trainable parameters and thus
the computation time scales quadratically with the number of input variables. The
reduction of 47 to 28 parameters thus cuts down the computation time to 35% in some
parts, without losing much valuable information.

3.5 Subjet variables

All the variables that are available for the subjets are listed and explained in Table 3.4.
How exactly these variables will be used is discussed in Section 3.7.7. Again the jet
information will be concatenated to each subjet. Only events with at least two subjets
are considered and at most three subjets can be stored per jet.

Table 3.4: Subjet variables with their name, notation and description.

Name Notation Description
pt pT Transverse momentum of the subjet.
eta η Pseudorapidity of the subjet.
mass mass Invariant mass of the subjet.
deta dη Pseudorapidity between the subjet and the jet.
dphi dϕ Azimuthal angle between the subjet and the jet.

For both target variables, we found that adding subjets improved the predictions. For
a model trained on the kinematic mass, the improvement in terms of RMSE was about
3% and it was mainly visible for low masses. When testing on the true jet mass the
improvement was more significant, i.e. about 15%. The improvement was mainly visible
for high masses, but not so much for masses around 125 GeV. The amount of improve-
ment is of course dependent on the architecture of the model, but any improvement
shows that the model is able to learn from the subjets. Therefore the subjets are added
as input in both models.

3.6 Preprocessing

3.6.1 Resampling

The true jet mass data was originally produced to train taggers, i.e. classification
algorithms. [15] To make sure that the taggers are less biased to choose one class
over another, the different classes have been resampled such that each process occurs
approximately equally often. The four different processes that have been used have
characteristic distributions in certain kinematic variables. QCD events for instance
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have a falling pT distribution, causing relatively more events with low pT values to be
QCD events. Similarly, the H → bb̄ and H → cc̄ samples have a slight mUFO peak at
around 75 GeV. This may result in QCD events being classified as H → bb̄ or H → cc̄
too often when having a mUFO value around the peak value, resulting in mass sculpting.
To prevent this, the classes have been kinematically resampled as a function of jet pT ,
η and mUFO. The so-called 3D resampling requires the selection of kinematic bins with
enough statistics for each process. Therefore only values of 250 < pT < 1300 GeV,
−2 < η < 2 and 50 < mUFO < 300 GeV remain. This results in a slight reduction of
statistics, but still 59 million events are left containing about 14.5 million H → bb̄, 14.5
million H → cc̄, 8 million top and 22 million QCD events.

The data containing the kinematic mass was not 3D resampled, as it was not produced
for a tagger, but solely for this project. It contains values of pT > 150 GeV, −2 < η < 2,
mUFO > 50 GeV and 50 < mkin < 200 GeV. The cut on mkin has been performed to
obtain an even flatter mass distribution as outside this interval we slowly run out of
statistics. Values of mUFO < 50 GeV were available, but this would include relatively
many QCD events that are misidentified as H → bb̄ in the simulation. These are events
in which the truth particles at detector level from QCD events mimic H → bb̄ large-R
jets, causing these b-jets to be falsely identified as originating from a Higgs boson by
the tagging algorithm. These events complicate the training and are therefore removed.
Removing mUFO < 50 GeV also makes the comparison to training on the true jet mass
fairer. We chose a wider cut on pT , partially to increase statistics and partially because
at high momenta we hope to find signs beyond the SM.

All in all, the kinematic mass sample ends up with 3 million events. Since H → cc̄
events give comparable jets and have very similar kinematic distribution, these events
are used to increase statistics. Including them indeed slightly improved the predictions
on H → bb̄ events and naturally on H → cc̄ events. Together, the H → bb̄ and H → cc̄
datasets provide us with 6.8 million events. Top and QCD events are not considered
when training on the kinematic mass.

3.6.2 Training, validation and test data

The data is split into three independent datasets: the training, validation and test
datasets. The training data is used to train the ML algorithm and update its weights
in each training step. The validation data is used to independently validate the train-
ing each epoch to for instance see if the ML algorithm is overtraining or training too
fast or slow. Finally, the test data is used to independently test the predictions after
the training. The training data must be big enough to gain the maximum achievable
resolutions in the predictions. The validation data must be big enough to represent all
the characteristics of the data, such that the loss is representative. The test data must
be big enough to perform all the tests on how well the model was able to predict the
target values.

Since 14.5 million H → bb̄ events provide a lot of statistics for the true jet mass model,
only H → bb̄ events are used and relatively many events can be part of the training
data. Therefore a splitting is applied resulting in about 12.3 million training, 1.2 million
validation and 1 million test events. The kinematic mass dataset is split into about 4.5
million training, 1.1 million validation and 1.1 million test events.

3.6.3 Feature scaling

The used input variables, also called features, have vastly different ranges of values and
different orders of magnitudes. In an ML algorithm, weights determine how important a
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certain value is and how much it contributes when calculating the next variable. At the
beginning of a training, the weights are not yet optimised, which means that variables
with large values dominate in the calculations. Therefore they determine what variables
the model is initially mainly looking at. Smaller though more important variables are
only uncovered later in the training, which slows down the optimisation of the model,
or perhaps not at all, causing the model to end up in a local minimum of the loss space.

To prevent these issues all the input variables are scaled. Since the variables could
contain largely deviating values as well as small but important relative differences4, the
appropriate scaling scheme is z-score normalisation or standardisation. This feature
scaling scheme per feature x is defined by:

x′ =
x− µ

σ
(3.16)

Here µ is the mean value of the feature and σ its standard deviation. The same scaling
is performed on the target values.

3.7 Machine Learning

Machine Learning algorithms can play an important role in improving on the reco
mass, as they try to optimise the reconstruction of their target value. They do so
completely differently as compared to conventional algorithms, hence potentially much
better masses could be predicted. They could also deal with much more complicated
events, like extremely boosted decays or events with pile-up from simultaneous colli-
sions, causing particles to overlap in the detector. In future runs and detectors, dealing
with the increasing luminosity is a challenging task. Here ML models could be very
useful as well.

Nevertheless, they might also produce predictions with different and sometimes even
unphysical properties. Hence it is important to understand the steps that ML models
take and what their consequences are. This can also help to find the optimal model and
improve the predictions. An ML model has many parameters that it can optimise on its
own, but there are also parameters describing the ML model, called hyperparameters
(HP), that need to be optimised by hand. In this section, all the necessary aspects of
ML models are described as well as how the input data is used, after which the HPs are
described.

3.7.1 Neural Network

Neural Networks (NN) form the basis of ML algorithms. The simplest neural network
is called a Multilayer Perceptron (MLP), which consists of an input layer, at least one
hidden layer and one output layer. Let us first start with a single perceptron, which can
be defined by the function:

y = ϕ

(∑
i

wixi + b

)
(3.17)

In this function, the inputs xi are multiplied by their corresponding weights wi and
added to a bias b. The activation function ϕ of a perceptron [45] is defined as:

ϕ(x) =

{
1 for x > 0

0 else
(3.18)

4This makes Min-Max scaling undesired.
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If the activation function is linear, like ϕ(x) = x, then adding the outputs of two
perceptrons would effectively be the same as having one perceptron. Therefore, to
increase the complexity and learning capacity of the NN the activation function must
be nonlinear.

3.7.2 Activation function

Depending on the problem to be solved, one can choose from different activation func-
tions. In classification problems you want the output to be some sort of probability
denoted by values between 0 and 1, hence a sigmoid activation function could be used.
However, in regression models, the output could in principle be any value.

A common activation function in regression models is the rectified linear unit or ReLU
activation function, which is defined as:

ϕ(x) =

{
x for x > 0

0 else
(3.19)

For x < 0 any combination of weights producing x < 0 will give the same output of ϕ(x).
Finding the optimal set of weights in such cases is hard, because you need a gradient
between two outputs corresponding to two sets of weights to be able to tell which set is
better.

To help mitigate this so-called vanishing gradient problem, one might use the Leaky
ReLU activation function, which is defined by:

ϕ(x) =

{
x for x > 0

ax else
(3.20)

Here a = 0.01, but it can in principle be any value. When using the Parametric ReLU
or PReLU, the optimal value for a is learnt by the NN as well. [46]

A more complex activation function and a smooth approximation of ReLU is the sigmoid
linear unit or SiLU activation function, which is defined by:

ϕ(x) = x · σ(x), where σ(x) =
1

1 + e−x
(3.21)

This function has the advantage that the switch of x going from positive to negative
values or vice versa is smoother, which would result in more stable learning. This
function is also used by the transformer-based GN2X tagger, which is trained on the
same data as we are using. [47] Therefore it could be useful in our model as well. Many
more smooth approximations of ReLU can be defined, but for now, we will only focus
on this one.

3.7.3 Dense layer

When all inputs are used to calculate the output of a perceptron, you have a so-called
dense layer of dimension one. You could use the same inputs to calculate different
outputs using different perceptrons in parallel, which would create a higher dimensional
dense layer. If you would represent each weight by a line connecting the input with the
output of the activation function (both depicted by nodes), then you would obtain a
so-called fully connected layer as depicted in Figure 3.6.

In this example, the two dense layers are hidden layers of an MLP. Each layer could
in principle be made arbitrarily large and you could use an arbitrary number of dense
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Figure 3.6: On the left, a schematic representation of dense layers as fully connected layers
in a Multilayer Perceptron containing two hidden layers. Each line contains a weight and each
node implicitly contains the summation and activation function, except for the input nodes
that just represent the input. [48] On the right, a schematic representation of dropout in dense
layers. [49]

layers. This increases the number of weights and therefore the complexity of the model,
which ideally enhances its ability to predict the output. However, at some point, the
number of weights is so large that in principle you can make any prediction and you
could theoretically create a bijection of the input data to the target values of the training
data. This would mean that your model is able to perfectly predict all target values
provided in the training data, but not those in the independent validation and test data.
This is called overtraining.

