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Abstract

Renormalization is the method used to treat infinities and end up with finite
physical results in Quantum Field Theories. In this thesis we will focus on the
nonperturbative renormalization of the φ4 theory by means of the Renormaliza-
tion Group (RG). We will start off with some general classical and quantum field
theory, and apply these principles to the φ4 theory. The perturbative renormal-
ization procedure will be briefly summarized, after which we will continue to the
nonperturbative analysis. In this analysis an equation of the RG flow will be de-
rived and used to study the behaviour of the φ4 theory under RG flow in various
dimensions of spacetime.
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1 Introduction

In non-relativistic quantum mechanics, the time evolution of a state is given by the
Schrödinger equation. An equivalent1 formulation is developed by Dirac and Feynman,
in which the probability amplitude U(xi, ti, xf , tf ) = 〈ψ(xi, ti)|ψ(xf , tf )〉 dictates how
the wavefunction ψ changes from (xi, ti) to (xf , tf ). The probability amplitude is de-
pendent on all possible paths starting at (xi, ti) and ending at (xf , tf ), by means of the
following path integral

U(xf , tf , xi, ti) =

∫
Ds(t) e

i
~S(x). (1)

Here the integral over Ds(t) stands for integration over all possible trajectories s(t) from
(xi, ti) to (xf , tf ), and S is the classical action of this path.
We can perform a Wick rotation, which simply speaking makes the substitution t →
−it. The exact nature of this is more subtle: according to the Osterwalder-Schrader
Theorem[1] one can go from an Euclidean quantum field theory to a Minkowskian (with
Wightman axioms) quantum field theory by Wick rotation, given certain axioms are
satisfied in the Euclidean case. We will not go into further details on this and simply
assume analytic continuation is possible. This Wick rotation results in the Euclidian
path integral

UEucl.(xf , tf , xi, ti) =

∫
Ds(t)e−

1
~S(x). (2)

In the classical limit (~→ 0) the integral is determined by the minimum of S according
to the saddle point method2. The minimum of S coincides with the path for which
δS = 0, which is Hamilton’s principle, yielding classical physics.

In classical field theory, we no longer work with particles. The fields in our case will be
scalar fields, which are continuous functions from Rd to R, which vanish at infinity. We
will denote the set of all fields by

F = {φ : Rd → R |φ is continuous ∧ lim
||x||→∞

φ(x) = 0}. (3)

The equation of motion is obtained by minimising the action

S[φ] =

∫
ddxL[φ, ∂µφ].

With L the Lagrangian (density), for suitable boundary conditions of φ this yields the
Euler-Lagrange equation

∂µ
∂L[φ, ∂µφ]

∂(∂µφ)
− ∂L[φ, ∂µφ]

∂φ
= 0. (4)

Quantum field theory (QFT) arises from the combination of classical (relativistic) field

1For a proof of Feynman’s path integral to the Schrödinger equation, see [2], for a proof of the
Schrödinger equation to Feynman’s path integral, see [3].

2Also called method of steepest descent or stationary phase method, see [4] for details.
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theory with quantum mechanics. The dynamical variables are quantized, and time evo-
lution is based on the path integral formulation with the action. In the following we
will use natural units, setting ~ = c = 1.

In this thesis, we will start off with some classical field theory, followed by quantum
field theory for scalar fields. After some general definitions, this will be analysed for
both the free theory and a φ4 interacting theory. This will include some perturbative cal-
culations and a brief overview of how perturbative renormalization works. After which
we will go into the main focus of the thesis, which is nonperturbative renormalization
for the φ4, in different spacetime dimensions.

2 Classical Field Theory for scalar fields

In this chapter we introduce the notion of functional derivatives, and use these to derive
equations of motion for the free and interacting φ4 theories. The solution of the equa-
tion of motion for the interacting theory is analysed perturbatively by using Green’s
functions.

2.1 Functional Calculus

The objects in quantum field theory are functions from Rd to R, and the actions in turn
are functions on the fields, called functionals. Given a functional F [φ], the derivative of
F with respect of v (or in the direction of v), where v is also a scalar field, is given by:

δvF [φ] = lim
ε→0

1

ε
(F [φ + εv]− F [φ]), (5)

which has the same form as a derivative of a usual function. Disregarding questions of
convergence, we can thus conclude ordinary calculus rules like product and chain rule
hold for this derivative as well. In its local form this is defined as:

δ

δφ(y)
F [φ] = lim

ε→0

1

ε
(F [φ + εδ(· − y)]− F [φ]) (6)

The action S is an example of such a functional. S can take on different forms depending
on the interaction between fields.

2.2 Free scalar field

We start off with a non-interacting (free) scalar field, and derive the equation of motion.
For a non-interacting field, the action is given by a quadratic functional of φ. We
consider the special case of

Sfree[φ] =
1

2

∫
ddx[−φ(x)∂2

xφ(x) +m2φ(x)2] (7)

Here we define ∂2
x = gµν∂

µ
x∂

ν
x , where gµν is the metric, generalising the equation to

both flat Euclidean and Minkowskian3 spacetime. In both cases the volume element is

3We use the convention ηµν = diag(−1, 1, 1, 1).

3



∫
ddx
√
|g| =

∫
ddx.

For the equation of motion, we need that the derivative δS = 0. This can be found by
calculating the directional derivative as in (5) and demanding it to be 0 for all v. Let
us begin by calculating S[φ + εv] first.

Sfree[φ + εv] =
1

2

∫
ddx[−(φ + εv)(x)∂2

x(φ + εv)(x) +m2(φ + εv)(x)2]

=
1

2

∫
ddx[−φ(x)∂2

xφ(x)− εφ(x)∂2
xv(x)− εv(x)∂2

xφ(x)− ε2v(x)∂2
xv(x)

+m2φ(x)2 + 2m2εv(x)φ(x) +m2ε2v(x)2]

We recognize S[φ] in this and order terms by power of ε.

