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Abstract

A recent paper that considers an elemental integral series representation for Heun
functions has shed new light on gravitational wave research. It offers a new promis-
ing approach to gravitational wave calculus and offers us a representation of the
solution to the Teukolsky equation. In this thesis, we look at an Extreme Mass
Ratio Inspiral, with one very light black hole spiralling on a Kerr spacetime. We
will also derive the Teukolsky equation and use the new Heun approach to offer a
representation of this equation. We demonstrate the essence of the Heun technique
by giving an example and using the code written for this example to analyze the
Teukolsky equation. We provide plots and data of this representation.
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1 Introduction

1.1 Concerning Gravity

For a long time it was thought that sir Isaac Newton created a theory of gravity
that describes gravitational motion very accurately. This theory describes gravity
as a force of attraction between two masses. Here on earth, this theory seems to
hold for most physical cases. However, in more extreme environments the theory
of Newtonian gravity shows some flaws. We already see this happening in our own
solar system, which is a relatively non-extreme environment. For example, one of
the tests of general relativity for light bending around our very own sun. This is
why Einstein developed a new theory in 1915: The theory of general relativity. In
modern physics this is still the best theory we have concerning gravity. The theory
of general relativity states that massive objects curve space and time. They change
the geometry of ‘spacetime’ this results in a ‘gravitational attraction’ between two
massive objects.

In this thesis we will use some very important properties that directly follow from
Einstein’s theory of general relativity. A curved spacetime also takes the definition
of a straight line into consideration (or the fastest route between two points in
spacetime). This kind of motion can now be described by geodesic motion, which
describes the trajectory of a free particle in a certain spacetime. Now that we
have a tool to analyze motion in curved spacetimes, we still need to know how the
curvature behaves and how we can calculate distances. Here we make use of the
metric tensor (or line-element) of a spacetime. Combining these two properties, we
can perform calculations on motion of free particles in certain spacetimes as we will
also see later in this thesis.

1.2 Extreme environments

General relativity also predicts the existence of the most extreme environments in
the universe: black holes. These are extremely compact objects, where the gravita-
tional field is very strong. Another prediction of general relativity is the existence
of gravitational waves, these are small ripples in the structure of spacetime. They
can be formed by massive accelerating objects rotating around each other.

For a very long time, black holes were only a theoretical prediction. However,
through the years more evidence on the existence of black holes has been collected.
Our telescopes have collected a lot of data throughout the years that supports the
existence of black holes. For example:

1. When we look at the center of our universe and observe the orbits of stars,
we see orbits that imply the existence of a massive central object (i.e. black hole).
2. Looking at X-ray binaries, we can observe a black hole eating a nearby star
emitting X-rays.
3. We have observed radiation coming from an accretion disc around a black hole.

This is of course very promising and is another hint towards the existence of black
holes.

What really makes us believe that general relativity is still the best gravitational
theory are the two major discoveries of this past decade. First in 2015 LIGO and
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Virgo detected gravitational waves, which confirms one of the two major predici-
tons of general relativity. Therefore this was a huge step towards proving general
relativity as a whole. A few years later in 2019 another huge breakthrough was
confirmed by the Event Horizon Telescope team, they succeeded in making a pic-
ture of a black hole using some out of the box thinking.[1] This picture confirms
the existence of black holes and shows us that general relativity’s predictions still
hold.

1.3 Extreme mass ratio inspirals

The detection of gravitational waves motivates our research. In this thesis we look
at EMRIs (Extreme mass ratio inspirals). An EMRI is the situation where two
black holes rotate around each other, but one of the black holes has a very large
mass compared to the other black hole. While performing this inspiral, the two
black holes create gravitational waves. These are not the same as the gravitational
waves that LIGO and Virgo detected in 2015, the gravitational waves resulting
from an EMRI have a way smaller frequency then the gravitational waves detected
at LIGO and Virgo (30-1000 Hz). This is why in 2034 a new gravitational wave
detector is set to be launched into space. LISA has way longer ‘arms’ than detectors
on earth and is therefore able to detect different gravitational wavelengths. It would
be a huge breakthrough if LISA would be able to detect gravitational waves coming
from EMRIs.

1.4 Different spacetimes

Before all of the observable discoveries were made in the past century, a lot of theo-
retical work had already been done. This work, based on the work of Einstein gives
us different solutions for different sorts of black holes. The first solution discovered
in 1915 was the Schwarzschild solution, this solution discovered by Johannes Droste
and Karl Schwarzschild is the most simple one and describes a static black hole.
A few years later in 1918 the Reissner-Nordström solution was developed by Hans
Reissner and Gunnar Nordström. This solution describes the spacetime of a static
black hole, but this time with an electric field.

It is only until 1963 that Roy Kerr found a solution for rotating black holes. Many
scientists believe this theoretical solution to be the one that describes reality the
closest. Finally, just like with the Schwarzschild solution, there is also a solution for
rotating black holes with charge. This solution is called the Kerr-Newman solution.
Another reason why the Kerr solution seems to be the most likely one, is the fact
that it is very difficult for extremely large objects to preserve a charge. Therefore it
is thought that black holes described by the Reissner-Nordström and Kerr-Newman
solutions do not even exist in our universe. In this thesis we will only use the Kerr
spacetime and the properties following from the theory of general relativity.