In order to prevent this problem without (much) reducing the number of weights and
complexity of the model, one could use dropout regularisation. During every training
step, a dropout layer randomly prunes away some of the nodes as depicted in Figure 3.6.
This means that some of the nodes cannot be used anymore to calculate the value of the
next node and therefore its value will be slightly different. This causes the predictions
of an MLP to deviate from the target value even more, making it impossible to find the
set of weights that matches just the training data and not the validation data. Instead,
the model is forced to predict the target value for many possible configurations of the
nodes, which effectively means that it needs to be able to predict the target value for
different kinds of incomplete and noisy inputs. This helps generalising the model as it
becomes able to make predictions in more situations. Therefore, dropout may help to
get the model out of a local minimum.

A dropout rate of 0.2 randomly prunes away 20% of the nodes per layer during the
training. It does so by temporarily setting these nodes to 0 while leaving the weights
unchanged. However, during validation and testing, this is not done in order to achieve
the best predictions. Since in that case, more nodes are used, which would result in
larger perceptron outputs, the weights are temporarily adjusted accordingly. In this
example, they would be multiplied by 0.8.

3.7.4 Metrics

In order to optimise the weights of a NN, a metric is needed to determine how well
the model performed. This metric is called a loss function, which calculates some kind
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of error between the predictions and the target values. Three loss functions will be
addressed.

The Mean Squared Error (MSE) is the most common and well-known error function as
it maximises the likelihood function. It is defined by:

MSE(y, t) =
1

N

N∑
i

(yi − ti)
2 (3.22)

Here yi denotes the predicted value, ti the true or target value and N the number of data
points. The advantage of this loss function is that it punishes predictions farther away
from the true value relatively much as compared to values closer by. The disadvantage,
however, is that it is scale-dependent. This means that for equal relative errors, the
deviation at higher target values is punished harder than that at lower target values.

An alternative is the Mean Absolute Error (MAE), also known as the L1 loss function,
which is defined as:

MAE(y, t) =
1

N

N∑
i

|yi − ti| (3.23)

The advantage of this loss function is that it is not scale-dependent and it is better at
ignoring bad predictions as a result of deviating input data, that should not be learnt
from. This allows the model to focus more on learning one pattern belonging to the
majority of the data, rather than learning two patterns less accurately. The disadvantage
of this loss function is that it usually takes longer to converge to the optimal solution
as compared to using the MSE.

The Huber Loss function tries to take the best of MSE and MAE by defining a piecewise
function:

HuberLossδ(y, t) =

{
1
N

∑N
i

1
2 (yi − ti)

2 if |yi − ti| < δ
1
N

∑N
i (δ|yi − ti| − 1

2δ
2) else

(3.24)

By default δ = 1, which makes this function equivalent to the Smooth L1 Loss. For
|yi − ti| > δ this loss function behaves like the MAE and otherwise, it behaves like the
MSE, which makes the function smooth around zero. The Huber Loss function should
be able to ignore outliers like the MAE while still converging to the optimal solution
quickly, especially during later epochs. [50]

One could also choose to optimise w.r.t. the Root Mean Squared Error (RMSE) as it
has the correct unit, however, the optimal solution is the same for the MSE, while the
convergence takes longer. Therefore using the MSE during training is more useful than
using the RMSE. Nonetheless, testing the predictions after the training will be done
with the RMSE to get the correct unit.

For an unbiased estimator, where ȳ = t̄ in each bin, the RMSE equals its standard
deviation σ, which describes the dispersion of a distribution. In a normal distribution σ
describes the resolution of the peak. The standard deviation is calculated w.r.t. to the
mean of the distribution.

σ(y) =
1

N

N∑
i

(yi − ȳ)2 (3.25)

Therefore it is in general not equal to the RMSE. When approximating the distributions
of the different mass variables as normal distributions, one could try to improve on
resolution of the reco mass by minimising σ. However, this allows for a deviating mean,
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i.e. a bias, which you want to minimise as well. The RMSE minimises both the bias and
variance at once and is therefore used to determine how well the model is able to predict
the target value after the training. When determining the resolution of the signal in the
SM samples, the mean and standard deviation are investigated as well.

3.7.5 Weight optimisation

The loss function defines a loss space that is dependent on the weights. Starting at some
initial position denoted by a set of weights, we would like to update the weights such
that we end up in the global minimum of the loss space. These updates (also named
training steps) are performed during so-called epochs, during which the entire dataset
is used once to update the weights. After each epoch parameters like the learning rate
may be updated to improve the optimisation.

Multiple weight optimisation schedules have been developed to optimally optimise the
weights. The most frequently used optimiser is the Adam optimiser, which is based
on multiple simpler optimisers. These are Gradient Descent, Momentum and RMS
Propagation. When they have been elaborated, the Adam optimiser as well as a slightly
more complex variant called the AdamW optimiser will be described. The latter will be
used in our model.

Gradient Descent

The simplest optimiser is called Gradient Descent (GD), which updates the weights as:

wτ+1 = wτ − η∇L(w) (3.26)

Here w is a certain weight vector, τ the timestamp, L(w) the loss function given the
weights and η > 0 is called the learning rate. The learning rate (LR) can be tuned to
achieve efficient weight updates and optimal performance. A small LR can give more
accurate predictions, but takes longer to converge, whereas a large LR is faster, but it
may diverge from a solution as depicted in Figure 3.7.

Figure 3.7: A visualisation of different learning rates and their consequences. [51]
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Mini-batch learning

The gradient ∇L(w) could be calculated using the entire training dataset, but this
means that updating the weights once is computationally very expensive. Alternatively,
you could update the weights after each data point, which is called Stochastic Gradient
Descent (SGD), resulting in quick learning. However, the update would be very inac-
curate and different data points could even update the weights in opposite directions.
Therefore it is desired to use the best of both worlds: mini-batch learning. Updating
the weights each timestamp is done using parts of the data called a batch. Ideally, this
batch is big enough to give representative and accurate updates, but small enough for
quick convergence. The batch size is again a tunable hyperparameter of the model.

Momentum

Momentum can be used to stabilise and speed up the training. It is defined using a
moving average of gradients from multiple steps. Using this gradient to update the
weights reduces the randomness in the gradients of different batches and it forces the
weights to continue updating in the same direction. Moreover, Momentum can help the
model get “pulled” out of a local minimum. The momentum is defined as:

V τ = βV τ−1 + η∇L(w) (3.27)

Here V is the momentum and β ∈ (0, 1) is a new hyperparameter that determines
how much previous momenta should be used and thus the strength of the momentum.
Updating the weights is then defined by:

wτ+1 = wτ − V τ (3.28)

AdaGrad

Rather than taking a constant LR, a different LR per weight could be set using AdaGrad.
Some weights do not get updated frequently, because the type of data points that should
do so is not very common. Other weights do so, because their effect on the gradient is
little, resulting in small updates. AdaGrad tries to compensate for that, which boosts
the convergence speed.

Root Mean Square Propagation

RMSprop improves on AdaGrad by not only looking at the last time step but by also
looking at previous time steps, similar to Momentum. The weights are then updated
according to:

wτ+1 = wτ − η√
vτ + ϵ

∇L(w) (3.29)

Here ϵ is a smoothing term to avoid division by zero (10−8 by default) and vτ is defined
as:

vτ = βvτ−1 + (1− β)(∇L(w))2 (3.30)

Adam

Finally, the Adaptive Moment Estimation (Adam) optimiser is a combination of mini-
batch learning, RMSprop and Momentum. It first calculates two moving averages mτ

and vτ each time stamp, which are defined as:

mτ = β1m
τ−1 + (1− β1)∇L(w) (3.31)

vτ = β2v
τ−1 + (1− β2)(∇L(w))2 (3.32)
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Here β1 and β2 are hyperparameters, which are by default 0.9 and 0.999 respectively.
Since these averages are biased to 0 for β1, β2 ≈ 1, bias-corrected variants are defined:

m̂τ =
mτ

1− (β1)τ
(3.33)

v̂τ =
vτ

1− (β2)τ
(3.34)

Here the τ in the denominators denotes an exponent, which equals the time step. [12]
The weights are then updated by:

wτ+1 = wτ − η

(
m̂τ

√
v̂τ + ϵ

− λw

)
(3.35)

The term −λw is added in the AdamW optimiser, where λ = 0.01 by default. It
outperforms Adam joint with L2 regularisation, but apart from that it does a similar
job. [52] L2 regularisation is an example of Weight Decay that prevents overfitting by
penalising big weights. It does so by adding the term −λ||w||2 to the loss function, but
this affects the loss space and its minimum. In the AdamW optimiser Weight Decay is
decoupled from the loss function. It is only applied when updating the weights using
the derivative of w2 w.r.t. w (the derivative of the L2 loss term) as an alternative to
the L2 regularisation.

Backpropagation

The weights cannot be updated all at once. Instead, backpropagation is applied in the
optimiser, which means that updating the weights starts at the end of the model and
ends at the beginning. To illustrate this, a simple feed-forward network is considered:

aj =
∑
i

wj,izi (3.36)

zj =ϕ(aj) (3.37)

Here ϕ is an activation function, zi is called an activation and wi,j is the ith weight of
the jth layer. For a given set of weights, all activations can be calculated starting from
the beginning of the model. This is called forward propagation.

The loss belonging to a specific weight can then be calculated using the chain rule:

∂L

∂wj,i
=

∂L

∂ai

∂ai
∂wj,i

= δjzi (3.38)

The first partial derivative is named δj and it is known in the last layer when for instance
the MSE loss function is used:

δj =
∂L

∂ai
=

∂L

∂zi

∂zi
∂ai

= (yk − tk)ϕ
′(aj) (3.39)

Here ϕ′(aj) is the derivative of the action function. This equation can then be used to
work backwards through the model to update the other weights using equation 3.38 and
the δ of the next layer [53]:

δj =
∂L

∂zj
ϕ′(aj) =

(∑
k

∂L

∂ak

∂ak
∂zj

)
ϕ′(aj) =

(∑
k

δkwj,k

)
ϕ′(aj) (3.40)
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Learning rate scheduler

The learning rate η, as mentioned before, can be optimised to obtain the desired per-
formance and convergence time. Instead of assigning one value to it, this value could be
adjusted to match the desired value as a function of the epoch. In our model, we apply
the OneCycleLR scheduler. [54] At the end of the training, when the model is close
to a minimum loss value, a smaller LR is desired to allow for a closer approach to the
minimum loss value. In the beginning, it is useful to have a rather big learning rate to
quickly move relatively close to the minimum. However, when going too quickly at the
beginning, the minimum might already be traversed. Hence the OneCycleLR scheduler
first starts at some initial LR and increases to its maximum LR within for instance 10%
of the number of epochs. Then during the rest of the epochs, it decreases again to its
final LR. It does so in both intervals via a cosine-shaped curve.