Sfree[φ + εv] = Sfree[φ] + ε
1

2

∫
ddx[−φ(x)∂2

xv(x)− v(x)∂2
xφ(x) + 2m2v(x)φ(x)]

+ ε2
∫
ddx[−v(x)∂2

xv(x) +m2v(x)2)]

All terms with power of ε greater than 1 vanish when taking the limit ε → 0 in the
functional derivative. Therefore the derivative of Sfree is

δvS
free[φ] =

∫
ddx[−1

2
φ(x)∂2

xv(x)− 1

2
v(x)∂2

xφ(x) +m2v(x)φ(x)]

We can use partial integration two times on the first term. There are no boundary terms
because by definition, the fields go to 0 at infinity. So that

δvS
free[φ] =

∫
ddx[−v(x)∂2

xφ(x) +m2v(x)φ(x)] (8)

If we demand that δvS
free[φ] = 0 for all v we obtain the Klein-Gordon equation

[−∂2
x +m2]φ = 0 (9)

Which admits plane wave solutions φ(x) = eipµx
µ
, with p2 + m2 = 0. In Minkowskian

spacetime we recover the famous formula E2 = ~p2 +m2 of special relativity.

2.3 Non-free scalar fields

The free theory might not contain the complete picture. It describes non-interacting
fields and gives us a setting in which exact calculations are possible. Most cases are
interacting however, being described by what is called a non-free theory. As an example,
we add a φ4 interaction term to the Lagrangian. The expression for the action then
becomes

S[φ] = Sfree[φ] + Sint[φ], (10)

with the additional interaction

Sint[φ] =

∫
ddx

λ

4!
φ4(x). (11)
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Next, we compute the derivative of S[φ]. Since δv is linear, we start by calculating the
derivative of the φ4 term, and add it to the derivative we previously found in eq. (8)

δvS
int[φ] = lim

ε→0

1

ε

∫
ddx[

λ

4!
((φ + εv)(x))4 − λ

4!
φ(x)4]

= lim
ε→0

1

ε

∫
ddx

λ

4!
[φ(x)4 + 4εv(x)φ(x)3 + 6ε2v(x)2φ(x)2+

4ε3v(x)3φ(x) + ε4v(x)4 − φ(x)4]

Rearranging terms to order of ε and taking the limit

δvS
int[φ] = lim

ε→0

∫
ddx

λ

4!
[4v(x)φ(x)3 + 6εv(x)2φ(x)2 + 4ε2v(x)3φ(x) + ε3v(x)4]

=

∫
ddx

λ

3!
v(x)φ(x)3.

Combining this with (8) we obtain the derivative of S:

δvS[φ] =

∫
ddx[−v(x)∂2

xφ(x) +m2v(x)φ(x) +
λ

3!
v(x)φ(x)3]. (12)

Finding the equation of motion for this is similar to before, the result being:

(−∂2
x +m2)φ = −λ

6
φ3. (13)

This equation is non-linear unlike the Klein Gordon equation, but it still has exact
solutions involving Jacobi elliptic functions[5]. However we will approximate the solution
by expanding in powers of λ, considering the interaction term to be a perturbation.
Solutions of (13) can be written as

φ(x) =
∞∑
n=0

λnφn(x). (14)

This changes the differential equation into:

(−∂2
x +m2)

∞∑
n=0

λnφn = −1

6
λ

∞∑
r,s,t=0

λr+s+tφrφsφt (15)

Comparing powers of λ for the cases n = 0, 1, 2 we get

[−∂2
x +m2]φ0 = 0

[−∂2
x +m2]φ1 = −1

6
φ3

0

[−∂2
x +m2]φ2 = −1

2
φ1φ

2
0
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Green’s Functions
In principle, one can directly solve these (now linear) differential equations step by step.
We will follow a different approach and proceed to use a Green’s function[6], which is a
function4 G that solves

[−∂2
x +m2]G(x− y) = δ(x− y) (17)

Solving this can be done with a Fourier transform, so that∫
ddq

1

(2π)d/2
[−∂2

x +m2]G̃(q)eiqx =

∫
ddq

1

(2π)d
eiqx∫

ddq
1

(2π)d/2
[q2 +m2]G̃(q)eiqx =

∫
ddq

1

(2π)d
eiqx

So the Fourier transform of G is

G̃(q) =
1

(2π)d/2(q2 +m2)
. (18)

And so G(x) is found by inverse Fourier transform

G(x) =

∫
ddq

eiqx

(2π)d(q2 +m2)
. (19)

With the Green’s function, we can construct a solution to any differential equation of
the form

[−∂2
x +m2]φ(x) = u(x).

With u(x) a (nice enough) function. The solution will be given by convolution with G:

φ(x) =

∫
ddy u(y)G(x− y) (20)

Indeed, substituting (20) in the LHS of the field equation yields:

[−∂2
x +m2]φ(x) = [−∂2

x +m2]

∫
ddy u(x)G(x− y)

=

∫
ddy u(y)[−∂2

x +m2]G(x− y)

=

∫
ddy u(y)δ(x− y) = u(x)

In this sense, the Green’s function can be considered as a right-inverse of the differential
operator −∂2

x + m2. Applying this to the second differential equation (the first is just
the Klein Gordon equation), the solution becomes

φ1(x) =

∫
ddy ddq

eiq(x−y)

(2π)d(q2 +m2)

−1

6
φ0(y)3 (21)

Where φ0 is the most general solution to the Klein Gordon equation, i.e. a superposition
of plane waves with the energy relation constraint,

φ0(x) =

∫
ddp φ̃(p)eipx δ(p2 +m2).

4To be precise, G is a distribution.
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For instance, we can choose initial conditions such that φ0(x) = 2 cos(~p · ~x)5. The
solution up to first order of λ is then given by

φ(x) = φ0(x) + λφ1(x) = 2 cos(~p · ~x)− λcos(~p · ~x)

~p2 +m2
− 1

3
λ

cos(3~p · ~x)

9~p2 +m2

We see that for λ ≥ 2(~p2 + m2), the second term dominates, suggesting that it is no
longer a small perturbation and more terms of the expansion are necessary. This is il-
lustrated in the following graphs, where the 1-dimensional case is plotted for m = p = 1,
with λ = 1 and λ = 8.

-6 -4 -2 2 4 6

x

-2

-1

1

2

ϕ(x)

λ = 1

-6 -4 -2 2 4 6

x

-2

-1

1

2

ϕ(x)

λ = 8

Figure 1: First order approximation of the solution of the EOM for φ4 theory with
m = p = 1 in d = 1. The left graph has λ = 1 while the right one has λ = 8. The
relatively strong interaction (λ = 8) clearly leads to a strong deviation from the Klein
Gordon solution, with a change of sign. This means that the perturbative solution no
longer holds.