1.5 Mathematical solution to a physical problem

The purpose of this research was to write a code with which we could analyze grav-
itational waves and make a working, faster program for future gravitational wave
detection. Our research was boosted by a paper on Heun functions this past fall.
This paper showed us a mathematical way to analyze gravitational waves using
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elementary functions and helped us interpret their properties. We used the tech-
niques shown in this paper to write a code based on the mathematical foundation
of differential equations and used our code to see if we could accurately analyze
gravitational waves and compare them to their numerical solution.
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2 The Kerr spacetime and its properties

The Kerr spacetime describes the fabric of space and time of a rotating, uncharged
axially symmetric black hole. This makes it different and more difficult to inter-
pret than the Schwarzschild spacetime, which concerns a non-rotating, uncharged
spherically symmetric black hole. These properties, are of course approximations
of a real physical situation. In a situation where we would have an actual black
hole, it would not have constant values and have certain fluctuations that would
alter the axial symmetry and rotation. The difficulty of this solution becomes even
more clear when we look at the years in which both spacetimes where solved for
the first time, for Schwarzschild the solution was discovered in 1915. However for
the Kerr spacetime it was only discovered in 1963. In Boyer-Lindquist coordinates
(t, r, θ, φ), the line-element of this spacetime takes the following form

ds2 =−
(

1− 2Mr

Σ

)
dt2 −

(
4Mar sin2 θ

Σ

)
dtdφ+

Σ

∆
dr2 + Σdθ2

+

(
(r2 + ct2)2 − a2 sin2 θ∆

)
sin2 θ

Σ
dφ2,

(1)

where

Σ := r2 + a2 cos2 θ

∆ := r2 − 2Mr + a2
(2)

This solution has some very astonishing properties. For example, the Kerr space-
time does not have one, but two horizons, where one is actually inside of the black
hole. This property can eventually make us exit the black hole into another universe
(although very interesting, not the main subject of this thesis). In this chapter we
look at some of the properties of the Kerr spacetime relevant to this thesis. [2]

2.1 Geodesic motion

2.1.1 The Hamilton-Jacobi equation

To help us gain a better understanding, we start by looking at some of the most
interesting and most useful properties of these black holes: the equations of mo-
tion for freely falling particles (Also known as the geodesic equation). The reason
that the geodesic equation is of great importance for this thesis has to do with the
physical situation we investigate. We study a situation where a small black hole
rotates around a large black hole, with a very big mass ratio. Which means that we
approximate the small black hole as if it is a test particle in the spacetime (It feels
the curvature of the large black hole, but does not alter it). Making this approxima-
tion, the trajectory of the black hole actually becomes a geodesic in the spacetime
of a massive black hole. The assumptions made in the definition of the black hole
(axial symmetry, uncharged and rotating) leaves us with some much simpler dif-
ferentials in the end and is therefore very important in actually obtaining a solution.

There are two ways in which we can determine the equations of motion for freely
falling particles. The first one relies on using Lagrangian methods. The first tech-
nique yields second order differential equations. The second technique which we
used in this thesis, deploys Hamiltonian techniques. This technique yields a set
of first-order differential equations. As we will see in the derivation of the equa-
tions of motion for freely falling particles, we have enough known variables to solve
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these equations. To begin with the derivation, we first need the Hamilton-Jacobi
equation:

H(xµ,
∂S

∂xµ
) +

∂S

∂λ
= 0, (3)

where, xµ are the coordinates of the system, ẋµ is the time evolution of the coor-
dinates of the system and S is Hamilton’s principal function.

Before we can actually use this equation, we need to define some basic proper-
ties. We start of by defining the Lagrangian for a free particle moving in a curved
spacetime with metric gµν ,

L(xµ, ẋµ) =
1

2
gµν ẋ

µẋν . (4)

This is of course a generalization of a free particle from classical mechanics. Now
using the definition of the Lagrangian, we are able to define the conjugated mo-
mentum as

pµ =
∂L
∂ẋµ

= gµν ẋ
ν . (5)

By inverting this equation, we obtain an expression for ẋµ as a function of the
momentum. Now we can write the Hamiltonian as a function of the coordinates
xµ(λ) and their conjugated momentum pν(λ), where λ is some affine parameter
along the geodesic.

H(xµ, pν) = pµẋ
µ(pν)− L(xµ, ẋµ(pν)) (6)

This equation can, using the definitions provided above, be written as

H =
1

2
gµνpµpν (7)

Finally, using the Hamilton-Jacobi equations, we obtain the time-evolution for co-
ordinates along the trajectory as well as the time-evolution for their moments.

ẋµ =
∂H

∂pµ
(8) ṗµ = − ∂H

∂xµ
(9)

We do not have the solution to the equations above yet, because we need one more
variable to be able to obtain a full solution. This is why we return to the Hamilton-
Jacobi (Eq. (1)) equation to derive one more constant. Now let’s solve this equation
using the fact that: S = S(xµ, λ) is a know solution to the Hamilton-Jacobi equa-
tion, which we can therefore use to solve this equation and obtain some important
properties of the spacetime.

Let us continue with defining some of the consequences that arise from the core
definition of the Kerr spacetime and take these assumptions into account to greatly
simplify the problem. There are three things we already know that can help us.
First, we can express the Hamiltonian in terms of κ, which is a constant that can
take the values (−1, 0, 1) depending on the type of geodesic (timelike, null-like,
spacelike) at the core of the problem.:

H =
1

2
gµνpµpν =

1

2
κ. (10)
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Second, the approximation that the Kerr spacetime is stationary, which means that
we can always pick one (or more) time-coordinates for which the spacetime looks
the same. In short this states that for every time-slice the spacetime looks the
same. In order to obtain our second constant, we need a little help using a killing
vector Kµ. If Kµ is applied to a certain metric and the metric does not change, we
call Kµ a killing vector[3]. Now applying both, we obtain:

pt = pµK
µ = −E, (11)

where, E is the total energy of the freely falling particle.

For this thesis, the constant E can be interpreted as the total energy of the small
black hole orbiting the large black hole.

Finally, the next property that also gives us a constant is the axial symmetry
of the Kerr spacetime, which simply means that the curvature of the spacetime is
the same for every co-latitude.

pφ = L, (12)

where, he constant L is the total angular momentum of the freely falling particle.

For this thesis, the constant L can be interpreted as the total angular momen-
tum of the small black hole orbiting the large black hole.

Using the conditions given above, we can now compose an equation for our trial
solution S:

S = −1

2
κλ− Et+ Lφ+ S(rθ)(r, θ) (13)

In this equation, the last term is still unknown, however we will look for a seperable
solution to this equation so we will use separation of variables to determine S as a
function of r and θ. We make the following ansatz for S:

S(rθ) = S(r)(r) + S(θ)(θ) (14)

Substituting this into equation 13, we obtain:

S = −1

2
κλ− Et+ Lφ+ S(r)(r) + S(θ)(θ) (15)

Now that we have constructed this equation for S, we can use the Hamilton-Jacobi
equation together with this S to try and obtain a solution to Eq. (3). We have:

−κ+
∆

Σ

(
dS(r)

dr

)2

+
1

Σ

(
dS(θ)

dθ

)2

− 1

∆

[
r2 + a2 +

2Ma2r

Σ
sin2 θ

]
E2

+
4Mra

Σ∆
EL+

∆− a2 sin2 θ

Σ∆ sin2 θ
L2 = 0.