3.7.6 Attention mechanisms

A key element of the architecture that we will be using is the self-attention mechanism.
Attention mechanisms deduce the relations between the elements in a sequence, after
which it determines how much and what information of each element is used or worth
paying attention to.

Input data

The input that we will be using to explain the attention mechanisms is defined as
x ∈ RL×d, which is a sequence of length L, consisting of embeddings of dimension
d. The input could for example be the track data belonging to an event, containing L
tracks and d features. Instead of using these specific features, the embeddings could also
consist of a certain number of combinations of these features created by dense layers.
The row vector xi ∈ R1×d denotes the ith element in the sequence, e.g. a single track.

Attention mechanism

In an attention mechanism, the input x is used three times. To see which (and how
much of these) elements must be used to produce the output, a set of weights will be
defined. These weights are called the attention scores. To calculate the attention scores
an L × L matrix is produced, consisting of the elements zij = xix

T
j . The i-th row is

defined by the vector z = [xix
T
j ]j∈[1,L]. These row vectors are put into the softmax

function:

softmax(z)j =
ezj∑L
k=1 e

zk
(3.41)

This softmax function gives us normalised weights, which sum up to one per row. These
weights can be put into a matrix form giving us the attention scores:

aij = softmax(xix
T
j ) = softmax([xix

T
k ]k∈[1,L])j =

exix
T
j∑L

k=1 e
xixT

k

(3.42)

This L × L matrix is then multiplied again by the input to give for each track i the
vector:

Ai =

L∑
j=1

aijxj (3.43)

This new vector is the so-called context-aware vector, which can be put into a neural
network to give the desired output. [55]
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Self-attention mechanism

In our algorithm, however, we will be making use of a self-attention mechanism, which is
slightly more involved than the previously defined attention mechanism. The difference
lies in the way the input is used. Instead of simply using the same input x three times,
we will use three different kinds of inputs called the query Q = xWQ, the key K = xWK

and the value V = xWV . Effectively one passes the input through three separate Linear
layers. In each kind, the features are multiplied by a weight matrix to create certain
combinations of these features that aim to fulfil their tasks, which are explained below.

Query: The query is a vector that describes what part of the input we need to pay
attention to. [56] So the i-th track-like vector Qi = xiW

Q is a weighted combination of
the features of interest. The dimension of the query is defined as dq, hence Q ∈ RL×dq

and WQ ∈ Rd×dq .

Keys: For each query, we have a key which is a vector of dimension dk. This vector
tells us which combination of features we must pay attention to given the query, such
that we can determine weights that will select the tracks we will need for the output. In
other words, it tells us what the key features are that relate the important information
of the query to the other elements of the sequence. Since the key and query will be
multiplied dk = dq. Again K ∈ RL×dk and WK ∈ Rd×dk .

Values: For each track, we produce a vector of dimension dv consisting of the combina-
tions of features that will be passed on to the rest of the model to produce the desired
output. Now V ∈ RL×dv and WV ∈ Rd×dv .

Just as before we will compute an attention score, but this time by using the formula:

aij = softmax

(
QiK

T
j√

dk

)
(3.44)

To prevent small gradients at large dk, the input of the softmax function is divided
by

√
dk. [57] Multiplying the attention scores with the values then gives us a matrix

A ∈ RL×dv containing the most useful tracks containing the most useful combination of
features. These operations are depicted in Figure 3.7.6 and can be summarised by:

A(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3.45)

Using these three different kinds of inputs allows us to extract more useful and more
thoroughly selected tracks and features as compared to a regular attention mechanism,
as more accurate attention scores and context-aware vectors can be created.

We can summarise the process as follows: The query determines what combinations of
features we must attend to. From this, the key determines how the features of the track
are related to the other tracks by finding the key features. The resulting attention scores
create tracks that are aware (and combinations) of the other tracks. The value provides
the most useful combination of features that will then be passed on to the model to
produce the output. The output could thus be a list of (generated) tracks that are likely
to correspond to the decay, each containing the required or corrected information that
is needed to calculate the mass.

Multi-Head Attention

A more advanced version of the self-attention mechanism is the Multi-Head Attention
(MHA) mechanism. An MHA layer runs through a self-attention mechanism several
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Figure 3.8: On the left, a Scaled Dot-Product Attention layer with three different inputs,
i.e. query, key and value. On the right, a Multi-Head Attention layer, consisting of several
attention layers running in parallel. It has three inputs, which could be the same or different
objects, that are linearly transformed to form the queries, keys and values per head. [57]

times in parallel. The independent outputs are concatenated onto one array and then
linearly transformed into the required dimension. [58] Multiple attention heads allow
for different outputs by attending differently to the same tracks. Each head may for
instance focus on extracting information from different subjets or cones, if that is the
path the model takes.

The number of heads, denoted by h, determines how many times the algorithm should
perform the attention mechanism. The result of the MHA then is:

MHA(Q,K, V ) = [H1, . . . ,Hh]W0, where Hi = A(xWQ
i , xWK

i , xWV
i ) (3.46)

Here i = 1, . . . , h. The input x is again linearly transformed, but now differently for
each head using the trainable weight matrices WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , WV

i ∈
Rd×dv . This will result in different queries, keys and values per head. One could create
three different input objects with different dimensions d by having three separate linear
projections or dense layers before the MHA. But since x is already linearly transformed
in each head, this may not be really necessary and therefore this is not done. The last
linear transformation WO ∈ Rhdv×dout reshapes the output of the different heads of the
MHA into the desired dimension, but this step is optional. [56] The steps of a MHA are
depicted in Figure 3.8.

MHA in series

Besides using multiple heads in parallel, one could create a deeper neural network by
placing MHA layers in series. This allows the ML algorithm to learn to more accurately
filter the tracks by first creating an MHA that only removes a part of the tracks using
some looser selection criterion. This may of course remove tracks that are needed for the
next selection criterion, hence the track information x is passed along with the MHA to
the next layer via x′ = x+MHA(x).

To make sure that the numbers do not grow exponentially large after a few layers, which
causes the activation function to operate differently, a normalisation layer is applied.
This is called Layer Normalisation, which is defined by:

LayerNorm[x] =
x− E[x]√
Var[x] + ϵ

· γ + β (3.47)
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By default ϵ = 10−5, which prevents negative roots due to numerical deviations. Here
β and γ are trainable parameters. [59] Layer Normalisation is applied as defined by
Normformer. [60] This prevents the gradients of earlier layers from being much bigger
than later layers, which adds stability to the training. The input and output of the
MHA as well as x′ will go through this Layer Normalisation, such that we can define a
self-attention layer by:

y[x] = LayerNorm[x+ LayerNorm[MHA(LayerNorm[x])]] (3.48)

The number of self-attention layers is again a hyperparameter. The combination of
self-attention layers with input and output layers together creates an ML model called
a transformer.

3.7.7 Hyperparameter optimisation

There are quite some free parameters in the MHA layer that need to be fine-tuned to
optimise the output. Finding the optimal parameters for an ML model is partially a
matter of trial and error, but we can at least make a well-educated guess as a starting
position. Some parameters can be set by simplifying the problem a bit and others should
preferably be set as big as the model allows it to be. In this section, some simplifications
and a choice of architecture will be made, after which the leftover HPs are listed. The
effects of the leftover HPs are described, investigated and set in the results.

Problem simplification

To prevent information loss we could choose the embedding dimension of the input of
the MHA d to be at least equal to the number of features f present in the tracks. Two
methods to choose d are described below:

1. Each head will have the same dimension as the track dimension, such that the
MHA can focus on different parts of the sequence without information loss, i.e.
dk = d/h = f . In that case, we can choose an arbitrary number of heads if we
define the embedding dimension to be d = h · f .

2. The input will be divided among the different heads and hence dk = d/h ≥ f/h,
meaning that d must be a multiple of h. To make sure that all information is
used, the embedding dimension must potentially be increased to the next nearest
multiple of h. This way of splitting speeds up the optimisation, without losing
information, however, this reduces the complexity of each head.

The second option is more conventional as a transformer is designed for language mod-
els, which usually deal with data that is described with large embedding dimensions.
Therefore splitting this embedding dimension across different heads allows for looking
at a sentence differently, without having to reduce the embedding dimension to acquire
a reasonable computation time. Since the embedding dimension in our case does not
necessarily need to be that large, the first option will be used as it gives more freedom
in choosing d and h. If desired d can always be set larger than d = h · f .

Again to prevent information loss, we set dv = dk, such that dq = dk = dv. In that way,
it is possible to interpret the output of the MHA as a selection of track-like objects with
track-aware or corrected information.

Choice of architecture

As mentioned before, to be able to use both the jet and track information (as well
as combinations of them) inside the MHA, the jet info is concatenated to each of its
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associated tracks. Then this information will be transformed to a certain embedding to
allow for these combinations using one or more dense layers. The embedding dimension
as well as the number of hidden dense layers and their dimensions are HPs of the model.

Since we are including subjets, it would be useful to be able to use both the track and
subjets information alongside the jet information inside the MHA layers. This can be
achieved by first concatenating the jet and subjet information and then transforming
the jet+subjet objects via a dense layer to the same dimension as the embedding di-
mension of the jet+track objects. Then the n embedded tracks can be appended to the
3 embedded subjets to obtain a (n+3)×d dimensional object describing an event. This
embedded object can then be used as a query, key and value in the MHA layer.

The embedded object will then pass n self-attention layers each consisting of the same
number of heads h. The concatenated output may then be transformed to the same
embedding of the input of the self-attention layers. Afterwards, again a certain number
of hidden layers can be used to predict the target value, using a dense layer of dimension
one.

Hyperparameters

To clearly state what tests have been performed to optimise the two ML models a list
of HPs and options is given, which are tested and optimised in the results.