5Note that they do not satisfy the boundary conditions, though.
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3 Quantum Field Theory for scalar fields

We approach Quantum Field Theory from the path integral formulation, in which tran-
sition amplitudes are calculated by evaluating a functional integral (still called a path
integral) over all possible field configurations, similarly as we calculate an integral over
all paths in quantum mechanics. The position ~x is no longer a dynamical operator, but a
label, since it indicates where the field φ(x) (which is a dynamical variable) is evaluated.

The path integral is formally written as

Z[J ] = C

∫
dφe−S[φ]eJ [φ]. (22)

Still one has to make sense of
∫
dφ e−S[φ], either by discretization or more formally as

in [7]. This is the vacuum to vacuum probability amplitude given an external source
field J . Here C = 1/

∫
dφe−S[φ] so that Z[0] = 1. J is the source term, which is the

dual vector of φ and thus a linear functional

J [φ] =

∫
ddxJ(x)φ(x). (23)

We distinguish the free and non-free cases with

Z int[J ] = C

∫
dφe−

∫
ddx[ 1

2
(−φ(x)∂2

xφ(x)+m2φ(x)2)+ λ
4!
φ(x)4]eJ [φ] (24)

and

Z free[J ] = C

∫
dφe−

∫
ddx 1

2
(−φ(x)∂2

xφ(x)+m2φ(x)2)eJ [φ] (25)

So that Z free is the measure based on the free action and Z int is based on the action
with the φ4 interaction term.

Free scalar field
In order to construct correlation functions, which tell us how the theory ”behaves”, we
need to find its derivatives, starting with the free theory

δKZ
free[J ] = lim

ε→0

1

ε

∫
dφe−S[φ](e(J+εK)[φ] − eJ [φ])

= lim
ε→0

1

ε

∫
dφe−S[φ]eJ [φ](−1 + eεK[φ])

= lim
ε→0

1

ε

∫
dφe−S[φ]eJ [φ](εK[φ] +O(ε2))

=

∫
dφe−S[φ]eJ [φ]K[φ]

Applying this to the case K(x) = δ(x− y) this is by definition equal to:

δ

δJ(y)
Z free[J ] =

∫
dφe−S[φ]eJ [φ]φ(y) = 〈φ(y)〉S,J (26)
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If J is not written in the subscript of the expectation value, it is set to 0. Iterations of
this result give in general

〈φ(x1)φ(x2)...φ(xn)〉S,J =
δn

δJ(x1)δJ(x2)...δJ(xn)
Z free[J ]. (27)

In order to calculate Z free[J ] for the free theory as in equation (7):

Z free[J ] = C

∫
dφe−S[φ]eJ [φ] = C

∫
dφe−

1
2

∫
ddx[−φ(x)∂2

xφ(x)+m2φ(x)2]e
∫
ddxJ(x)φ(x)

we define the self-adjoint operator

A = −∂2
x +m2 (28)

and substitute this in the expression above, which then has the form of a gaussian
integral with linear term:

Z free[J ] = C

∫
dφe−

1
2
φAφeJ [φ],

with A as in (28) and J as in (23). The generating functional Zfree[J ] then assumes the
general form ∫

dφe−
1
2
φAφeJ [φ] =

√
1

det(A)
e

1
2
JA−1J . (29)

The factor with the determinant cancels because of the normalization constant C, so
that

Z free = e
1
2
JA−1J . (30)

Interacting scalar field
In the φ4 case, the term with φ4 can be formally expanded with Taylor’s formula

e
∫
ddx λ

4!
φ4

= 1 +

∫
ddx

λ

4!
φ(x)4 +

1

2

(∫
ddx

λ

4!
φ(x)4

)2

+ ...

Using (27) this can be expressed in terms of derivatives of Z[J ]:

Z[J ] = Z free[J ] +

∫
ddy

λ

4!
〈φ4(y)〉S,J +

1

2

∫
ddy

λ

4!
〈φ(y)4〉S,J

∫
ddz

λ

4!
〈φ(z)4〉S,J + ...

= Z free[J ] +

(
λ

4!

)∫
ddy

δ4

δJ(y)4
Z free[J ]

+
1

2

(
λ

4!

)2 ∫
ddy

δ4

δJ(y)

∫
ddz

δ4

δJ(z)4
Z free[J ] + ...

Assuming λ to be sufficiently small, one usually terminates the series after a few terms
of the expansion.
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Schwinger functional & Effective action
We define the Schwinger functional

W [J ] = ln(Z[J ]) (31)

and the effective action by the Legendre-Fenchel transformation of W ,

Γ[χ] = sup
J∈F

[J [χ]−W [J ]]. (32)

Hereby χ is the connected expectation value of φ defined as

χ = 〈φ〉cS,J ≡
δ

δJ
W [J ] (33)

And in general for arbitrary functional derivatives we obtain

〈φn〉cS,J ≡
( δ
δJ

)n
W [J ] (34)

For the first two n these relate to the ordinary expectation value as

〈φ〉c =
δ

δJ
lnZ[J ] =

1

Z[J ]

δ

δJ
Z[J ] (35)

〈φ2〉cS,J =
δ2

δJδJ
lnZ[J ] =

δ

δJ
(

1

Z[J ]

δ

δJ
Z[J ])

= −
( 1

Z[J ]

δ

δJ
Z[J ]

)2

+
1

Z[J ]

δ2

δJδJ
Z[J ] (36)

We first compute the effective action for the free theory,

W free[J ] = ln(Z free[J ]) =
1

2
JA−1J. (37)

The supremum can be found by setting the derivative of J [χ]−W [J ] to 0.