(16)

To simplify this complicated differential equation, we can use the convenient relation

(r2 + a2) +
2Mra2

Σ
sin2 θ =

1

Σ

[
(r2 + a2)2 − a2 sin2 θ∆

]
, (17)

if we use this relation and we take the product of the Hamilton-Jacobi equation
with Σ , we then obtain:

− κ(r2 + a2 cos2 θ) + ∆

(
dS(r)

dr

)2

+

(
dS(θ)

dθ

)2

−
[

(r2 + a2)2

∆
− a2 sin2 θ

]
E2 +

4Mra

∆
EL+

(
1

sin2 θ
− a2

∆

)
L2 = 0.

(18)
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Now this already looks a lot more promising, because we can rewrite this equation
so that the left side of the equation only depends on r and the right side of the
equation only depends on θ.

∆

(
dS(r)

dr

)2

− κr2 − (r2 + a2)2

∆
E2 +

4Mra

∆
EL− a2

∆
L2 + a2E2 + L2 =

−
(
dS(θ)

dθ

)2

+ ka2 cos2 θ + a2 cos2 θE2 − cos2 θ

sin2 θ
L2

(19)

Both sides of the equation depend on a different variable, but must be equal to one
another. This of course implies that both sides must be equal to a certain constant.
This constant is called the Carter constant, because the Carter constant makes the
geodesic motion integrable, which allows us to solve the differential equations.

2.1.2 The Carter constant and geodesic motion

Looking at Eq. (19), we define the Carter constant C as(
dS(θ)

dθ

)2

− cos2 θ

[
(k + E2)a2 − 1

sin2 θ
L2

]
= C, (20)

Consequently the radial part is

∆

(
dS(r)

dr

)2

− κr2 + (L− aE)2 − 1

∆

[
E(r2 + a2)− La

]2

= −C. (21)

The two equations above and the Carter constant now give us a very nice way of
defining two functions that are only dependent on one variable, which becomes for
r and θ respectively:

R(r) := ∆

[
− C + kr2 − (L− aE)2)

]
+

[
E(r2 + a2)− La

]2

(22)

Θ(θ) := C + cos2 θ

[
(k + E2)a2 − 1

sin2 θ
L2

]
(23)

This finally gives us the option to fill in the last blanks that were missing in the so-
lution of the Hamilton-Jacobi equation, because from the definition of the equations
above it follows that

(
dS(r)

dr

)2

=
R

∆2
(24)

(
dS(θ)

dθ

)2

= Θ (25)

Now finally filling this into our trial solution for the Hamilton-Jacobi equation, we
obtain our final solution for the equation:

S = −1

2
κλ− Et+ LΦ +

∫ √
R

∆
dr +

∫ √
Θ dθ (26)

Now that we finally have the solution to the Hamilton-Jacobi equation in terms
of the four constants κ,E, L,C, we can analyze and solve the geodesic motion in
the Kerr spacetime. We do this by using the property of our Hamiltonian defined
earlier in this derivation. We use that by definition

∂S

∂xµ
= pµ (27)

From this property and using our solution to the Hamilton-Jacobi equation, we can
finally determine the conjugated momentum in this spacetime
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p2
r =

(
Σ

∆
ṙ

)
=
R(r)

∆2
(28)

p2
θ =

(
Σθ̇

)
= Θ(θ) (29)

These equations finally gives us the geodesic equations

θ̇ = ± 1

Σ

√
Θ (30) ṙ = ± 1

Σ

√
R (31)

This is the result we wanted to achieve, because with these two equations we can
analyze the geodesic motion in the Kerr spacetime. We can even go one step further
and parametrize the geodesic using the ‘Mino time’ so we can then define bound
orbits in the spacetime and analyze those for this special case.[4] Using these two
coupled equations, we can visualize the geodesics around a Kerr black hole using
the BHP-Toolkit in Mathematica[5], this is shown in the figure below.

Figure 1: This figure shows geodesic motion around a Kerr black hole which is located
in the center of the figure, the red lines are the geodesic.
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2.2 Spin Coefficients and the Weyl tensor

Another important property of a spacetime are the so called spin coefficients, they
are of extreme importance in the field of black hole perturbation theory and the
observation and calculation of gravitational waves. There are several ways to write
down the Einstein equations, one of them is using the spin-coefficients. This tech-
nique is especially useful in calculating small perturbations in rotating black hole
spacetimes, because it leads to a seperable wave equation, whereas in terms of
metric coefficients the equations are not seperable. That is why we will use this
technique later on in this thesis and now we will derive the spin-coefficients.

2.2.1 The Newman-Penrose formalism

The first step in determining the spin coefficients of the Kerr spacetime, is to
construct a null basis. The Newman-Penrose formalism helps us in making the
right choice for such a null basis. The underlying concept of this formalism is
the choice of a null basis, this must consist of 2 real vectors (l, n) and 2 complex
conjugates (m, m̄). These vectors must obey the following orthogonality conditions:

l ·m = l · m̄ = n ·m = n · m̄ = 0. (32)

Additionally arising from the fact that the vectors have to be null

l · l = n · n = m ·m = m̄ · m̄ = 0. (33)

We add two more normalization conditions to the null vectors, because we would
also like the vectors to be normalized

l · n = −1 (34) m · m̄ = 1 (35)

Using all of these restrictions on the basis vectors, we construct the Kinnersly
tetrad for the Kerr spacetime in BL-Coordinates [6, 7]

lµ =

[
r2 + a2

∆
, 1, 0,

a

∆

]
(36)

nµ =

[
r2 + a2

2Σ
,− ∆

2Σ
, 0,

a

2Σ

]
(37)

mµ =

[
ia sin θ√

2(r + ia cos θ)
, 0,

1√
2(r + ia cos θ)