• The effect of certain cuts on the data.
• The loss function.
• The activation function.
• The dropout rate in the different dense layers.
• The learning rate.
• The number of epochs.
• The batch size.
• The number of hidden layers and their dimension before the MHA.
• The embedding dimension d.
• The number of heads h.
• The number of self-attention layers n.
• The usage of the output projection.
• The number of hidden layers and their dimension after the MHA.
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Results

In this chapter, we present and argue the optimal models belonging to the two different
target masses, i.e. the true jet mass and the kinematic mass. After that, their predictive
abilities are investigated. This will first be done using the test samples, after which the
two models will be compared side by side using the SM sample.

4.1 Optimisation

In this section the dependence of the predictions on the architecture will be discussed,
allowing us to choose the HPs of the two models. First, some results and choices are
described that are independent of (or similar for) the two target masses. After that,
architectures are investigated and chosen separately for the two targets.

4.1.1 General architecture settings

Hidden layers

Even though hidden dense layers are commonly used in ML algorithms, they did not
show any benefits. When training on relatively few epochs, any bias that showed up
was enlarged by hidden layers. When training for many epochs the model with hidden
layers seemed to converge to give the same results as the same model without the
hidden layers. Therefore it seems as if the only dense layer transforming the input data
to the embedding dimension before the MHA is sufficient. Possibly, the input features
themselves are already very informative, or at least for the MHA, meaning that many
dense layers are unnecessary. Similarly, any hidden layer after the MHA seemed to
degrade the results as well, implying that the MHA layer performs the most important
data transformation.

Multiple architectures for the hidden layers have been tested. For instance, the encoder
architecture in which the output of the MHA is pushed through dense layers having a
dimension that is half the dimension of the previous layer. This results in a triangle-
shaped architecture. Different numbers of layers have been tested, including the case
in which the dimension is halved until it has dimension 1. This is then the output
layer predicting the mass. Also, dense layers having a dimension of at least twice the
embedding dimension of the MHA have been considered. In some cases the model was
even unable to converge, indicating that the maximum number of trainable parameters
has been overshooted. This means that no gain could be obtained from increasing the
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size and number of the dense layers even further. Furthermore, applying the optional
linear transformation on the output of the MHA to obtain a lower-dimensional track-like
object after the MHA turned out to be disadvantageous in terms of RMSE.

Taking these observations into account, we choose a model in which the input is pushed
through one dense layer to the embedding dimension of the MHA. The output of the
MHA is then transformed via one dense layer to the output layer of dimension 1, meaning
that this last layer is like a single perceptron.

The activation function

Changing the activation did not have any noticeable effect on the quality of the predic-
tions. Even the loss curve of the training and validation sets showed no difference, not
even at the start of the training. This could be because we are not using a deep NN with
many dense layers, which are the only layers using an activation function. Therefore
the effect of using different activation functions is negligible, which is why we choose
to use the activation function as applied in the GN2X tagger, i.e. the SiLU activation
function.

Dropout

As mentioned earlier, dropout can help a model generalise, which prevents it from
ending up in a local minimum. It does so by pruning away certain nodes, which may
contain valuable information. Therefore, the model effectively trains on data with a
slightly lower quality, which reduces the quality of the predictions on the training data.
However, if the model can generalise well, this could mean that the model ended up at
a lower minimum, which could compensate for the reduced quality of the data.

The latter is probably not what happened in our case. Any addition of dropout worsened
the predictions in terms of RMSE. This may also indicate that the model does not
contain enough parameters, such that it can not learn to generalise. Increasing the
number of parameters naturally improves the predictions, but at some point, dropout
did not seem to have any effect anymore, even when using a dropout rate of 0.5. This
could mean that multiple nodes acquired the same goal, hence if some nodes are pruned
away the results remain similar.

Alternatively, it could mean that the model is already able to generalise well, such that
adding dropout is not able to improve the model. This could well be the case when
training on the true jet mass as the training data contains 12.3M events. Hence the
different patterns could already be recognisable and learned. The increase from 1M
to 12.3M showed only little improvement. Therefore, we expect that not many more
different kinds of patterns can be learnt and that using this setup there is no way the
model can generalise even further. In that case, choosing a dropout rate of 0 allows for
better predictions.

Learning rate

The initial and final learning rates in the OneCycleLR scheduler are set to be 10−8.
This allows for a smooth start and smooth settling at the end. The LR is set to reach
its maximum after 10% of the epochs. The optimal maximum learning rate for both
target variables seemed to lie around 10−4.

Any value higher than 10−4 caused to model to learn quickly indeed, after which barely
any progress is observed. This is visible in the validation loss as a near vertical line
downward followed by a near horizontal line. Such a loss curve prevents the model from
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accurately learning a pattern and instead, the loss oscillates around the minimum for
quite a while. This prevents the model from optimally using the lower LR during later
epochs (for learning subtle patterns) as Momentum is not able to direct the model to a
minimum very well.

Any value lower than 10−4 caused the loss curve to be smoother, however, even after
50 epochs the loss was still higher than the model with a max LR of 10−4. This means
that the model did not have enough time to approach the minimum of the valley before
the OneCycleLR scheduler decreased the LR again.

Loss function

It is to be expected that using MSE as the loss function would minimise the RMSE, yet
other loss functions may produce predictions that are more desired. As mentioned before
the MSE loss function is scale-dependent, meaning that the relative error at high target
values contributes more to the loss than similar relative errors at low target values.

When applying the MAE loss function then as expected the predictions at low target
values become better and worse at high target values. This is interesting for W and Z
boson calibration studies as in that case a good resolution is desired around a mass of
80 and 90 GeV.

In the scope of this project, using the MAE was mainly interesting as it is better at
neglecting outliers. Such an outlier could be a situation in which the reco mass is much
higher, because it accidentally used a background particle to reconstruct the jet mass.
Alternatively, the reco mass could be much lower, because some truth particles ended
up outside the large-R jet. This would also mean that fewer tracks are associated with
the jet and thus available as input. Similarly, a neutrino could result in a reduced reco
mass and so do misidentified QCD events. This is what results in a tail in the mUFO

distribution, especially for low mUFO. At high values for mUFO the tail is somewhat
compensated by the grooming algorithms, which aim to remove background particles.

Such outliers, however, are very common, meaning that it is more efficient to be able to
compensate for these outliers as well, rather than focusing on improving on the mUFO

masses that are already predicted relatively well. Moreover, using the MAE does not
show a significant difference in the distribution of the predictions, indicating that outliers
are not suddenly clearly ignored. Therefore these “outliers” should be improved on as
well and thus not be considered as outliers. In that case, using the MSE loss function
is more desirable as it better takes into account different kinds of events and it better
minimises the RMSE. The latter is indeed observed, therefore the HuberLoss and MAE
are not used in the rest of the results.

4.1.2 Optimising for the true jet mass

In this section, we will optimise the model trained exclusively on the true jet mass. At
the end, a summary of the model will be presented.

Batch size & number of epochs

Since the true jet mass dataset contains 14.5 million events, it is desired to use relatively
large batches as otherwise, the model has already reached its minimum before the entire
dataset could have been used. Preferably a dataset is used multiple times to update the
weights. Using large batches would also give the most accurate updates on the weights.
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The batch size is limited by the available memory. In a previous version of the code,
it was only possible to load the entire dataset at once. This resulted in an even lower
limit on the batch size, the number of events or tracks that could be used, as well as on
the model size and thus its complexity. This motivated the use of the package Salt [61]
as it uses data loading procedures from Pytorch. It describes the entire dataset using
pointers and it only loads the data into the memory when a certain batch is called.
In that case, only the batch size in combination with the model size is limited by the
available memory. Of course, the optimal value of an HP is dependent on the values of
the other HPs. This means that the HPs, including the batch size, should be optimised
altogether, for instance via a grid search.

To obtain a reasonable computation time and precision on the weight updates a batch
size of 1000 is applied. This value also allows for the investigation of relatively big
models. Using 10 epochs in that case already allowed the model to converge with a
smooth validation loss curve, but to obtain better results the final model was trained
with 50 epochs, which resulted in slightly better results.

MHA hyperparameters

Increasing the number of self-attention layers n, the number of heads h and the embed-
ding dimension d naturally improves the predictions. That is until overtraining occurs,
but when using 14.5 million events this was not a problem. The limiting factor again
is the available memory, which only allows for a limited number of combinations for
n, h and d. Every increase of a factor two of these variables improves the predictions
differently. Per variable, every next multiplication of two gives a smaller improvement
than the last one.

Increasing the embedding dimension did not improve the predictions as much as in-
creasing the other parameters. Therefore d = h · fjt will be chosen as the embedding
dimension, where fjt is the number of features per track+jet object as they contain
more variables than the subjet+jet objects. Here fjt is equal to the number of track
features ft plus the number of jet features fj , i.e. fjt = fj + ft = 28.

When training on the true jet mass it turned out that increasing n had more effect than
increasing h. At some point increasing n did not have much effect anymore, after which
increasing h becomes desired again.

Final model

In the end, multiple models seemed to give very similar results. Some gave a better
RMSE, but others gave a better RMSE around the Higgs mass and worse elsewhere. At
some point, the differences were so small that conclusions on what should be improved
could barely be made. One of the best models is described below and used in the rest
of the results.

• Number of heads h: 8
• Embedding dimension d: 224 (28 per head)
• Number of self-attention layers n: 4
• Number of trainable parameters: 621.154
• No hidden layers
• Dropout rate: 0.0
• Batch size: 1000
• Number of epochs: 50 (used epoch 47)
• Activation function: SiLU
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• Loss function: MSE
• Optimiser: AdamW
• Scheduler: OneCycleLR (initial & final LR: 10−8, max. LR: 10−4)

4.1.3 Optimising for the kinematic mass

Since this dataset is a bit smaller, it is desired to increase the number of epochs. However,
using for instance 50 epochs instead of 10, or increasing the model size, resulted in a
better performance on the test sample, but in a worse performance on the SM sample.
This indicated some sort of overtraining w.r.t. the SM sample. To be more precise, in
the SM sample, the Higgs peak shifted to the right towards 140 GeV, while becoming
smaller and wider. Any form of dropout and configuration of the hidden layers was
unable to compensate for this. This complicated the optimisation.