∂k[J [χ]−W [J ]] = lim
ε→0

1

ε
((J + εK)[χ]−W free[J + εK]− J [χ] +W free[J ])

= lim
ε→0

1

ε
(εK[χ]−W free[J + εK] +W free[J ])

We examine the W free[J + εK] term

W free[J + εK] =
1

2
(J + εK)A−1(J + εK) =

1

2
(JA−1J + ε(JA−1K +KA−1J) + ε2KAK)

Because A is self-adjoint, we have KA−1J = JA−1K, giving us

W free[J + εK] =
1

2
(J + εK)A−1(J + εK) =

1

2
(JA−1J + 2εJA−1K + ε2K2A)

The first term will cancel with the W free[J ] term, and the last term will be 0 in the limit
ε→ 0. Setting the derivative to 0 then gives

∂k[J [χ]−W [J ]] = K[χ]− JA−1K = 0
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For solutions of this equation the following then holds

K[χ]− JmaxA
−1K = 0 ∀K

From this it follows that
Jmax = A[χ] (38)

So the effective action is given by

Γfree[χ] = Jmax[χ]−W free[Jmax] =
1

2
χAχ = Sfree[χ] (39)

Which coincides with the bare free action. This is special for the free theory though.

3.1 Perturbation Theory

For this section we reintroduce factors of ~ in order to later expand in powers of ~.
Equation (22) then becomes

Z[J ] = C

∫
dφe−S[φ]/~eJ [φ]/~ = exp(W [J ]/~) (40)

And the effective action
Γ[χ] = Jmax[χ]−W [Jmax] (41)

with

χ = 〈φ〉cJ =
δ

δJ
W [J ]

∣∣∣
J=Jmax

Taking the derivative of the effective action with respect to χ gives

δ

δχ
Γ[χ] = χ

δ

δχ
Jmax + Jmax

δ

δχ
χ− δ

δχ
W [Jmax]

= Jmax + χ
δ

δχ
Jmax −

δ

δJmax

W [Jmax]
δ

δχ
Jmax = Jmax.

Inserting this in Z results in

Z[Jmax] = C

∫
dφe−S[φ]/~+

∫
ddxδχΓ[χ]φ/~

= exp
[
W [Jmax]/~

]
= exp

[
− Γ[χ]/~ + Jmax[χ]/~

]
= exp

[
−Γ[χ]/~ +

∫
ddxδχΓ[χ]χ/~

]
Solving this expression for Γ[χ] we obtain the following integro-differential equation:

exp[−Γ[χ]/~] = C

∫
dφe−S[φ]/~+

∫
ddx(φ−χ)δχΓ[χ]/~. (42)

We now formally expand the effective action in powers of ~

Γ[χ] = S[χ] +
∞∑
L=1

~LΓ[L][χ]
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We know that the 0th order is the classical action, because setting ~ = 0 ought to result
in classical physics. Using (42) and expanding S up to second order of ~ gives

Γ[χ] = −~ ln

(
C

∫
dφe−S[φ]/~+

∫
ddxδχΓ[χ](φ−χ)/~

)
= −~ ln

(
C

∫
dφe−S[χ]/~e−

1
2
δ2S[χ](φ−χ)2/~+

∫
ddxδχΓ[χ](φ−χ)/~ +O(~3/2)

)
We do the substitution ψ = φ−χ√

~ and integrate over ψ. We also neglect any terms with
order of ~ higher than 1, since the calculation is up to first order.

Γ[χ] = −~ ln

(
e−S[χ]/~C

∫
dψ
√
~ e−

1
2
δ2S[χ]ψ2+

∫
ddxδχΓ]χ]ψ/

√
~
)

= S[χ]− ~ ln

(√
1

det δ2S[χ]
e

1
2

δχΓ[χ]√
~

(δ2S)−1 δχΓ[χ]√
~

)
+ ~ ln(C ′)

= S[χ] +
~
2

Tr ln(δ2S[χ]) + ~ ln(C ′) +O(~2)

Where the integral is solved with (29) and the identity ln det(A) = Tr ln(A) is used. C ′

is constant with respect to the fields and thus unimportant to physics.

This can then be expanded in λ. These expansions in ~ and λ restrict us to low loop
order and weakly interacting situations. The process of renormalization then goes as
follows[8]: start computations with a regulator (upper bound to integrals) for an ex-
pression containing the bare mass m, bare coupling constant λ and the upper bound Λ.
Compute the physical mass and coupling constant mp and λp, which are based on exper-
iment. All these expressions are then combined and m and λ are eliminated in favour of
mp and λp. The final expression should then be independent of the cutoff Λ, which can
then be taken to be infinite (UV complete theory). A theory is called (perturbatively)
renormalizable, if only a finite number of bare couplings are needed to absorb occuring
infinites. With this method it can be found that the φ4 is renormalizable in spacetime
dimensions d ≤ 4.

4 Nonperturbative Renormalization

The method for renormalization is based on the behaviour of coupling constants (like
mass or λ in φ4 scalar theory) with changing energy scale. These coupling constants
define the theory, and so a tuple of them define a point in theory space. In this chapter
we use a nonperturbative approach to investigate renormalization.
The following procedure’s goal is to find the Renormalization Group (RG) flow with
respect to the energy scale of this theory space, and determine renormalizability accord-
ing to this flow. Fixed points (a scale invariant theory) of the RG flow are of great
importance: convergence to a fixed point ensures that a theory’s coupling constants do
not go to infinity for increasing energy scale, but its UV behaviour is determined by the
scale invariant theory of the fixed point. These theories are called UV complete. usually,
there is a trivial fixed point, namely the free theory. A fixed point is called Gaussian

12



if it corresponds to a free theory, and non-Gaussian if it corresponds to an interacting
theory. A theory is called asymptotically free if it converges to a Gaussian fixed point
for increasing energy scale6, and asymptotically safe if it converges to a non-Gaussian
fixed point in the same limit.

The set of all points that converge to a fixed point for increasing energy scale is called the
UV critical hypersurface. All theories within this hypersurface are (non)perturbatively
renormalizable and therefore candidates for a Quantum Field Theory. The dimension of
this critical surface is equal to the amount of relevant/UV attractive couplings. Hence
a lower hypersurface dimension means that less experiments are necessary to determine
the right theory and so its predictivity increases. This also means that an infinite dimen-
sional critical hypersurface cannot lead to a physically predictive fundamental theory.