,
i√

2(r + ia cos θ) sin θ

]
(38)

m̄µ =

[
−ia sin θ√

2(r − ia cos θ)
, 0,

1√
2(r − ia cos θ)

,− i√
2(r − ia cos θ) sin θ

]
(39)
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2.2.2 The spin coefficients

With the Kinnersly tetrad, it is now relatively easy to compute the spin coefficients
of this spacetime. The spin coefficients are related through the product of the
tetrad vectors and a contraction using the covariant derivative. For example, one
of the twelve spin coefficients is κ and the relation that gives it is

κ = γ131 = −mαlβ∇βlα (40)

In this paper we used Mathematica to calculate the actual spin coefficients using
exactly the contraction as described above. Finally the coefficients have also been
checked using the results in the literature.[8]

2.2.3 A representation of the Weyl tensor

Another application of the Kinnersly tetrad is the representation of the Weyl tensor
by five scalars[3]. The Weyl tensor is a part of the Riemann tensor, with all of its
contractions removed. Which means that the Weyl tensor contains pure geometry,
while the Ricci tensor, for example, only contains terms that have information about
matter in it. This property of the Weyl tensor makes it very useful for research on
gravitation waves. We computed the Weyl tensor using the GeneralRelativityTen-
sors Package from the BHP-Toolkit in Mathematica. Next we computed the five
scalars which represent the ten different components of the Weyl tensor using the
null-basis we constructed in the previous section. The scalars are defined by [7]

Ψ0 = Cαβγδl
αmβlγmδ (41a)

Ψ1 = Cαβγδl
αnβlγmδ (41b)

Ψ2 = Cαβγδl
αmβm̄γnδ (41c)

Ψ3 = Cαβγδl
αnβm̄γnδ (41d)

Ψ4 = Cαβγδn
αm̄βnγm̄δ (41e)

Further on in section 3 these scalars will be used in the calculation of the Teukolsky
equation.
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3 Gravitational Waves

3.1 The Teukolsky master equation

Having set the stage, we finally arrive at the main purpose of this thesis. The beauty
of gravitational waves is that they can be described by one single master equation,
the Teukolsky master equation. This equation is a separable wave equation and is
constructed using the spin-coefficients and Weyl scalars form the previous chapter.

First, we need to filter out the Weyl scalars that are of importance for the cal-
culation of gravitational waves. The ones that need to be considered are Eq. (41a)
and Eq. (41e). In the rest of this derivation we will try to use Ψ0 to eventually
obtain an equation for Ψ4, which will tell us something about emitted gravitational
waves.

From Pirani (1964) we take the three non-vacuum equations in the Newman-Penrose
formalism. These equations are very general and hold for all space.

(δ̄ − 4α+ π)Ψ0 − (D − 4ρ− 2ε)Ψ1 − 3Ψ2 = (δ + π̄ − 2ᾱ− 2β)Φ00

− (D − 2ε− 2ρ̄)Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02,
(42a)

(∆− 4γ + µ)Ψ0 − (δ − 4τ − 2β)Ψ1 − 3σΨ2 = (δ + 2π̄ − 2β)Φ01

− (D − 2ε+ 2ε̄− 2ρ̄)Φ02 − λ̄+ 2σΦ00 + 2σΦ11 − 2κΦ12,
(42b)

(D − ρ− ¯ρ− 3ε+ ε̄)σ − (δ − τ + π̄ − ᾱ− 3β)κ−Ψ0 = 0. (42c)

In these equations the right hand side of these equations contains some Ricci scalars,
these scalars are all given in terms of the stress-energy tensor by the Einstein field
equations

Φ00 = −1

2
Rµν l

µlν = 4πTµν l
µlν = 4πTll (43)

Where Rµν is the Ricci tensor and Tµν is the stress-energy tensor.

3.1.1 Perturbation theory

After defining the three equations in the preliminaries of this chapter, we start by
looking at two important properties of the Weyl scalars and some spin-coefficients

Ψ
(0)
0 = Ψ

(0)
1 = Ψ

(0)
2 = Ψ

(0)
3 = Ψ

(0)
4 = 0,

κ(0) = σ(0) = ν(0) = λ(0) = 0.

where the ‘zero’ between the brackets means that this is the unperturbed case. In
the remainder of this chapter we will continue indicating the degree of perturbation
with brackets.

Adding a small perturbation into the Pirani equations will start our derivation
of the Teukolsky equation

l = l(0) + l(1)

n = n(0) + n(1).
(44)
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The same goes for m and m̄ and we add the same perturbation to the Weyl scalars

Ψ1 = Ψ
(0)
1 + Ψ

(1)
1 (45)

Similarly for the other four Weyl scalars. If we simply fill in the perturbations
and we rewrite the Ricci scalars into stress energy tensor terms in Eq. (42a) (Also
note that we drop all quadratic terms because we only look at the linear part of
perturbation theory), we will obtain the following

((δ̄ − 4α+ π)(0) + (δ̄ − 4α+ π)(1))(Ψ
(0)
0 + Ψ

(1)
0 )− ((D − 4ρ− 2ε)(0)

+ (D − 4ρ− 2ε)(1))(Ψ
(0)
1 + Ψ

(1)
1 )− 3(κ(0) + κ(1))(Ψ

(0)
2 + Ψ

(1)
2 ) =

4π((δ + π̄ − 2ᾱ− 2β)(0) + (δ + π̄ − 2ᾱ− 2β)(1))(T
(0)
ll + T

(1)
ll )

− 4π((D − 2ε− 2ρ̄)(0) + (D − 2ε− 2ρ̄)(1))(T
(0)
ln + T

(1)
ln )

+ 8π(σ(0) + σ(1))(T
(0)
nl + T

(1)
nl )− 8π(κ(0) + κ(1))(T (0)

nn + T (1)
nn )

− 4π(κ̄(0) + κ̄(1))(T
(0)
lm + T

(1)
lm ).

(46)

At first glance, this looks like a very complicated equation, but some of the spin-

coefficients that are zero and the unperturbed Weyl scalars (Ψ
(0)
n ) that also give

zero, we can simplify this equation significantly. The equation reduces to

( ¯δ − 4α+ π)(0)Ψ
(1)
0 − (D − 4ρ− 2ε)(0)Ψ

(1)
1 − 3κ(1)Ψ

(0)
2 =

4π(δ + π̄ − 2ᾱ− 2β)(0)T
(1)
ll − 4π(D − 2ε− 2ρ̄)(0)T

(1)
ln .

