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Abstract

The Hubble tension poses a significant challenge in cosmology, requiring an effective
resolution. This thesis introduces a potential solution: the Curvature Dependent Dark
Energy (CDDE) model. The CDDE model incorporates a curvature-dependent dark
energy term represented as TDE

µν = C
√
(R/6)gµν in the Einstein equations.

The primary objective of this study is to fit the parameter C within the CDDE model,
providing a solution to the Hubble tension. Through careful parameter tuning, we
obtain a best-fit value that successfully resolves the tension. The specific value of C
determined in the fit is: C = 1.460+0.170

−0.182 × 1022eV3, corresponding with an energy scale

of C
1
3 = 24.442+0.915

−1.062MeV that may hint at an origin in the realm of strong interactions.
During the fitting, we determined the necessary value of z∗, representing the redshift at
which matter and radiation decouple. Our findings yield a value of z∗ = 1089.59+3.22

−1.88.
An intriguing consequence of the CDDE model is the emergence of matter creation,
a distinctive feature that sets it apart from conventional models. Furthermore, when
comparing the deceleration parameters between the CDDE and Lambda-CDM models,
a significant overlap is observed, which adds motivation to further research this model.
This overlap is not trivial, as the model by construction only solves the Hubble tension.
The presence of such overlap in the deceleration parameters occurs naturally within the
model, without requiring further modifications. It implies that the CDDE model can
solve the Hubble tension and at the same time still be consistent with the observed
acceleration of the universe.
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1 Introduction

Cosmology is a branch of physics that studies the origin, evolution, and structure of
the universe as a whole. It deals with understanding the large-scale properties and dy-
namics of the universe, including its expansion, composition, and ultimate fate. Several
key concepts in cosmology include the cosmic microwave background, scale factor (a),
redshift (z), Hubble parameter (H), the Hubble tension and dark energy, which will be
explained in this introductory chapter.
The scale factor (a) is a fundamental dimensionless quantity and it describes the relative
size of the universe at different times. It represents the expansion of the universe, with
a value of 1 at the present time. In the future as the universe expands, the scale factor
increases, indicating that galaxies and other cosmic structures become more separated
over time. If we look back in time, the scale factor decreases meaning that structures
were closer together. This way the scale factor can be used as a time scale with a small
/large scale factor corresponding with the past/future.
The dimensionless quantity redshift (z) is the increase of wavelength of radiation which
means a decrease in frequency and energy. Redshift can occur in three ways, as the
Doppler effect, gravitational redshift and cosmological redshift. For cosmology this last
one is of course the most important. As space itself expands light waves get stretched
out, resulting in a larger wavelength. The relation between redshift and the scale factor
is inversely proportional:

1 + z =
1

a
(1)

Therefore redshift can be used as an inverse measure of time. The present has a redshift
of z = 0. A redshift smaller/larger than z = 0 corresponds with the future/past.
The Hubble parameter is a time dependent quantity which describes the expansion of
the universe. Its units are most of the time expressed in km/s/Mpc. For example, a
Hubble constant of 1 km/s/Mpc means that objects with a distance of 1 mega parsec
(≈ 3.09× 1022meter) to each other move away from each other with a speed of 1 km/s.
Mathematically, it is defined as:

H(t) =
ȧ

a
(2)

with ȧ = da
dt being the time derivative of the scale factor.