4.1 Functional Renormalisation Group Equation

Up until now, the generating functional Z[J ] has integrated over all modes of the field
φ. However experiments are on some energy scale. We describe the theory at that scale
k by integrating over all modes of the field with momentum p2 > k2. This is done by
introducing a suppression factor as a smooth cutoff. The new functional is then

Zk[J ] = C

∫
dφe−S[φ]e−∆Sk[φ]eJ [φ] (43)

where

∆Sk[φ] =
1

2

∫
ddxφ(x)Rk(−∂2

x)φ(−x) (44)

Here Rk(q
2) is arbitrary aside from meeting the following demands: Rk(q

2) is a monoton-
ically decreasing function of q2 and a monotonically increasing function of k, Rk(q

2)→ 0
for q → ∞ faster than any polynomial, and Rk(q

2) → k2 for q → 0. The Schwinger
functional and Legendre transform are then applied to give

Γ̂k[χ] = sup
J

[J [χ]−Wk[J ]], (45)

where similarly to before

〈φ〉cS,J,∆Sk =
δ

δJ
Wk[J ]

∣∣∣
J=Jmax

≡ χ. (46)

This transform is done however with the cutoff included, we subtract this term to define
the effective average action

Γk[χ] = Γ̂k[χ]−∆Sk[χ] (47)

Derivation of the Functional Renormalization Group Equation
The goal is to investigate the effect of the energy scale k on this object, so we compute

6A famous example of this is quantum chromodynamics (QCD).
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the derivative of the average effective action with respect to k. The first relevant term
in this calculation is Wk.

∂kWk[J ] = ∂k ln(Zk[J ]) =
1

Zk[J ]
∂kZk[J ]

= − 1

Zk[J ]

∫
dφe−S[φ]−∆Sk[φ]+J [φ]∂k∆Sk[φ]

= − 1

Zk[J ]

∫
dφe−S[φ]−∆Sk[φ]+J [φ] 1

2

∫
ddxφ(x)∂kRk(−∂2

x)φ(−x)

= − 1

Zk[J ]

1

2
Tr[〈φφ〉S,J,∆Sk ∂kRk(−∂2

x)]

where the trace replaces coordinate integration. The trace of an operator Ô (in the trace
class) is defined as

Tr[Ô] =
∑
i

〈ψi, Ôψi〉 . (48)

Where (ψi)i is an orthonormal basis set. Using (35) and (36), this becomes

− 1

2
Tr
[ δ2

δJδJ
Wk[J ]∂kRk +

1

Zk[J ]2
〈φ〉S,J,∆Sk ∂kRk 〈φ〉S,J,∆Sk

]
= −1

2
Tr
[ δ2

δJδJ
Wk[J ]∂kRk + 〈φ〉cS,J,∆Sk ∂kRk 〈φ〉cS,J,∆Sk

]
= −1

2
Tr
[ δ2

δJδJ
Wk[J ]∂kRk

]
+ ∂kSk[χ]

The second term then conveniently cancels because of the definition of the effective
average action

∂kΓk[χ] = −∂kWk[J ]− ∂k∆Sk[χ]

=
1

2
Tr
[ δ2

δJδJ
Wk[J ]∂kRk

]
This can be computed using

δ

δχ
Γ̂k[χ] = J.

Hence, using expression (46) we obtain:

δ2

δχδχ
Γ̂k =

δ

δχ
J =

( δ
δJ
χ
)−1

=
( δ2

δJδJ
Wk

)−1
.

With this we finally arrive at the Functional Renormalization Group Equation[9]

k∂kΓk[χ] =
1

2
Tr

[(
δ2

δχδχ
Γk +Rk

)−1

k∂kRk

]
. (49)

Where δ2

δχδχ
Γk is the operator corresponding to that functional. This is implicitly done

when we replace integration with the trace. An example with some extra details is given
in the appendix.
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4.2 Deriving the beta-functions for the φ4 theory

In the φ4 theory, we focus on an effective average action of the form

Γk[φ] =

∫
ddx[−1

2
zkφ(x)∂2

xφ(x) +
1

2
m2
kφ(x)2 +

λk
4!
φ(x)4] (50)

Where coupling constants zk,mk and λk are now dependent on the energy scale.

Left-hand-side of the FRGE
To find the beta functions of these couplings, we take the derivative with respect to k
of (50). This gives

k∂kΓk = k

∫
ddx[−1

2
∂kzkφ(x)∂2

xφ(x) +
1

2
∂km

2
kφ(x)2 +

1

4!
∂kλkφ(x)4]. (51)

We can then extract their corresponding beta functions using projecting operations of
the following form

Πi,jF [φ] =
1

i!

1

j!
∂iφc∂

j
q

(
F [φ]

∣∣
φ=φceiqx

) ∣∣
φc=0,q=0

(52)

To extract zk, we need (i, j) = (2, 2), mk and λk have operations with (i, j) = (2, 0) and
(i, j) = (4, 0) respectively. Applying these leads to the following expressions,

Π2,2k∂kΓk[φ] =

∫
ddx [

1

2
k∂kzk − x2∂km

2
k] (53a)

Π2,0k∂kΓk[φ] =

∫
ddx k

1

2
∂km

2
k (53b)

Π4,0k∂kΓk =

∫
ddx

1

4!
k∂kλk (53c)

With the FRGE (49), we can find different expressions for these objects and compare.

Right-hand-side of the FRGE
We now compute the FRGE for (50), given the truncation where we neglect all powers
of φ higher than 4, and all other derivatives. We can refer to (74) to find the expression
for the Hessian of δ2

φΓk, with some adjustment to factors. We find as a result

k∂kΓk =
1

2
Tr

[
1

−zk∂2
x +m2

k + λk
2
φ(x)2 +Rk(−∂2

x)
k∂kRk(−∂2

x)

]
(54)

We formally can expand the operator on the right in a Neumann series, which is of the
form

(1− T )−1 =
∞∑
k=0

T k. (55)

15



For T an operator for which this series converges in norm. To rewrite our previous result
in this form, we solve the general case. Here, A,B,C are invertible operators.

(A−B)−1 = C(1− T )−1 C = D−1

= D−1(1− T )−1 = ((1− T )D)−1 = (D − TD)−1

So that we find D = A, so C = A−1 and T = BA−1.