(47a)

For the second (42b) and third equation (42c) respectively we can apply exactly
the same techniques as demonstrated above for the first equation and we obtain
the following two equations

(∆− 4γ + µ)(0)Ψ
(1)
0 − (δ − 4τ − 2β)(0)Ψ

(1)
1 − 3σ(1)Ψ

(1)
2 =

4π(δ + 2π̄ − 2β)(0)T
(1)
ln − 4π(D − 2ε+ 2ε̄− ρ̄)(0)T

(1)
lm ,

(47b)

(D − ρ− ρ̄− 3ε+ ε̄)(0)σ(1) − (δ − τ + π̄ − ᾱ− 3β)(0)κ(1) −Ψ
(1)
0 = 0. (47c)

Now that we have these three equations, the goal from now on is to eliminate Ψ1

and Ψ2 from the equations. We want to do this because this way we will obtain an
equation only containing terms with Ψ0 in the end. Once we have reached the equa-
tion described above, we can use the mapping of the spin-coefficents to rewrite this
equation to an equation only containing Ψ4, which was our goal from the beginning.

The first step in eliminating Ψ2 from our equations is to introduce some prop-
erties of the spin coefficients in combination with the partial derivative operators.

D(0)Ψ
(0)
2 = 3ρ(0)Ψ

(0)
2 , (48a)

δ(0)Ψ
(0)
2 = 3τ (0)Ψ

(0)
2 . (48b)

After defining these two relations we can rewrite Eq. (47c)

(D − 4ρ− ρ̄− 3ε+ ε̄)(0)Ψ
(0)
2 σ(1)

− (δ − 4τ + π̄ − ᾱ− 3β)(0)Ψ
(0)
2 κ(1) −Ψ

(1)
0 Ψ

(0)
2 = 0.

(49)

At first it might seem strange to add more terms to this equation that we do not
wish to use in the end, but in fact the relation described above will come in handy
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later in the derivation of the Teukolsky equation.

The next step is to eliminate Ψ1 from equations (47a) and (47b), for this step
we will use a known commutator relation, which will just like the relation derived
above, come in handy later on in the derivation to greatly simplify the equations.
The following commutator relation will be used

[D − (p+ 1)ε+ ε̄+ qρ− ρ̄](δ − pβ + qτ)

− [δ − (p+ 1)β − ᾱ+ π̄ + qτ ](D − pε+ qρ) = 0.
(50)

Where p and q are integers.

After deriving the first part and defining these relations, we are already close to
the solution, the only thing that remains is some algebra, therefore we will start by
operating with (D − 3ε+ ε̄− 4ρ− ρ̄) on Eq. (47b).

(∆− 4γ + µ)(0)Ψ
(1)
0 (D − 3ε+ ε̄− 4ρ− ρ̄)(0)

− (δ − 4τ − 2β)(0)Ψ
(1)
1 (D − 3ε+ ε̄− 4ρ− ρ̄)(0)

− 3σ(1)Ψ
(0)
2 (D − 3ε+ ε̄− 3ρ− ρ̄)(0) =

4π[(δ + 2π̄ − 2β)(0)T
(1)
ln (D − 3ε+ ε̄− 4ρ− ρ̄)(0)

− (D − 2ε+ 2ε̄− ρ̄)(0)T
(1)
lm (D − 3ε+ ε̄− 4ρ− ρ̄)(0)].

(51)

Next we will apply the same technique by operating with (δ− π̄− ᾱ− 3β − 4τ) on
Eq. (47a)

(δ̄ − 4α+ π)(0)Ψ
(1)
0 (δ − π̄ − ᾱ− 3β − 4τ)(0)

− (D − 4ρ− 2ε)(0)Ψ
(1)
1 (δ − π̄ − ᾱ− 3β − 4τ)(0)

− 3κ(1)Ψ
(0)
2 (δ − π̄ − ᾱ− 3β − 4τ)(1) =

4π[(δ − π̄ − ᾱ− 3β − 4τ)T
(1)
ll (δ − π̄ − ᾱ− 3β − 4τ)(0)

− (D − 2ε− 2ρ̄)(0)T
(1)
ln (δ − π̄ − ᾱ− 3β − 4τ)(0)].

(52)

To continue the derivation we again use some algebra to substract Eq.51 and Eq
52 from one another.

((D − 3ε+ ε̄− 4ρ− ρ̄)(0)(∆− 4γ + µ)(0)

− (δ − π̄ − ᾱ− 3β − 4τ)(0)(δ̄ − 4α+ π)(0))Ψ
(1)
0

+ (−(D − 3ε+ ε̄− 4ρ− ρ̄)(0)(δ − 4τ − 2β)(0)

− (δ − π̄ − ᾱ− 3β − 4τ)(0)(D − 4ρ− 2ε)(0))Ψ
(1)
1

− 3((D − 3ε+ ε̄− 4ρ− ρ̄)(0)σ(1) + (δ − π̄ − ᾱ− 3β − 4τ)(0)κ(1))Ψ
(0)
2 =

4π[(δ − π̄ − ᾱ− 3β − 4τ)(0)((D − 2ε− 2ρ̄)(0)T
(1)
ln − (δ + π̄ − 2ᾱ− 2β)(0)T

(0)
ll )

+ (D − 3ε+ ε̄− 4ρ− ρ̄)(0)((δ + 2π̄ − 2β)(0)T
(1)
ln − (D − 2ε+ 2ε̄− ρ̄)(0)T

(1)
lm )].