Therefore, we decided to pick the model with the best loss for the SM sample instead
of the validation sample. The predictions on the test sample will thus be suboptimal.
The optimal model was already found in the first few epochs. Hence, the batch size
was increased to 4000 and the number of epochs was set to 40, such that a smoother
loss curve could be obtained. Already around epochs 7 to 10, the best models were
found after which the loss curve started to increase again, illustrating the overtraining
on the SM sample. The larger batch size then limited the complexity of the model, but
again larger models showed worse performance on the SM sample as they became better
suited for describing the training data. The best model was found to have 2 heads and
4 MHA layers. Again d = h · fjt is used, with fjt = 25. A summary of this model is
given below:

• Number of heads h: 2
• Embedding dimension d: 50 (25 per head)
• Number of self-attention layers n: 4
• Number of trainable parameters: 33.402
• No hidden layers
• Dropout rate: 0.0
• Batch size: 4000
• Number of epochs: 40 (used epoch 7)
• Activation function: SiLU
• Loss function: MSE
• Optimiser: AdamW
• Scheduler: OneCycleLR (initial & final LR: 10−8, max. LR: 10−4)

4.2 Predictions on test sample

In this section, we present the results of the two models on the test samples. We use
mUFO as a reference to determine how much the ML model is able to improve w.r.t.
solely using the conventional mass reconstruction techniques.

4.2.1 True jet mass

First, the results are presented and discussed that are obtained using the aforementioned
model trained on the true jet mass.
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Reco mass vs. predicted mass

In Figure 4.1a we plot the reco mass vs. the true jet mass together with the mean of
mUFO per mtrue bin and its standard deviation. Here we clearly observe the lower cut of
mUFO > 50 GeV resulting from the 3D resampling. Also, we observe that the reco mass
is often too low w.r.t. the true jet mass, whereas it is often not much too high. This
causes the standard deviation in the lowest mtrue bin to be artificially small. For higher
values of mtrue, we see the bias increasing towards lower values of mUFO, especially
beyond mtrue > 200 GeV.

(a) (b)

Figure 4.1: (a) The reco mass mUFO and (b) the predicted mass mpred vs. the true jet mass
mtrue, together with their mean and standard deviation per mtrue bin.

In Figure 4.1b we plot the predicted mass against the true jet mass. We observe that
the standard deviations in each of the mtrue bins have decreased, except in the lowest
few bins, where there was less room for improvement. Moreover, in these bins the bias
is significant. To explain this, two theories will be stated, one about shifting and one
about clipping.

Firstly, this bias may be explained by assuming that the predictions are heavily influ-
enced by mUFO, which is likely due to the high correlation between the reco mass and
the target mass. In that case shifting up all reco masses by a bit automatically reduces
the bias and thus the RMSE of the entire dataset, but the consequence is that the
reco masses in the low mtrue bins have been shifted up too much. Including values of
mUFO < 50 GeV could cause this bias to vanish, or at least partially, whilst increasing
the bias in mUFO at low mtrue. However, such values are not present in the data and
thus this hypothesis could not be tested for the true jet mass. For the kinematic mass
this was possible, but adding values of mUFO < 50 GeV did not show a significant shift
of the bias, indicating that this theory is not the main contributor to the bias. Even
though the target variable and the results are slightly different, the results showed a
similar sigmoid-shaped bias profile. This indicates that the bias might be a consequence
of the same process, e.g. clipping.

Clipping means that the ML model pushes all the predicted values to within the interval
of the target values. The reco mass only contains values between 50 and 300 GeV and
the target variable is correlated to the reco mass. Therefore the target distribution is
also somewhat limited to values between that interval, which allows for clipping to occur.
Clipping can be beneficial when minimising the MSE loss as otherwise, for instance at
low mtrue, the predicted masses could be predicted to be above the 300 GeV. Since the
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MSE scales quadratically, this would result in a large error contribution. Clipping then
reduces this error at the cost of introducing some bias at the ends of the distribution.

As previously mentioned, a completely flat mass sample has been produced using un-
dersampling. It uses true jet masses between 60 and 200 GeV, such that the statistics
are not reduced too much. To test the effect of clipping a model was trained on this
sample and it then predicted values of about 200 GeV for any mtrue value beyond 200
GeV. This strengthens the expectation that clipping is mainly responsible for the bias
at low and high values for mtrue.

Clipping could be a sign that the model is not able to generalise well, at least not beyond
the interval of the target values. However, applying a dropout rate of 0.5 was not able
to solve the problem. To be more precise, it did not have any effect at all. This would
indicate that there is no other more general pattern to be learnt given the model and
the data. Smaller models did show differences, but then dropout mainly resulted in a
degraded performance.

Error dependencies

In Table 4.1 we can see that the model is able to improve on the reco mass by a
factor of 1.8 in terms of the RMSE. When looking at the Higgs region, i.e. within
100 < mtrue < 150 the improvement is 2.0, which is slightly larger as this cut excludes
most of the biased data resulting at the ends of the mtrue distribution.

Table 4.1: The RMSE of the reco mass and the predictions w.r.t. the true jet mass, and the
improvement of the predicted mass w.r.t. the reco mass.

Selection
RMSE [GeV]

Improvement
mUFO mpred

None 33 18 1.8
100 < mtrue < 150 GeV 30 15 2.0

(a) (b)

Figure 4.2: (a) The RMSE of the reco mass mUFO and the predicted mass mpred per true jet
mass mtrue bin, alongside their standard deviation (std) w.r.t. their mean. (b) Similarly, the
relative RMSE, i.e. the RMSE divided by the centre value of the mtrue bin. (right)

In Figure 4.2 we plot the RMSE and relative RMSE as a function of the true jet mass
as well as the standard deviation per mtrue bin. When the standard deviation coincides
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with the RMSE, this means that there is no bias. Within 90 and 200 GeV the bias of
the predicted values is minimal, as can also be seen in Figure 4.1b. For low mtrue the
bias contributes significantly to the RMSE, but for high mtrue the bias contribution to
the RMSE is smaller since the standard deviation is already relatively large. In Figure
4.2b we observe that the relative RMSE remains nearly constant between 100 and 200
GeV. At the Higgs mass of 125 GeV, the error is 15 GeV giving a relative error of 0.12.

As we can see in Figure 4.3, the predicted masses are better than the reco masses in
all pT and |η| bins. The results are best at low pT and high |η|, which is where the
reco mass is best as well. This could partially be explained by the fact that at low pT
the decaying particles are further separated in the detector. This makes it easier to
distinguish and remove background particles before determining the reco mass. Also,
it causes signal particles to overlap less, hence their properties can be determined more
accurately.

Since |η| and pT are slightly negatively correlated, as can be seen in Figure 3.4, we
automatically obtain a decreasing RMSE as a function of |η|. Selecting only low pT
bins1 causes the |η| dependence of the RMSE to vanish, indicating that in that regime
the |η| dependence is indeed due to this correlation. Selecting only high pT bins causes
the dependence to remain. This could be because the b hadrons are able to travel
further before they decay, allowing the decay vertex at high |η| to be positioned inside
the detector and thus better determined. Meanwhile, at low |η| the b hadrons could have
already passed the first few layers before they decayed, causing the track reconstruction
to be less accurate.

The biggest improvements can be observed at high pT and low |η| as there was more
room for improvement due to the higher RMSE of the reco mass. This is a promising
observation, because boosted events are hard to reconstruct and because they are more
sensitive to BSM physics. It underlines the potential that ML models have in such
complex situations.

(a) (b)

Figure 4.3: The RMSE of the reco mass mUFO and the predicted mass mpred w.r.t. the true
jet mass mtrue per (a) pT and (b) |η| bin.

1This can be seen in Figure A.5.
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Mass distributions

In Figure 4.4a the mass distributions are plotted. Here we observe that the mass dis-
tribution of the target, and thus the reco mass, is far from flat. Multiple aspects could
be responsible for that. Firstly, a cut on the kinematic mass has been performed at
generator level to only include values between 50 and 200 GeV, which explains the lack
of events at high masses. Secondly, the energies and momenta of the particles, which
are used to calculate the true jet mass, are smeared due to the limited resolution of the
detector. This results in a smooth fall-off around the edges of the distribution. Thirdly,
the cut on the reco mass causes another reduction of true jet mass values around the
edges. Fourthly, missing particles like neutrinos and particles outside the large-R jet
cannot be used to calculate the true jet mass and the reco mass. Last but not least,
certain selection criteria in the jet reconstruction algorithms determine which jets are
used, which can again alter the mass distributions. Hence the target distribution is not
uniform anymore, which affects the predictions.

(a) (b)

(c) (d)

Figure 4.4: (a) The mass distribution of the true jet mass, reco mass and predicted mass and
(b,c,d) these distributions for different pT cuts.

We observe that the predicted mass distribution better follows the true jet mass distri-
bution as compared to the reco mass distribution. Still, we observe some biases that can
be explained by clipping. At low masses, we observe a drop in the mpred distribution.
This is because at low mtrue all predicted masses are too high, causing the absence of
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low mpred values. Similarly, a drop is present at the high end of the mpred distribution,
i.e. between 280 < mpred < 300 GeV, which is better visible in the ratio panel.

Due to this shift upwards at low mtrue we observe an excess of mpred values around
100 GeV. This excess towards 100 GeV could also be partially due to the fact that the
target distribution contains a peak, despite the efforts for creating a relatively flat mass
sample using a large decay width. Such a peak may cause the predictions to be pulled
towards that peak. This automatically improves the RMSE by a little bit.

To test this hypothesis, the previously mentioned flat mass sample was used in a training
with the same number of jets. As expected the excess around the peak was reduced,
but the clipping effects became more significant. That could be because now the target
variable has a steep cut-off at the edges of its distribution. This resulted in a worse
RMSE. However, this could partially be due to the reduced statistics around the Higgs
mass. To strengthen this hypothesis about the peak, we can also look at the mass
distribution for different pT cuts in figures 4.4b-4.4d. Then we see that the excess
around the mpred peak somewhat follows the peak of its target variable. It moves to
the right for higher pT . This shows the effect of the presence of the peak in the target
values.