Using this, with A = −zk∂2
x + m2

k + Rk(−∂2
x) and B = −λk

2
φ(x)2, we can expand

in powers of φ, up to φ4. For convenience, we define P (−∂2
x) = −zk∂2

x +m2
k +Rk(−∂2

x).

k∂kΓk[φ] =
1

2
Tr
[ 1

P (−∂2
x)

{
1− λk

2
φ(x)2(P (−∂2

x))
−1

+
λ2
k

4
φ(x)2(P (−∂2

x))
−1φ(x)2(P (−∂2

x))
−1
}
k∂kRk(−∂2

x)

]
We use the cyclic property of the trace, i.e. Tr[AB] = Tr[BA], to move the operator
P (−∂2

x)
−1 to the right

k∂kΓk[φ] =
1

2
Tr
[(

1− λk
2
φ(x)2(P (−∂2

x))
−1+

λ2
k

4
φ(x)2(P (−∂2

x))
−1φ(x)2(P (−∂2

x))
−1
)
k∂kRk(−∂2

x)
1

P (−∂2
x)

]
. (56)

The trace can now be evaluated by introducing a complete orthonormal basis. We choose
the Fourier basis ψp = ( 1

2π
)d/2eipx, for which the expression becomes

k∂kΓk[φ] =
1

2

1

(2π)d

∫
ddxddp e−ipx

{
1− λk

2
φ(x)2(P (−∂2

x))
−1

+
λ2
k

4
φ(x)2(P (−∂2

x))
−1φ(x)2(P (−∂2

x))
−1
}

k∂kRk(−∂2
x)

1

P (−∂2
x)
eipx

Next we set φ = φce
iqx, as is the first step in projections (52), which results in

k∂kΓk[φce
iqx] =

1

2

1

(2π)d

∫
ddxddp e−ipx

{
1− λk

2
φ2
ce

2iqx(P (−∂2
x)
}−1

+
λ2
k

4
φ2
ce

2iqx(P (−∂2
x))
−1φ2

ce
2iqx(P (−∂2

x))
−1
}

k∂kRk(−∂2
x)

1

P (−∂2
x)
eipx.

This makes it so that by commuting the final eipx every term with ∂2
x instead gives a

term with the combined factor in the exponential to its right-hand-side, squared, so that
we find

k∂kΓk[φce
iqx] =

1

2

1

(2π)d

∫
ddxddp

{
P (p2)−1 − λk

2
φ2
ce

2iqx(P (p2))−2

+
λ2
k

4
φ4
ce

4iqx(P (p2))−2(P ((p+ 2q)2))−1k∂kRk(p
2)
}
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In the final step we apply the projecting operations (52) to this equation, yielding:

Π2,0k∂kΓk = − 1

(2π)d

∫
ddxddp

λk
4

(
zkp

2 +m2
k +Rk(p

2)
)−2

k∂kRk(p
2) (57a)

Π4,0k∂kΓk =
1

(2π)d

∫
ddxddp

λ2
k

8

(
zkp

2 +m2
k +Rk(p

2)
)−3

k∂kRk(p
2) (57b)

Π2,2k∂kΓk =
1

(2π)d

∫
ddxddp

λk
2
x2
(
zkp

2 +m2
k +Rk(p

2)
)−2

k∂kRk(p
2) (57c)

Comparing coefficients of these with equations (53a,b,c), and solving for all x rather
than integrating over x, we find.

1

2
k∂kzk − x2k∂km

2
k =

1

(2π)d

∫
ddp

λk
2
x2(zkp

2 +m2
k +Rk(p

2))−2k∂kRk(p
2) (58a)

1

2
k∂km

2
k = − 1

(2π)d

∫
ddp

λk
4

(zkp
2 +m2

k +Rk(p
2))−2k∂kRk(p

2) (58b)

1

4!
k∂kλk =

1

(2π)d

∫
ddp

λ2
k

8
(zkp

2 +m2
k +Rk(p

2))−3k∂kRk(p
2) (58c)

By Combining the first 2 equations, we find that the beta function of the wavefunction
renormalization factor vanishes:

k∂kzk = 0. (59)

To explicitly find the other 2, we need to choose a cutoff function Rk. The choice we
make is the so-called optimized cutoff[11]

Rk(s) = zkk
2
(

1− s

k2

)
Θ(1− s

k2 ) (60)

Where Θ is the Heaviside distribution, with the convention that Θ(0) = 0. Its derivative
is a delta function of the same argument. By use of the chain and product rule we find∫

ddpf(p)k∂kRk(p
2) =

∫
ddpf(p)(zk(2k

2Θ(1− p2

k2
) + 2p2(1− p2

k2
)δ(1− p2

k2
))

+ k(k2 − p2)∂kzkΘ(1− p2

k2
))

=

∫
p2<k2

f(p)(2k2zk + k(k2 − p2)∂kzk) =

∫
p2<k2

f(p)2k2zk

for any function f(p), where the last equality holds due to (59). This result implies
we only need to evaluate the integral for the region where p2 < k2. For this the cutoff
becomes

Rk(p
2)|p2<k2 = zk(k

2 − p2). (61)

And so the operator P simplifies to

P (p2)|p2<k2 = zkp
2 +m2

k + zk(k
2 − p2) = zkk

2 +m2
k (62)
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Substituting this back into equation (58b,c) we find.

1

2
k∂km

2
k = − 1

(2π)d

∫
p2<k2

ddp
λk
4

(zkk
2 +m2

k)
−22k2zk (63)

1

4!
k∂kλk =

1

(2π)d

∫
p2<k2

ddp
λ2
k

8
(zkk

2 +m2
k)
−32k2zk (64)

Both integrands have become p independent, and the integration domain is the d di-
mensional ball with radius k, of which the volume is given by

Vd(k) =
πd/2

Γ(d
2

+ 1)
kd. (65)

Where Γ(t), not to be confused with the effective action, is the Gamma function, which
is an extension of the factorial function. It is defined by

Γ(t) =

∫ ∞
0

xt−1e−xdx. (66)

This finally leads to the beta functions for the dimensionful couplings in our ansatz

k∂xzk = βzk = 0 (67a)

k∂km
2
k = βm2

k
=

−λkkd+2zk

2dπd/2Γ(d
2

+ 1)(zkk2 +m2
k)

2
(67b)

k∂kλk = βλk =
6λ2

kk
d+2zk

2dπd/2Γ(d
2

+ 1)(zkk2 +m2
k)

3
(67c)

These equations are the basis for the following discussion. Note that these equations
hold for general spacetime dimension d.