(53)

From now on it will save us a lot of writing to call the right hand side of the equa-
tion 4πT0, because on this side of the equation, nothing will change anymore, so it
does not matter if we simply give it a name and write it out in short.
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As was mentioned earlier in this paragraph we derived to equations that would
simplify equation 53 greatly. We will now apply the relations (49) and (50). We
start off by using the commutator relation (Eq.(50)) to eliminate Ψ1 from our equa-
tion, which will take us one step closer to obtaining our final equation. With some
puzzling the integers in the commutator relation in this case are p = 2 and q = −4.
Now simply collecting terms from Eq. (53) and rewriting them as a commutator,
we can see that some parts of the equation will become zero, which leaves us with

((D − 3ε+ ε̄− 4ρ− ρ̄)(0)(∆− 4γ + µ)(0)

− (δ − π̄ − ᾱ− 3β − 4τ)(0)(δ̄ − 4α+ π)(0))Ψ
(1)
0

− 3(D − 3ε+ ε̄− 4ρ− ρ̄)(0)σ(1) + (δ − π̄ − ᾱ− 3β − 4τ)(0)κ(1) = 4πT0.

(54)

Notice that the terms κ(1) and σ(1) can be eliminated using our other derived
relation: Eq. (49). We obtain our final equation for Ψ0:

((D − 3ε+ ε̄− 4ρ− ρ̄)(0)(∆− 4γ + µ)(0)

− (δ − π̄ − ᾱ− 3β − 4τ)(0)(δ̄ − 4α+ π)(0)Ψ
(1)
0

− 3Ψ
(0)
2 )Ψ

(1)
0 = 4πT0.

(55)

Now that we have this equation, we can now use the symmetries of the Newman-
Penrose formalism and the relations between the spin-coefficients to rewrite this
equation and obtain an equation for Ψ4, which is also know as the Teukolsky equa-
tion:

((∆ + 3γ − γ̄ + 4µ+ m̄u)(0)(D + 4ε− ρ)(0)

− (δ̄ − τ̄ + β̄ + 3α+ 4π)(0)(δ − τ + 4β)(0) − 3Ψ
(0)
2 )Ψ

(1)
4 = 4πT4.

(56)

Now we are finally ready to derive the Teukolsky equation in Boyer-Lindquist co-
ordinates. We do this by using the spin-coefficients, the equation for Ψ4 and the
relations D, ∆ and δ. By simply filling them out and doing a lot of algebra, in the
end we obtain the following equation[9]:[

(r2 + a2)2

∆
− a2 sin2 θ

]
∂2(ρ−4Ψ4)

∂t2
+

4Mar

∆

∂2(ρ−4Ψ4)

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2(ρ−4Ψ4)

∂φ2

−∆2 ∂

∂r

(
∆−1∂(ρ−4Ψ4)

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂(ρ−4Ψ4)

∂θ

)
+ 4

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂(ρ−4Ψ4)

∂φ
+ 4

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂(ρ−4Ψ4)

∂t

+ (4 cot2 θ + 2)ρ−4Ψ4 = 8πρ−4T4.

(57)
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3.2 Separation of Variables

The Teukolsky equation has the very useful property that it is a seperable wave
equation. Therefore, the technique ”separation of variables” can be used to find
two coupled equations. These two equations respectively can tell us a lot about
gravitational waves and their behaviour.

3.2.1 The homogeneous solution

For convenience we start by deriving the homogeneous solution (T = 0). This
solution then gives us some extra tools to solve the non-homogeneous Teukolsky
equation, which we are interested in. We start by making the following ansatz

Ψ =
∑
l,m

eiωteimφSln(θ)Rln(r), (58)

here ω are the frequency modes of vibration and m are the angular modes.

Substituting our ansatz into Eq. (57) yields the following two solutions to the
homogeneous case

∆2 d

dr

(
∆−1dR

dr

)
+

(
K2 + 4i(r −M)K

∆
− 8iωr − λ

)
R = 0, (59a)

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
+ 4aω cos θ +

4m cos θ

sin2 θ
− 4 cot2 θ − 2 +A

)
S = 0,

(59b)

here K = (r2 +a2)ω−am, λ = A+a2ω2− 2amω and A is the separation constant.

3.2.2 The non-homogeneous solution

After finding the radial and angular equations for the homogenous case, we can
now determine the radial and angular equation for a non zero stress-energy tensor
(T 6= 0). This case corresponds to the case we study in this thesis, the stress-energy
tensor corresponds to a point particle like source (the small black hole rotating the
massive black hole). In this procedure we use the eigenfunctions of Eq. (59b) to
expand Ψ and 4πT4

4πΣT =

∫
dω
∑
l,m

G(r)−2S
m
l (θ)eimφe−iωt, (60a)

Ψ =

∫
dω
∑
l,m

R(r)−2S
m
l (θ)eimφe−iωt, (60b)

where G(r) is the source term, −2S
m
l are the eigenfunctions of Eq. (59b) and if

we have a special case where aω = 0 we can write that −2Y
m
l = −2S

m
l e

imφ are the
spin-weighted spheroidal harmonics.

Now that we have the solutions to the non-homogeneous equation, we would like
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to analyze some of the boundary conditions concerning this case. These bound-
ary conditions will come in handy when we would like to constrain our solutions
for gravitational wave emission to certain properties. When analyzing the radial
equation boundary conditions, it is useful to make the following transformations

Y = ∆−1(r2 + a2)
1
2R, (61a)

dr∗

dr
=

(r2 + a2)

∆
. (61b)

Now using the expansions and transformations as defined above, we obtain a new
equation for the non homogeneous radial part

Y,r∗r∗ +

[
K2 + 4i(r −M)K −∆(8irω + λ)

(r2 + a2)2
−G2 −G,r∗

]
Y = 4πT4, (62)

where , r∗ means a partial derivative with respect to r∗ andG = −2 (r−M)
(r2+a2)

+ r∆
(r2+a2)2

.