Furthermore, it seems that the model is relatively much influenced by the reco mass
and possibly the other jet substructure variables. This is not unexpected since to each
track and subjet all jet variables were concatenated. Firstly, the reduced abundance
of predicted masses between 200 and 280 GeV seems to reflect the sudden change in
the reco mass distribution at higher reco masses up to some extent. Secondly, when
looking at high pT , the steep cutoff in the mUFO distribution seems to be reflected in the
mpred distribution, though at a different mass. Meanwhile, the true jet mass distribution
clearly differs from the reco mass distribution. This explains why the predictions become
worse at high pT in terms of RMSE. However, around masses of 200 GeV, the mpred

distribution better adapts to the slight bulge in the mtrue distribution for different pT
cuts. This indicates that the model is able to move away from the mUFO distribution
up to some point.

(a) (b)

Figure 4.5: The relative mass distributions, i.e. the reco and predicted mass divided by the
true jet mass, for (a) different mtrue cuts and (b) different pT cuts.

In Figure 4.5 the relative mass distribution is plotted for different mtrue and pT cuts.
Here we observe that the predicted masses create a stronger, better-centred and more
symmetric peak as compared to the reco masses. When performing a cut on the true
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jet mass to minimise the clipping effect at the borders we mainly observe fewer too-
high predicted masses, resulting in an even better peak. That is because relatively
many events have low mtrue values, which is exactly where the predictions are often too
high. When cutting on pT , we observe that for lower pT the peak becomes stronger, as
expected from Figure 4.3a. Also, fewer too-high predicted masses remain, making the
peak even better-centred.

4.2.2 Kinematic mass

In this section, the results are presented and discussed that are obtained using the
aforementioned model trained on the kinematic mass.

Reco mass vs. predicted mass

In Figure 4.6 both the reco and the predicted mass are plotted as a function of the
kinematic mass. The kinematic mass is a variable that is less related to the reco mass
as compared to the true jet mass. Therefore the deviations of the reco masses w.r.t. the
kinematic mass can be much larger. This time outliers in the reco masses are visible
both above and below the target values, which causes the standard deviation of the reco
mass at low mkin to not be artificially small. Still at low mkin the cut in the reco mass
causes the mean to be artificially high. The outliers are also visible in the predicted
masses, which causes the effect of clipping to be more clearly visible. All predictions
are now confined to form a rectangle-like figure. At low mkin no predictions below the
target values are found, but only above them. This automatically causes the mean to
be too high at low mkin and vice versa too low at high mkin.

(a) (b)

Figure 4.6: (a) The reco mass mUFO and (b) the predicted mass mpred vs. the kinematic
mass mkin, together with their mean and standard deviation per mkin bin.

To test if - besides clipping - the lower cut on the reco mass could be responsible for this
bias at low mkin, we included masses of mUFO < 50 GeV during a training. However,
the bias was still present, because in this dataset a cut on the kinematic mass has
been performed to only include 50 < mkin < 200 GeV. This indirectly results in a
similar though less steep decline in the reco mass distribution around mUFO = 50 GeV.
Moreover, including mUFO < 50 GeV introduces a second mUFO peak around 20 GeV
that mostly consists of misidentified QCD background. The corresponding kinematic
mass is thus incorrect and hard to predict. The model simply shifts these masses up
to around the mean of the target distribution, to reduce the MSE loss. Meanwhile, we
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found that clipping is not reduced. That may be because this shifting of low mUFO

values is a similar operation as clipping, as again the predictions are pushed to within
the interval of the target distribution. Therefore, excluding values of mUFO < 50 GeV
during the training improves the predictions.

Including mUFO < 50 GeV after the training does not reduce the bias from clipping
either. Instead, the jets belonging to these reco masses are predicted to all have values
somewhere between about 50 and 100 GeV. Conclusively, the bias is a consequence of
a clipping model and not so much due to the absence of low reco masses in the test
sample.

The bias in the mean of the predictions in Figure 4.6b is a bit exaggerated due to clipping
since for instance at low kinematic masses only too high predictions remain, increasing
the mean artificially. Yet the bias is still clearly recognisable as a sigmoid-shaped curve.
This means that only the predicted masses away from the edges, for example within
100 < mkin < 150 GeV, are relatively physical. In the SM sample mkin = 125 GeV,
hence this model still has predictive power for H → bb̄ events.

As compared to the reco masses, the standard deviation of the predicted masses per
mkin bin is reduced in all bins. Moreover, the mean is better centred in the middle to
high kinematic mass bins. In the bin including the Higgs mass (120-130 GeV), the bias
in the mean of the predictions is reduced as compared to that of the reco mass. The bias
around the Higgs mass will be better quantified using the SM sample. At low kinematic
masses, the mean of the predictions again deviates more than the mean of the reco
masses. However, the relatively accurate mean of the reco mass is again a consequence
of the artificial lower cut of mUFO. Including smaller reco masses would cause the mean
of the reco masses to be much too low in all bins. Hence the predicted mass improves
on the reco mass both in terms of the mean and the standard deviation.

Error dependencies

In Table 4.2 we can see that the model is able to improve on the reco mass by a factor of
1.4. When looking at the Higgs region (100 < mkin < 150) the improvement is increased
to 1.6 as this mass cut reduces the effects of clipping.2

Table 4.2: The RMSE of the reco mass and the predictions w.r.t. the kinematic mass, and
the improvement of the predicted mass w.r.t. the reco mass.

Selection
RMSE [GeV]

Improvement
mUFO mpred

None 33 24 1.4
100 < mkin < 150 GeV 31 19 1.6

In Figure 4.7a we plot the RMSE as a function of the kinematic mass. Here we see that
the predicted mass improves on the reco mass in all bins. The biggest improvement and
best RMSE can be found between 80 and 130 GeV. In the bin containing the Higgs mass
(120-130 GeV), the RMSE is 19 GeV and the relative RMSE is 0.15.

A discrepancy between the RMSE and the standard deviation again displays a bias.
This time the bias is only negligible in a relatively small region, i.e. within 80 and 140
GeV, whereas the training on the true jet mass showed a negligible bias within 100 and
200 GeV. This may be because the kinematic mass is confined to a smaller interval, i.e.

2Larger models allow for an improvement of 1.5 and 1.8 resp. at the cost of a worse performance on
the SM sample, which is why they are not considered.
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(a) (b)

Figure 4.7: (a) The RMSE of the reco mass mUFO and the predicted mass mpred per mkin bin,
alongside their standard deviation (std) w.r.t. their mean. (b) Similarly, the relative RMSE,
i.e. the RMSE divided by the centre value of the mkin bin.

50-200 GeV rather than 50-300 GeV. Again at the ends of the mass range, the bias is
found to be maximal, which coincides with the findings from Figure 4.6b about clipping.
This time the contribution of the bias to the RMSE is biggest at high masses, which
is best visible in Figure 4.7b. At high masses, the relative spread in the predictions
remains constant, while the relative RMSE increases again, similarly to mUFO.

In Figure 4.8 we plot the RMSE as a function of pT and |η|. Again we observe that the
predicted masses have a lower RMSE than the reco mass in all pT and |η| bins. The
RMSE is nearly independent of |η|, but the best improvement is visible at low |η|. The
RMSE and the improvement thereof are best at high pT . Again, at high pT the particles
of the b jets overlap in the detector. One of the goals of using an ML algorithm is to show
that they are able to improve on conventional reconstruction algorithms, especially in
these hard situations. This observation does exactly that, which is promising for BSM
searches.

(a) (b)

Figure 4.8: The RMSE of the reco mass mUFO and the predicted mass mpred w.r.t. the
kinematic mass mkin per (a) pT and (b) |η| bin.
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Since the kinematic mass data is not 3D resampled, pT values beyond the range of 250-
1300 GeV are available, i.e. values of pT > 150 GeV. For pT > 1300 GeV the RMSE of
both the predicted and the reco mass slowly starts to increase again. Meanwhile, the
improvement starts to decrease, as fewer statistics are available at high pT . Still, the
predicted masses are better than the reco masses in all pT bins.

Mass distributions

In Figure 4.9a we plot the mass distributions of the reco, predicted and kinematic mass.
Here we see that the predicted mass follows the kinematic mass distribution better than
the reco mass distribution does, albeit with a different shape. Again the effect of clipping
is well visible as for low and high kinematic masses there is a sudden lack of predicted
masses, whereas in the middle too many events are predicted.

(a) (b)

(c) (d)

Figure 4.9: (a) The mass distribution of the kinematic mass, reco mass and predicted mass
and (b,c,d) these distributions for different pT cuts.

When plotting the mass distributions for different pT cuts we observe that for higher
pT the predicted mass distribution better follows the target distribution, as expected
from Figure 4.8a. This may be explained by the fact that the reco mass distribution
also better matches the target distribution. No 3D resampling has been performed on
the kinematic mass dataset, making the reco mass distribution pT dependent. This
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may explain why training on the kinematic mass causes the shape of the predicted mass
distribution to better follow the shape of the target distribution, as compared to training
on the true jet mass. Also, we observe in the ratio plots that for higher pT the effect
of clipping is reduced. The sudden ratio drop only starts closer to the edges of the
distribution, while the over-abundance in the middle is reduced.

(a) (b)

Figure 4.10: The relative mass distributions, i.e. the reco and predicted mass divided by the
kinematic mass, for (a) different mkin cuts and (b) different pT cuts.

When looking at the relative mass distribution in Figure 4.10 we find that the relative
mpred distribution is better centred around 1 than the relative mUFO distribution. The
peak gets slightly sharper after performing a mass cut to reduce the clipping effects or
after a high pT cut.

4.3 Predictions on SM sample

In this section, we present the results of the training on both the true jet mass and the
kinematic mass using the SM sample. In the upcoming figures, the results from the true
jet mass training are displayed on the left and those from the kinematic mass training
on the right to allow for easy comparisons. From the different available processes, we
will use the two-lepton channel qq̄ → ZH → ℓℓ̄bb̄ as that process has the most statistics.
All the other channels, including the H → cc̄ channels, provide very similar results.3

Only events having |η| < 2, 250 < pT < 1300 GeV and 50 < mUFO < 200 GeV are used.
The latter upper cut should not have much effect as now all events have a reco mass
near 125 GeV, but due to clipping it does, as will be explained in the next paragraph.