4.3 Dimensionless coupling constants

So far the coupling constants mk and λk were dimensionful. In natural units, every
dimension reduces to a mass dimension. The effective action is dimensionless in natural
units, which we can see as it is defined by the sum of W (which is a logarithm, so
dimensionless) and J [χ] (which is seen in an exponent in Z, and thus must be dimen-
sionless). Furthermore, zk is dimensionless, as the dimension of that term is already
given by ∂2

x. In short, counting mass units we have [x] = −1, [∂x] = 1, [Γk] = 0, and
[zk] = 0. Integration over spacetime thus gives −d mass units: [ddx] = −d
From the kinetic term we can conclude that [φ] = d−2

2
, which then implies that [λk] =

4− d and, unsurprisingly, [m2
k] = 2. These are the so called canonical dimensions of the

couplings.

Furthermore, k denotes an energy scale, and so [k] = 1. We can use this to make
our coupling constants dimensionless, by multiplying with a suitable power of k.

m̃2
k = k−2m2

k (68a)

λ̃k = kd−4λk (68b)
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Next, let us substitute the dimensionless couplings into the beta functions to find the
dimensionless beta functions

k∂km̃2
k = β

m̃2
k

=
−λ̃kzk

2dπd/2Γ(d
2

+ 1)(zk + m̃2
k)

2
− 2m̃2

k (69a)

k∂kλ̃k = βλ̃k =
6λ̃k

2
zk

2dπd/2Γ(d
2

+ 1)(zk + m̃2
k)

3
− (4− d)λ̃k (69b)

k∂kzk = βzk = 0 (69c)

Which no longer have an explicit k dependence, making this an autonomous system of
coupled ODEs.

4.4 RG Analysis

Equations (69a,b,c) give us the information we need to to do our nonperturbative anal-
ysis. The differential equations are solved numerically rather than analytically. Fur-
thermore, fixed points are found and their convergence is analysed

4.4.1 General attributes

Because the coupling zk can be fully absorbed in a redefinition of the field and the other
couplings, this coupling becomes redundant[12], in the sense that we can redefine the

field as φ→ √zkφ and the other couplings as m̃k
2

zk
and λ̃k

z2
k

to remove this coupling. We

effectively do so by choosing zk = 1. It is important that zk is k independent if we want
to do this, otherwise the field will become k dependent. Indeed this is the case as we
have found in (69c). This means we only have to look at the 2-dimensional theory space

of the couplings m̃2
k and λ̃k.

The RG flow has a singularity for m̃k
2 = −zk = −1. However, as we shall see, the

fixed points are all to the right of the singularity, so every theory in the space left of the
singularity is not UV complete. Therefore we can restrict ourselves to only look at the
space to the right of the singularity.

Furthermore, there is a dividing line λ̃k = 0, which makes it impossible for a theory
with positive λ̃k for some k, to change to negative λ̃k for some other k, and vice versa.
Meaning that a (renormalizable) theory with attractive potential (negative λ) cannot

become repulsive at short distances (high energy scale). In addition, λ̃k = 0 for some
k = k0 implies that λk = 0 for all k.

4.4.2 Fixed points

To find fixed points, we set both beta functions to 0. One fixed point, where both
couplings are 0, is immediately obvious. This is called the Gaussian fixed point, as it
corresponds to a (massless) free theory7. Another one, called the Wilson-Fisher fixed

7From here on, the mass term will be considered part of the potential. Note that however the mass
term need not be 0 for the theory to have no interaction.
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point (in d = 3), is given by the following set of fixed point values

z∗ = 1 (70a)

m̃∗
2 =

d− 4

16− d
(70b)

λ̃∗ =
9 · 2d+5πd/2Γ(d

2
+ 1)(4− d)

(16− d)3
(70c)

Note that when setting d = 4, this non-trivial fixed point will coincide with the Gaussian
fixed point. For d between 4 and 16, λ̃∗ is negative, which is problematic for reasons
discussed in the following section.

4.4.3 RG flow for d = 1, 2, 3

The RG flow around a fixed point is linearized by the matrix (Bαγ) = (∂γβα(u∗)), where
u is a point in theory space and u∗ in particular is the fixed point. The linearized flow
is given by

k∂kuα =
∑
γ

Bαγ(uγ(k)− u∗), (71)

with general solution

uα(k) = u∗α +
∑
i

CiV
i
α

(
k0

k

)θi
. (72)

Where V i’s are eigenvectors with eigenvalues −θi, k0 is a reference scale, Ci’s are inte-
gration constants and −θi are called the critical exponents. From this equation we can
see that UV attractive directions correspond to θi > 0 and UV repulsive (IR attractive)
correspond to θi < 0.
Using this method, we find that the Gaussian fixed point only has UV attractive di-
rections. The flow is then numerically solved starting from the eigenvector near the
Wilson-Fisher fixed point which is UV repulsive.

d 1 2 3

m̃∗
2 −1/5 −1/7 −1/13

λ̃∗
32π
125
≈ 0.804 288π

325
≈ 2.784 1728π2

2197
≈ 7.763

θ1,WF -3.91548 -2.51915 -1.1759
θ2WF 1.91548 1.85248 1.84256
θ1,Gauss 2 2 2
θ2,Gauss 3 2 1

Table 1: Table containing Wilson-Fisher fixed point values and critical exponents for
both Gaussian and Wilson-Fisher fixed points, for spacetime dimensions d = 1, 2 and 3.

We see that the Wilson Fisher fixed point has positive λ and negative m2 for dimensions
1, 2, 3. In general we can characterize the 4 quadrants using the equation of motion
(13). When looking for constant solutions to this equation, we find

φ(x) = 0 ∧ φ(x) = ±φc = ±
√
−6m2

λ
.
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Because φ is a real scalar field, m2 and λ must be of opposite sign for the second solution
to be a valid one. To check whether these solutions are maxima or minima, we take the
second derivative of the potential with respect to φ

m2 +
λ

2
φ2.

Positivity of this implies a minimum, and negativity a maximum. The following table
(2) summarizes the results for different quadrants.

λ < 0 λ > 0
m2 > 0 Loc. minimum at 0, maxima at ±φc Minimum at φ = 0
m2 < 0 Maximum at 0 Loc. maximum at 0, minima at ±φc

Table 2: Overview of minima and maxima for different possibilities of m2 and λ, sorted
by quadrant.