Taking the limit r →∞ and consequently also r∗ →∞, Eq. (62) reduces to

Y,r∗r∗ + (ω2 − iω

r
)Y ≈ 4πT4. (63)

So for our solution at r →∞ we obtain the asymptotic solutions Y ∼ r±−2e∓iωr
∗
,

which yields two asymptotic solutions for R

R ∼ e−iωr
∗

r
, (64a)

R ∼ eiωr
∗

r−3
. (64b)

We can also analyze our boundary conditions at the outer horizon of the black
hole for r → r+ and consequently r∗ → −∞. If we take this limit we obtain the
following equation from Eq. (62)

Y,r∗r∗ +

(
K2 + 4i(r+ −M)k

2Mr+
− 4

(r+ −M2)2

(2Mr+)2

)
Y ≈ 4πT4, (65)

where k = ω − mω+ and ω+ = a
2Mr+

. So for r → r+ we obtain the asymptotic

solutions Y ∼ ∆±−1eikr
∗
, which yields

R ∼ eikr∗ , (66a)

R ∼ ∆2e−ikr
∗

(66b)
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4 The Confluent Heun equation

An important property of the Teukolsky radial equation is that by using trans-
formations, we can transform the radial equation into Confluent Heun form. A
general representation of elementary integrands for Heun functions (second order
Fuchsian equations with four regular singularities) has long been an unsolved prob-
lem in modern physics, until recently when an explicit integral representation in
terms of exponentials and polynomials was found [10]. In particular, the expression
for the confluent Heun equation gives us new insight in finding a representation of
the solution to the Teukolsky equation. The newly discovered expression for the
Confluent Heun can then be used to analyze the Teukolsy equation in Heun form
to obtain a solution in terms of elementary functions.

4.1 A simple example

Before we can use the Teukolsky equation in Heun form, we first write code for a
simple example. We can then use this code to analyze our problem.

The Confluent Heun equation is given by

d2H(z)

dz2
+

(
γ

z
+

δ

z − 1
+ 4ρ

)
dH(z)

dz
+

4αρz − σ
z(z − 1)

H(z) = 0, (67)

and we define the boundary conditions as H(z0) = H0 and H ′(z0) = H ′0. The
equation also has three singularities, two regular singularities (at z = 0 and z = 1)
and one irregular singularity (at z =∞), we therefore also require that z0 6= 0 and
z0 6= 1. The domain for which the function applies, is defined by the z0 we choose.
If we choose z0 < 0 the domain in which the function is valid will be I ∈]−∞, 0[.
For 0 < z0 < 1, I ∈]0, 1[ and for z0 > 1, I ∈]1,∞[. All the remaining terms are
parameters (we will get to those later), except for the function H(z), which is given
by

H(z) = H0 +H0

∫ z

z0

G1(ζ, z0) dζ+(H ′0−H0)

(
ez−z0−1+

∫ z

z0

(ez−ζ−1)G2(ζ, z0) dζ

)
,

(68)
where Gi =

∑∞
n=1K

∗n
i is the resolvent of the function Ki, with i = 1, 2 and K∗ni

means that Ki is integrated n times.
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The two functions for K1 and K2 are given by

K1(z, z0) = 1+e−z
∫ z

z0

(
eζεζγ(ζ − 1)δ

ezεzγ(z − 1)δ
eζ
(
q − αζ

(ζ − 1)ζ
− γ
ζ
− δ

ζ − 1
−ε−1

))
dζ, (69a)

K2(z, z0) =

(
q − αz

(z − 1)z
− γ

z
− δ

z − 1
− ε− 1

)
ez−z0 − q − αz

(z − 1)z
. (69b)

Now having defined these functions, the next step is to determine a representation
around z0 = −4. In order to obtain this representation, we use several mathemati-
cal techniques. The algorithm below can be used to reconstruct our code for z > z0.

Step 1:

Discretize the functions K1 and K2 with step size S and range = 3.5 and con-
vert them into a matrix. The matrices will be triangular due to the fact that we
only look at z > z0 (So every component z0 < z will give 0). The triangular matri-
ces make our calculations faster.

Step 2:

Convert the two functions now given by the triangular matrices into the func-
tions G1 and G2. Do this by using the resolvent technique. The resolvent of the
functions Ki is given by

(In −Ki ∗ S)−1, (70)

where In is the identity matrix which takes on the length range
S + 1.

Step 3:

In the two integrals in the Heun function, there are more terms that have to be
integrated (1 and ez−ζ − 1). Use the same technique as discussed in step 1 two
create two more triangular matrices containing these terms. Finally use the dot
product to integrate the terms under the two integrals.

Step 4:

Add every term together and obtain the matrix for H(z). Next obtain the right
row (for z0 = −4) out of the matrix, which in our case is the first row.

For z < z0 the same procedure can be applied, but the range has to be changed.
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Applying this algorithm gives the following figure, which indeed shows that for this
simple example the code definitely works. The graph gives us a perfect fit onto
the numerical calculation around z0 = −4 with boundary conditions H0 = 0 and
H ′0 = 1. Parameters are:

α = 5
q = 1
γ = 3
δ = 2/3
ε = 4

Figure 2: This figure shows the comparison between the solution of our algorithm and
the numerical solution to the Heun equation around z0 = −4. Here the red dotted line
consists of the results coming from our algorithm. The black line gives the numerical
solution to the Heun equation. All results from this figure are only analyzed for z0 < z.
The computation takes 33.30sec on this laptop to obtain this figure.
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4.2 From radial to Heun

In order to build on our example in the previous paragraph we first need to trans-
form the Teukolsky radial equation into Heun form.

The Teukolsky radial equation has three singularities, one irregular singularity at
r = −∞ and two regular singularities at the roots of ∆ = 0, which gives us

r± = M ±
√
M2 − a2, (71)

where r± are the event and the Cauchy horizon respectively.

We start the transformation by rewriting the radial equation to the following form

R(r) = (r − r+)ξ(r − r−)ηeζrH(r), (72)

with parameters ζ = ±iω, ξ = −1 ± (−2+2iσ+)
2 , η = 1 ± (−2−2iσ−)

2 and σ± =
−2Mr±−ma
r+−r− .