4.3.1 Improvement predictions

In Table 4.3 we show the RMSE of the reco and predicted masses w.r.t. the two different
target variables for both models. In contrast to the results using the test samples we now
see that the improvement is best for the training on the kinematic mass. Its improvement
is even larger (2.0 instead of 1.6), which is partially because now only kinematic masses
around 125 GeV are present, which is where the predictions are better. Meanwhile, the
improvement is partially enhanced due to the effects of clipping. As stated earlier, the
reco mass is sometimes able to deviate much from the kinematic mass as they are less

3This can be seen in Figure A.3 and A.4.
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related. Since the error scales quadratically these deviations significantly contribute to
the RMSE. Meanwhile, the predictions are confined to values between 50 and 200 GeV
due to clipping. This automatically improves the predictions. Including events with
mUFO > 200 GeV increases the improvement factor up to 2.4 already. To somewhat
reduce the effects of clipping and to make the comparison to mUFO fairer, we only use
50 < mUFO < 200 GeV. Tighter cuts could be made to reduce the effect of clipping even
further, but this would significantly alter the Higgs peaks and artificially increase the
precision of the predictions even further.

Table 4.3: The RMSE of the reco mass and the predictions w.r.t. the kinematic mass and the
true mass for the two trainings on the different target variables, alongside the improvement of
the predicted mass w.r.t. the reco mass.

Target Error w.r.t.
RMSE [GeV]

Improvement
mUFO mpred

mkin mkin 22 11 2.0
mkin mtrue 18 18 1.0
mtrue mtrue 18 13 1.4
mtrue mkin 22 18 1.2

Meanwhile, the improvement on the reco mass using the training on the true jet mass is
reduced (1.4 instead of 2.0). This can be explained by the fact that the pT distribution
in the SM sample is falling, whereas it is flatter (and contains a peak around 500 GeV)
in the test sample. Hence relatively more low pT events are present in the SM sample.
For these pT values we found that the resolution is best, which explains why the RMSE
is now better (13 instead of 15 GeV). Meanwhile, the improvement factor is worse, as
the reco mass is already able to predict the true jet mass well at low pT .

In Table 4.3 we can also see that the predictions from the training on the true jet mass
automatically predict the the kinematic mass slightly better than the reco mass. Vice
versa, the kinematic mass model is not able to better predict the true jet mass.

4.3.2 Signal peaks

In Figure 4.11 we plot the mass distributions of the true jet mass, kinematic mass and
reco mass as well as the predicted mass from the two models. Both models are able to
give stronger Higgs peaks than the reco mass does. Both models reduce the tails, but
at the very ends of the distribution this is mainly due to clipping as can best be seen
in the ratio plots in Figure 4.11a. This time the slightly reduced abundance of the true
jet mass predictions around 200 GeV is due to the upper cut on mUFO and not due to
clipping, as the latter only arises near 300 GeV.

A bias in the mean can be observed in the predicted distribution as well as in Table 4.4,
where the mean and standard deviations of the different masses are quantified. First of
all, the true jet mass has a bias as it is centred around 129 GeV rather than 125 GeV.
The mean of its predictions is 126 GeV and is therefore shifted to the left. This shift
is partially a consequence of the peak in the training sample, since training on the flat
mass sample showed a reduced bias.

Peculiarly, the standard deviation of the predicted true jet masses is smaller than that
of the target values, the true jet mass. This is partially a consequence of clipping, as
similarly in the test sample all predicted masses were pushed to within the target mass
range. Also, it is partially because of the peak in the training sample, which causes the
predictions to lean towards the mean of the peak. Training on the flat mass sample
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(a) (b)

Figure 4.11: The true, reco and predicted mass distributions when trained on (a) the true jet
mass and (b) the kinematic mass using a physical SM standard model sample. The kinematic
mass distribution is represented by the dashed vertical line at 125 GeV. Only reco masses of
50 < mUFO < 200 GeV are used.

Table 4.4: The mean and standard deviation of the distributions of the kinematic mass4mkin,
true jet mass mtrue, reco mass mUFO and predicted mass using the training on the kinematic
mass mpred,kin and that on the true jet mass mpred,true.

Distribution µ [GeV] σ [GeV]
mkin 125.0 0.3
mtrue 129 20
mUFO 125 22
mpred,kin 128 10
mpred,true 126 18

created a broader SM Higgs peak, as compared to the same training with a peaked
target and the same number of jets. But this could also be due to the reduced statistics
around the Higgs mass. Meanwhile, in that training clipping still caused the predicted
mass peak to be narrower than the target peak, as it was pushed to within 60 and 200
GeV.

Secondly, the kinematic mass distribution has its mean at 125 GeV, while its predicted
distribution has its mean at 128 GeV. As previously mentioned, training on the kinematic
mass using larger models caused the peak of its predictions to move to the right. By
selecting the optimal model for the SM sample, this bias is already reduced, but still
non-negligible. The exact reason as to why it occurs is unknown, but it may again have
to do with the domain shift of the kinematic variables in the SM sample w.r.t. the test
sample.

The standard deviation of mpred,kin is 10 GeV, which is only slightly smaller than its
RMSE of 11 GeV. This indicates that the bias contribution is relatively small. Moreover,
since the peak is relatively narrow, the effect of clipping on the distribution is only little
as no sudden decline in the ratio plots is observed near the edges. On the other hand,
the standard deviation in mpred,true of 18 GeV is fairly large as compared to its RMSE of

4The standard deviation of the mkin distributions is not equal to the theoretical decay width of 4
MeV since it is adjusted by the Complex Pole Scheme (CPS) in the simulation to account for the effects
of complex singularities near the threshold energies.
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13 GeV. This indicates that the deviation in true jet mass strongly limits the maximum
achievable resolution of the peak.

When comparing the peaks obtained from the two models, we observe that the kinematic
mass model is able to produce stronger peaks than the true jet mass model. More
importantly, the peak predicting the kinematic mass is stronger than the true jet mass.
This means that any adaption to the training on the true jet mass will not be able to
produce stronger peaks than the training on the kinematic mass, at least not for H → bb̄
events.

4.3.3 Transverse momentum and pseudorapidity

We would like to make sure that the physical properties of a sample are unchanged after
making a selection in the data using the predicted mass. This is especially important
in boosted decision trees, which try to filter out signal events using cuts on the data.
The pT and |η| distributions are characteristic of a process, therefore it is important
that they do not behave unphysically after cutting on the predicted mass. Checking
these two variables is not representative of all other variables, but it gives us a quick
indication.

In Figure 4.12 we plot the pT and |η| distribution of the SM sample, using cuts on
different mass variables. The distributions are naturally untouched by cuts on the
kinematic mass and we observe that they are nearly untouched by cuts on the reco mass.
Meanwhile, a cut on the true jet mass does pose a clearly different pT distribution in
the ratio plots. We observe a slight excess at low pT after cutting on the true jet mass,
which explains why in all higher pT bins a clear shortage arises.

Cutting on mpred,true causes the pT distribution to mimic the pT distribution after
cutting on mtrue. This is desired if you want the predictions to mimic the target values,
however, in this case, it means that the physical properties of the sample are adjusted.
Cutting on mpred,kin on the other hand causes the pT distribution to better retain its
shape. It only slightly deviates from the pT distribution after cutting on mkin. For
pT > 600 GeV the shortage is quite constant and clearly better than when cutting on
mpred,true.

The |η| distributions are nearly untouched after cutting on any of the masses. Cutting
on mtrue poses the largest change, though it is still small. Cutting on mpred,true causes
the pT distribution to slightly follow the pT distribution after cutting on mtrue as ex-
pected. Meanwhile, cutting on mpred,kin leaves the pT distribution virtually untouched,
as desired.
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(a) (b)

(c) (d)

Figure 4.12: The (a,b) pT and (c,d) |η| distribution for different mass cuts, including the true
jet, kinematic and reco mass as well as on the predicted mass trained on (a,c) the true jet mass
and (b,d) the kinematic mass. Only reco masses of 50 < mUFO < 200 GeV are used.
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Conclusion & Discussion

After investigating and optimising the ML models for the two target variables, the true
jet mass and the kinematic mass, we found that the kinematic mass model has the most
potential. Firstly, it is able to produce stronger SM Higgs peaks than both the true
jet mass and the predicted true jet mass. Secondly, cutting on the predicted kinematic
mass affects the pT and |η| distribution less than cutting on the predicted true jet mass.
This implies that the physical properties of the Higgs decay are less affected using this
model, which is desired in BDTs. Finally, at high pT the RMSE is not increasing (much)
as a function of pT and the improvement w.r.t. the reco mass is largest. This is desired
regarding the search for BSM physics using boosted H → bb̄ jets. Conversely, the error
of the true jet mass model does increase as a function of pT .

Both models showed the best improvement at high pT and low η. At high pT the b
jets overlap most, hence this observation underlines the strength of ML models in such
complex situations. The model predicting the true jet mass improves on the reco mass
by a factor of 2.0 in the Higgs range in terms of the RMSE, using the test sample. In the
SM sample, it improves by a factor of 1.4 and it provides a Higgs mass peak described
by µ = 126 GeV and σ = 18 GeV. The model predicting the kinematic mass improves
on the reco mass by a factor of 1.6 in the Higgs range using the test sample, while
it improves by a factor of 2.0 in the SM sample. It produces a Higgs peak described
by µ = 128 GeV and σ = 10 GeV. For comparison, the reco mass peak is described
by µ = 125 GeV and σ = 22 GeV and the true jet mass peak by µ = 129 GeV and
σ = 20 GeV. The spread of the predicted masses from the true jet mass model is smaller
than that of its target values due to clipping, which pushes all predictions to within the
interval of the target values. Similarly, the improvement w.r.t. the reco mass by the
kinematic mass model is enhanced by clipping.