Whenever λ < 0, there is no global minimum of the potential. So the potential (and
therefore the Hamiltonian) is not bounded from below and thus there is no ground state,
leading to an unphysical theory. The fixed points found have m2 < 0 and λ > 0, so
that the potential has two global minima. This leads to spontaneous breaking of the
symmetry φ → −φ, which is the basic mathematical phenomena responsible for the
Higgs mechanism.

The following plots (Fig. 2) show the flow of the couplings (λ̃k, m̃2
k) for different dimen-

sions, where a parametrization with the inverse tangent is made to make the domain
finite. The dashed line represents the singularity m̃k

2 = −zk = −1, the grey line is
the dividing line λ̃k = 0, and the red curve indicates the trajectory of a theory which
goes from the Wilson-Fisher fixed point to the Gaussian fixed point for increasing k.
Furthermore, the arrows point towards the IR direction (decreasing k).
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tan
-1m2

ta
n
-
1
(λ
)

(b) d = 2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

tan
-1m2

ta
n
-
1
(λ
)

(c) d = 3

Figure 2: RG flow in cases d = 1, 2, 3. The arrows point in the IR direction, the dividing
line λ̃k = 0 is grey, and the singularity line m̃k

2 = −1 is dashed. The red line indicates
the trajectory of the theory with both UV and IR limits.
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4.4.4 RG flow for d = 4

In d = 4 spacetime dimensions, the former Wilson-Fisher and the Gaussian fixed point
coincide. Hence, a φ4 scalar theory which has a fixed point in the UV and is controlled
by a fixed point in the IR does not exist in 4 dimensional spacetime. The beta function
of λ̃k is always positive (right of the singularity line), so theories with positive λ̃ do not

have a well defined UV limit, while negative λ̃ theories are physically not allowed. Any
UV complete theory thus necessarily has λ̃k = 0. Since λ̃k0 = 0 for some k0 implies

λ̃k = 0 ∀k, there is no interaction generated by the RG flow. This is known as quantum
triviality. This is problematic because the Higgs mechanism in the Standard Model of
particle physics is described by a φ4 scalar field theory. It remains an open problem
[13][14], though the coupling to gravity shows promise in solving this (see for instance

[16]). Furthermore, all RG trajectories with nonzero λ̃k exhibit a Landau Pole. In

standard classification [15], there are three cases: if βλ̃k has a zero at λ̃k0 then λ̃k → λ̃k0

for k → ∞; if βλ̃k ∼ λ̃k
α

with α < 1 for large λ̃k and βλ̃k is not alternating, then λ̃k

goes to infinity as k goes to infinity; if βλ̃k ∼ λ̃k
α

with α > 1 for large λ̃k, then λ̃k will

diverge for some finite k0. Since βλ̃k ∼ λ̃k
2

for large λ̃k, we are in the case where λ̃k
diverges for some finite k0.
Once again we have a plot (Fig 3) of the RG flow in the IR direction, with dividing and
singularity lines. There is no trajectory between fixed points.
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Figure 3: RG flow in d = 4 case. The arrows point in the IR direction, the dividing line
λk = 0 is grey, and the singularity line m2

k = −1 is dashed.
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5 Conclusion

We first started with some general classical and quantum field theory for a φ4 interacting
theory. After giving a brief sketch of the perturbative renormalization procedure, we pro-
ceeded to the nonperturbative analysis. Here (a version of) the FRGE was derived and
used to study the RG flow for spacetime dimensions 1 through 4. We found that while
for dimensions 1, 2, 3 non-Gaussian fixed points and thus a renormalizable UV complete
φ4 theory exist, in 4 dimensional spacetime there exists only a Gaussian fixed point,
indicating that quantum triviality remains even on the nonperturbative level. This in-
dicates that a classical interacting (φ4 in this case) theory becomes non-interacting due
to quantum phenomena, since in 4 dimensions the coupling λ is necessarily 0 for all
energy scales for UV complete theories.
Possible further research could involve taking higher order terms into account, coupling
the system to different matter and gravitational sectors, and doing a careful study of
the cutoff function dependence of the results. Furthermore this effect can be studied in
the case of fermionic fields, instead of the scalar fields we used.
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A The Hessian Operator of the φ4 theory

Calculating the second derivative of the φ4 action

δvS[φ + εw] =

∫
ddx[−1

2
(φ + εw)(x)∂2

xv(x)− 1

2
v(x)∂2

x(φ + εw)(x)

+m2v(x)(φ + εw)(x) +
λ

3!
v(x)(φ + εw)(x)3]

Expanding the brackets gives

=

∫
ddx[−1

2
(φ + εw)(x)∂2

xv(x)− 1

2
v(x)∂2

x(φ + εw)(x) +m2v(x)(φ + εw)(x)

+
λ

3!
v(x)(φ(x)3 + 3εφ(x)2w(x) + 3ε2φ(x)w(x)2 + ε3w(x)3)]

For the second derivative δwδvS[φ] = limε→0
1
ε
(δvS[φ + εw]− δvS[φ]), all terms with ε0

cancel between the two terms, while all terms with power of ε greater than 1 vanish in
the limit. Only terms scaling linearly with ε are left. This leaves us with the equation.

δwδvS[φ] =

∫
ddx[−1

2
w(x)∂2

xv(x)− 1

2
v(x)∂2

xw(x) +m2v(x)w(x) +
λ

2
φ(x)2v(x)w(x)]

(73)
Using partial integration twice on the second term gives, assuming w and v go to zero
on the boundary, the following result

δwδvS[φ] =

∫
ddx[−v(x)∂2

xw(x) +m2v(x)w(x) +
λ

2
φ(x)2v(x)w(x)] (74)

We can rewrite this as

δwδvS[φ] =

∫
ddx v(x)Ĥess w(x)

With the Hessian given by

Ĥess = −∂2
x +m2 +

λ

2
φ(x)2. (75)

The Riesz Representation Theorem states that every linear functional can be written
uniquely as an inner product8 with a specific vector[17]. Writing the second derivative
of S, which is linear in both v and w, in this way shows that the Hessian is the unique
operator Ĥess so that

δwδvS[φ] = 〈v, Ĥess w〉 . (76)

The operator Ĥess is unique because, for every w, the theorem states that the vector
Ĥess w is unique.

8In our case, the fields inheret the L2 inner product.
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