We will now make another transformation using the dimensionless variables

r̄ ≡ r

M
, (73a)

ā ≡ a

M
, (73b)

ω̄ ≡Mω, (73c)

ζ̄ ≡Mζ, (73d)

therefore we can also transform the radial coordinate into the dimensionless variable
z:

z =
r − r−
r+ − r−

=
r̄ − r̄−
r̄+ − r̄−

. (74)

Finally, by using all of our transformations and definitions above and doing a lot of
algebra, we obtain a confluent Heun equation with auxiliary function H(z). This
equation takes the same form as Eq. (67) with parameters

ρ = (r̄+ − r̄−)
ζ̄

2
(75a)

γ = 1 + η (75b)

δ = 2ξ − 1 (75c)

α = ξ + η − 2ζ̄ − 2
iω̄

ζ̄
− 1 (75d)

σ = sAlm(āω̄) + ā2ω̄2 − 8ω̄2 + ρ(2α+ γ − δ) + (−1− γ + δ

2
)(−2

γ + δ

2
) (75e)

We can now rewrite our algorithm to implement the parameters as shown above.
Now there is only one thing left to make the calculations for our program work in a
real physical situation. Applying certain boundary conditions will make this possi-
ble. We choose to use “ingoing” boundary conditions[11], which is illustrated in the
Kruskal diagram below. We calculated these boundary conditions on R(r) using the
BHP-Toolkit in Mathematica [5]. To apply these conditions to our Heun equation
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we simply transformed the boundary conditions the same way we transformed all
of the variables, using Eq. (72).

Figure 3: This figure shows the ”ingoing” boundary conditions we used for our calcu-
lations. As you can seein this Kruskal diagram, these boundary conditions are defined
by a wave coming in from past infinity. It then scatters at the horizon, one part travels
towards the future horizon and one scatters out towards future infity.This picture was
taken from [11]
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4.3 The results

For our final result we use all of the work we have done before. We start by defin-
ing a point in our spacetime we want to analyze, in our research we picked r = 3.
The next step was to use the previous paragraph to transform this point into Heun
coordinates. The same is done for the ingoing boundary conditions around this
point. All the used parameters to obtain the final result are defined below:

s = −2
l = 2
m = 2
a1 = 0.3
Ω = 0.1

Now we have obtained all our information to start running the algorithm. We
run it the same way we have done previously with our simple case and give our
new data as input. It is important to realize that in our simple case one of the
integrals in the Heun function always returned zero. This made the calculation of
the simple case a lot faster. Another important property that arises not only from
our boundary conditions, but also from the foundation of gravitational waves is the
fact that we do not only get a real solution to our problem, but also an imaginary
solution. Therefore the output of the algorithm gives us two graphs which both
describe the gravitational waves. The total calculation time of these two graphs
was 1 hour and 20 minutes on this laptop.
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Figure 4: The solution for the real part of the radial Teukolsky equation around r = 3 in
Heun form. Here the red dotted line consists of the real part of the results coming from
our algorithm. The black line gives the numerical solution to the Heun equation around
r = 3. This means that we look at z0 = 1.54828.
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Figure 5: The solution for the imaginary part of the radial Teukolsky equation around
r = 3 in Heun form. Here the red dotted line consists of imaginary part of the results
coming from our algorithm. The black line gives the numerical solution to the Heun
equation around r = 3. This means that we look at z0 = 1.54828.

Once again these graphs seem to be an almost perfect fit which means that not
only in the simple case, but also in our physical case around r = 3, this algorithm
still works.

26



5 Conclusion and discussion

The work in this thesis provides a working algorithm to analyze the real and com-
plex parts of gravitational waves emitted in an EMRI. In the beginning of this
thesis we looked at different spacetimes and in particular the Kerr spacetime. The
next step was to analyze and understand this spacetime so that we could develop
a set of equations with which we could determine the geodesic motion. We finally
obtained two coupled equations using Hamilton-Jacobi techniques and illustrated
the behaviour of geodesics around a Kerr black hole.

The next step was to define a convenient basis to work on, this basis is called the
Newman-Penrose formalism. From this formalism, we defined the spin-coefficients,
which are of great importance in calculations concerning gravitational waves. What
we could also determine from the Newman-Penrose formalism, is a representation
of the Weyl tensor, which gives us a lot of information on the geometry of a certain
spacetime and thus also about gravitational waves.

We then moved on from the basis of the spacetime, to the derivation of the Teukol-
sky master equation, which provides us with an equation containing all the infor-
mation about gravitational waves. We started this derivation by defining some
non-vacuum Newman-Penrose equations that hold for all space our basis defines.
Next we added a small perturbation to the spin coefficients and Weyl scalars. After
that we used a lot of algebra and the symmetry of the Newman-Penrose formal-
ism and the relations between the spin-coefficients to obtain the Teukolsky equation.

Before being able to analyze this equation, we needed to separate it into an angular
and radial part. We did this using the simple technique separation of variables and
showed both the homogeneous and non-homogeneous solution.

In chapter four we then finally arrived at the core of our research: Constructing an
algorithm that can be used to analyze gravitational waves. We started by trying
to construct an algorithm that could analyze a simple case of the Heun equation.
In this example one integral would always be zero, so the calculations were a lot
easier for us and for the computer. Then we moved on to converting our separated
Teukolsky radial equation into Heun form including the boundary conditions and
transforming them into Heun form. Finally everything was ready for an input. We
choose r = 3, converted everything into the right form and ran the algorithm. In
the end we can conclude that the code works quite well, it is fast and gives a good
approximation of the numerical solution concerning an EMRI.

In this thesis we wanted to construct a working piece of code to help gravita-
tional wave detection in the future. It is important to realize that gravitational
wave detection is not as simple as detecting some other basic physical quantities.
In order to detect a gravitational wave, the measured data has to be submitted to
a certain model which calculates the properties of this specific gravitational wave.
This is important, because otherwise we would not be able to tell if the detected
wave was just noise or an actual gravitational wave. The purpose of our research
was to create such a model for gravitational waves emitted in an EMRI. In this
thesis we succeeded in creating such model using new mathematical techniques.
Although our code still lacks some physical relevance. One of the things that still
needs to be improved in order for our code to work on real gravitational waves is the
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addition of a source term. We only wrote our code for the homogeneous solution
to the Teukolsky radial equation, in a real EMRI however, these equations would
be non-homogenous. The small black hole does also have a source term which is
non-zero.

Another important thing that needs to be pointed out is that in the end we had to
calculate one of the integrals in the Heun function numerically. This cost a lot of
time in our program, which made it a lot slower. If this problem could somehow
be fixed in the future, the algorithm would be much more efficient.

Nevertheless, this algorithm is a great basis to further build on, and is a great
step forward in creating a fast and accurate way to analytically model the Teukol-
sky radial equation.
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