When training on the kinematic mass, the substructure variables worsened the results
and the pixel information improved them. Vice versa, when training on the true jet mass
the substructure variables improved the results, whereas the pixel information did not.
This indicates that low-level information has more potential when it comes to predicting
the kinematic mass. Higher level information would be more useful to predict the true
jet mass, as the groomed UFO large-R jet (that is used to calculate these variables) is
more closely related to the target variable. In both models using subjets was beneficial.

In both models clipping altered the mass predictions unphysically near the edges of the
target mass distribution. However, the two models trained on mtrue and mkin have
predictive power near the Higgs mass, i.e. within approximately 90 < mtrue < 200
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GeV and 80 < mkin < 140 GeV respectively. Even in background processes, that are
not used in the training, the predicted masses improve on the reco mass. Both models
provide similar results for H → bb̄ and H → cc̄ events. Most importantly, the models
do not simply predict the Higgs mass. Instead, they provide an increased resolution
over a broad kinematic range, thanks to the broadened mass peak that was used in
the training sample. Therefore, the recommended kinematic mass model, or slightly
adapted versions thereof, could provide us with better results when applied in H → bb̄
research. This would help us to better understand the Higgs boson and related open
questions about the universe.

5.1 Future studies

5.1.1 Input variables

The predictions can potentially be improved in numerous ways. Firstly, extra variables
could be included that were not available in the provided data. Integer values were not
compatible with the Salt code up to some point, hence they have not been considered
yet. The variable leptonID could be included, which indicates whether a track has been
used in the reconstruction of an electron, a muon, or neither of them. The GN2X tagger
showed an improvement in the rejection rate of about 10-15% when using this variable.
[62] Hence including the leptonID could potentially improve the mass resolution.

The number of muons ending up in the large-R jet could also improve the mass resolu-
tion. Usually, the weak bosons that are associated with the Higgs boson are produced
back to back, meaning that its muons do not end up in the large-R jet. But in the few
cases that it does, it does contribute to the reco mass, which you could compensate for
using the number of muons. Currently, the leptons decaying from the weak boson are
included when calculating the true jet mass, but this limits the maximum achievable
resolution when training on the true jet mass. Hence we could remove these leptons
before calculating the true jet mass at truth level. At both truth and detector levels,
it is often possible in the 2-lepton channel to remove identified lepton pairs having an
invariant mass consistent with the Z boson mass, before computing the reco mass and
the true jet mass. In the 1-lepton channel, this cannot be done so straightforwardly.
Hence it could still be useful to include the number of muons to compensate for the extra
mass. Furthermore, information from the muon spectrometer could be added similarly
to the way the subjets have been added.

In [27] the grooming techniques CS+SK+Soft Drop were recommended when using UFO
jets, since this would result in the best performance for taggers. However, in Figure 16a
of that paper the grooming techniques CS+SK+Trimming seem to give better results
in terms of the mass resolution, especially for pT > 1500 GeV. This was the case for
W → qq events after performing a mass cut of 70 < mtrue < 90 GeV. In this paper,
H → bb̄ events were not investigated. Meanwhile, no significant improvement was
observed in t → qqb events in Figure 16b after selecting only 150 < mtrue < 200. So it
is uncertain whether Trimming could be beneficial.

Alternatively, Flow objects could be used as input, also known as Particle-Flow Objects
(PFlow). Flow objects are objects generated from energy deposits in the calorimeter.
Flow objects can be concatenated to the tracks that create these energy depositions
to create a more informative track-like object. However, on one hand, some tracks are
not associated with a flow object, and multiple tracks could end up in the same spot
in the calorimeter. On the other hand, neutral particles could lead to the creation of
flow objects without leaving a track behind. One could then set zeros for the missing
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object when using a combined track+flow object, but many zeros can confuse an ML
algorithm. Still, combining flow and track information could potentially improve the
mass resolution.

5.1.2 Architecture

Secondly, apart from using different input variables, different architectures could be
used. Currently, the optimal number of hidden layers is zero, as apparently relatively
untouched input variables are more useful. However, this does not allow for the creation
of sophisticated variables, which could potentially cause the MHA to better attend to
the right objects of the sequence. Perhaps creating three separate dense layers for the
query, key and value allows for better-suited embeddings. In this setup using more
hidden layers could become beneficial again.

Moreover, one could choose to not put some (or all) substructure variables inside the
MHA, since they are currently abundant as compared to the rest of the information. All
jet variables are copied and concatenated to each track, which could cause such variables
to dominate more than they should. Instead, only a few variables could be appended to
each track, like η, pT , E and the reco mass, since related variables are also present in
the tracks and subjets. The rest of the variables, i.e. the substructure variables could
then be appended to the output of the MHA via a dense layer. This would significantly
reduce the computation time, but it could result in degraded performance when training
on the true jet mass. When training on the kinematic mass, it could still be beneficial
as in that case, the substructure variables would no longer be dominant in the MHA,
while still providing potentially useful information.

5.1.3 Clipping

Thirdly, clipping effects could and should be reduced. Fortunately, we observed that only
near the edges of the target distributions clipping significantly altered the predictions.
Within approximately 70 < mkin < 140 GeV and 90 < mtrue < 200 GeV the bias was
much reduced, increasing the predictive power. This still means that the model may
not provide useful results for background processes having a true jet mass or kinematic
mass far away from the Higgs mass. This could perhaps be solved in multiple ways,
which could improve the predictions on H → bb̄ events at the same time.

This bias could be reduced by applying a loss function that is dependent on the target
value, such that at the ends of the distribution the errors weigh stronger. This would
automatically worsen the predictions in the middle of the distribution, i.e. around the
Higgs mass. However, potentially the custom loss function could push the model out of
a possible local minimum and push it towards a hopefully lower minimum that better
generalises outside the target mass distribution.

This bias could also be reduced by including background events during the training
and thus forcing to model to generalise. In Figure A.1, we find that the true jet mass
model also better predicts H → cc̄, QCD and top processes than the reco mass over
a relatively wide mass range. The kinematic mass model was also trained on H → cc̄
events and is therefore able to produce similar results on H → cc̄ events, as can be seen
in Figure A.2. Background samples containing the kinematic mass were not available.
A training on H → bb̄, H → cc̄, QCD and top all together provided better results on
the background processes, however, at the cost of a worse resolution in the H → bb̄
events. Meanwhile, clipping was not reduced, because the mUFO distribution was the
same for all processes due to 3D resampling. Therefore, using a different resampling
method could allow for a wider trainable mass range. This could reduce the effects of
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clipping while simultaneously increasing the predictive power in all processes, including
H → bb̄.

Simply increasing the target mass range, while only training on signal events would
perhaps be the best solution. The flat true jet mass sample containing a smaller cut of
60 < mtrue < 200 GeV (instead of 50 < mtrue < 300 GeV) showed that the effects of
clipping are increased when using smaller ranges. All predictions of this model ended
up within 60 < mpred < 200 GeV, even those way beyond that range. Therefore, vice
versa simply using an even larger mass range would likely boost the performance of
the ML model while decreasing the effects of clipping near the Higgs mass. In that
way, background processes could be described better, without having to use them in the
training, which simplifies the task of the model.

To obtain a wider mass range, one could perform a reweighting scheme by altering the
masses, momenta and energies, such that the mass distribution becomes flat over a
wide mass range while not breaking the laws of physics. [63] This would also make the
effects of a peaked distribution vanish. Alternatively, a much simpler solution could be
tested, i.e. performing a wider cut on mtrue and mkin. The mtrue distribution did not
contain many events beyond the 200 GeV, due to the kinematic mass cut at generator
level at that mass. But the remaining events already made sure that clipping did not
significantly contribute to the RMSE at the end of the mtrue distribution. Therefore
removing the upper cut on both mkin and mtrue could improve the predictions for both
models. When removing the cut on the kinematic mass at generator level, you would
include way too many events at unnecessarily high masses as the decay width was chosen
to be 400 GeV. So some cut has to be performed. However, any cut causes the mass
distribution to decrease around that cut. Increasing the upper cut of the kinematic mass
to 250 or 300 GeV could already reduce much of the clipping effects around the Higgs
mass and improve the predictions for background processes.
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Additional results and
clarifications

Table A.1: Jet variables with their name as used in the code and their notation.

Name Notation
pt pT
eta η
abs eta |η|
energy E
mass mUFO

Tau1 τ1
Tau2 τ2
Tau3 τ3
Tau4 τ4
Tau42 τ42
Tau32 τ32
Tau21 τ21
ECF1 ECF1

ECF2 ECF2

ECF3 ECF3

C1 C1

C2 C2

D2 D2

Split12
√
d12

Split23
√
d23

Split34
√
d34

ZCut12 z12
ZCut23 z23
ZCut34 z34
KtDR kt∆R
Angularity τa
PlanarFlow P
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Figure A.1: The reco mass mUFO, the true jet mass mtrue and predicted mass mpred distribu-
tions from the model trained on the true jet mass on H → bb̄, H → cc̄, QCD and top processes
of the test samples.

Figure A.2: The reco mass mUFO, the true jet mass mtrue and predicted mass mpred distri-
butions from the model trained on the true jet mass on H → bb̄ and H → cc̄ processes of the
test samples.
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Figure A.3: The reco mass mUFO, the true jet mass mtrue and predicted mass mpred distri-
butions from the model trained on the true jet mass on different SM signal processes. The
kinematic mass mkin distribution is represented by the dashed line. Only reco masses of
50 < mUFO < 200 GeV are used.
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Figure A.4: The reco mass mUFO, the true jet mass mtrue and predicted mass mpred distribu-
tions from the model trained on the kinematic mass on different SM processes. The kinematic
mass mkin distribution is represented by the dashed line. Only reco masses of 50 < mUFO < 200
GeV are used.
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(a) (b)

Figure A.5: The RMSE of the predicted mass from the model trained on (a) the true jet
mass and (b) the kinematic mass per pT and |η| bin, using the test sample.

(a) (b)

Figure A.6: The RMSE of the reco and predicted mass w.r.t. both the true jet mass and the
kinematic mass, where the predictions are from the model trained on (a) the true jet mass and
(b) the kinematic mass, vs. the number of associated tracks, using the SM sample. Only reco
masses of 50 < mUFO < 200 GeV are used.
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