The Hubble constant is the Hubble parameter today: H0 = H(t = t0). The Hubble
constant plays an important role in cosmology and is therefore of great importance to
measure. However, different measurements lead to different results for the standard
cosmological Λ-CDM model. This difference is also known as the Hubble tension. The
measurements can be sorted into two groups: late universe and early universe mea-
surements. The early universe measurement uses the cosmic microwave background
(CMB). By analysing temperature fluctuations in the CMB and the large-scale struc-
ture of the universe, the Hubble constant is calculated. Combining constraints from
the Dark Energy Survey (DES), Baryon Acoustic Oscillations (BAO) and Big Bang
Nucleosynthesis (BBN), which are early universe measurements, one obtains the value:

Hearly
0 = 67.4± 1.1 km/s/Mpc [1, 2]. A combination of multiple late universe measure-

ments result in the value of H late
0 = 73.3 ± 0.8 km/s/Mpc[3]. Inspired by the analysis

of [4], we aim to resolve this tension by replacing the cosmological constant by a non-
constant curvature-dependent dark energy, giving rise to the model that we will refer to
as the Curvature Dependent Dark Energy (CDDE) model.
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2 Theory

In this chapter the most important assumptions and mathematical tools will be ex-
plained. These will be used for both the Λ-CDM and CDDE model.

2.1 Natural units

In this thesis we will make use of the natural units. Most importantly, we will put the
speed of light and the reduced Planck constant to one: c = h̄ = 1, by absorbing these
constants in the relevant fields and quantities. This will allow us to express dimensionful
quantities in units of energy (eV) to some power.

2.2 Flatness

With a good approximation, we can say that the universe is flat (no intrinsic curvature).
Observations from the Microwave Anisotropy Probe (WMAP) are consistent with a
nearly flat universe [5]. In this thesis, we will therefore simplify all work by assuming
k = 0 for the intrinsic curvature parameter k.

2.3 The Einstein equations

Einstein’s general theory of relativity relates the curvature of the universe to its com-
ponents. This relation is given by the Einstein equations. The Einstein equations can
be written in the form:

Rµν − 1

2
gµνR = 8πGTµν , µ, ν = 0, 1, 2, 3

Here, Rµν represents the Ricci tensor, gµν the metric tensor, R the Ricci scalar, G the
gravitational constant and Tµν the stress-energy tensor. These objects will be explained
and derived in the following sections. The left-hand side of the equation corresponds to
the curvature of the universe, while the right-hand side corresponds to the components
present in the universe.

2.4 FRW-metric

In both the standard cosmological Λ-CDM model and our curvature-dependent dark en-
ergy model (CDDE) the Friedmann–Lemâıtre–Robertson–Walker metric (FRW metric)
is used to describe the universe at large scales where there is no preferred direction and
location. These characteristics can easily be seen in the FRW metric. The 00 compo-
nent g00 is spatially independent as implied by homogeneity, while the other diagonal
components, the ii components gii (i ̸= t), have no preferred direction as implied by
isotropy. The FRW-metric is:

gFRWµν = diag
(
1,−a2(t),−a2(t)r2,−a2(t)r2sin2(θ)

)
(3)

Here we have used spherical coordinates and the flatness property (k = 0).

2.5 Christoffel symbols

The Christoffel symbols are calculated using:

Γα
µν ≡ 1

2
gαλ(gµλ,ν + gνλ,µ − gµν,λ) (4)
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with gµν being the inverse of the metric gµν and gµν,λ being the derivative of gµν with
respect to the spacetime coordinate xλ. Here we make use of the Einstein summation
convention. In the Einstein summation convention, whenever an index appears twice in
a term (once as a subscript and once as a superscript), it implies summation over all
possible values of that index. In the case of cosmology (and in this thesis) these indices
are the 4-dimensional space-time indices. The non-zero Christoffel symbols of the FRW
metric, again using k = 0, are:

Γt
rr = aȧ Γt

θθ = r2aȧ Γt
ϕϕ = r2 sin2(θ)aȧ

Γr
tr = Γθ

tθ = Γϕ
tϕ =

ȧ

a
Γr
ϕϕ = −r sin2(θ) Γr

θθ = −r (5)

Γϕ
rϕ =

1

r
Γθ
rθ =

1

r
Γθ
ϕϕ = − cos(θ) sin(θ)

Γϕ
ϕθ = cot(θ)

2.6 Riemann tensor and the Ricci scalar and tensor

With the calculated Christoffel symbols we can calculate the Riemann tensor:

Rµ
ναβ ≡ ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

γαΓ
γ
νβ − Γµ

γβΓ
γ
να (6)

and the Ricci scalar:
R ≡ gµνRµν (7)

Here, the Ricci tensor Rµν is defined as:

Rµν ≡ Rα
µαν (8)

The 00 component of the Ricci tensor R00 for the FRW-metric is:

R00 = −3
ä

a
(9)

The other diagonal terms of the Ricci tensor are:

Rii = −
(
ä

a
+ 2

ȧ2

a2

)
gFRW
ii (10)

with i ∈ {1, 2, 3}. The other non-diagonal terms vanish. With the Ricci tensor it is easy
to compute the Ricci scalar:

R = −6

(
ä

a
+

ȧ2

a2

)
(11)

2.7 Perfect fluid approximation

In both the Λ-CDM model and our CDDE model, we make use of the perfect fluid
approximation. In this approximation effects like heat conductivity and viscosity are
neglected. This approximation is motivated by the isotropic and homogeneous proper-
ties of the universe at large scales. If there were spatial dependencies in the pressure
p(x⃗, t) and the energy density ρ(x⃗, t), it would contradict the isotropy and homogeneity.
Therefore, we assume that the pressure and energy density are spatially independent:
p(x⃗, t) = p(t) and ρ(x⃗, t) = ρ(t). This leads to a stress-energy tensor of the form:

TPF
µν = diag

[
ρ(t),−p(t)gFRW11 ,−p(t)gFRW22 ,−p(t)gFRW33

]
(12)
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Here, the energy density ρ(t) represents the total energy density, which is the sum of
the (ultrarelativistic) radiation and (non-relativistic) matter energy densities: ρ(t) =
ρR(t) + ρM (t). In the Λ-CDM model, the total pressure p(t) is only dependent on
the radiation energy density and has the following dependence: p(t) = 1

3ρR(t). The
presence of the factor 1

3 and its independence from the matter energy density are related
to thermodynamics and statistical physics[6]. For non-relativistic matter, the energy
associated with the temperature is negligible compared with the mass of the matter
particles and as a consequence: pM (t) << ρM (t). In many textbooks and studies, the
dark energy term is automatically incorporated into the expression for total pressure.
However, in this thesis, we will include the dark energy term as a separate term ∝ gµν
in the Einstein equations. Since in the CDDE model the dark-energy contribution to
Tµν can not be viewed as an independent fluid component, we will treat it separately.
As such, in our set-up the perfect fluid contribution to the stress-energy tensor is given
by:

TPF
µν = diag

[
ρR + ρM ,−1

3
ρRg

FRW
11 ,−1

3
ρRg

FRW
22 ,−1

3
ρRg

FRW
33

]
(13)

3 Lambda cold dark matter

The Lambda cold dark matter model (Λ-CDM) is the most widely accepted cosmological
model due to its success in explaining various observations. The two key features of this
model are in its name: the universe has a component called the cosmological constant
(Λ) and the cold (non-relativistic) matter is mostly cold dark matter (CDM).
The inclusion of the cosmological constant in the Einstein field equations allows for
the possibility of an expanding universe. The growing body of data strongly suggests
that the universe is presently experiencing accelerated expansion, which indicates the
presence of a positive cosmological constant.
The Einstein’s equations of this model can be put in the form:

Rµν − 1

2
gµνR = 8πGT eff

µν (14)

with the effective stress-energy tensor being:

T eff
µν = TPF

µν +
Λ

8πG
gµν (15)

Here Λ is the cosmological constant and is taken to be positive (Λ > 0) such that an
accelerating expansion is possible. When rewritten like this, we can interpret the cos-
mological constant Λ/8πG as a vacuum energy density (often referred to as dark energy
density). Notice that this vacuum energy density is constant and is therefore not de-
pending on the expansion of the universe.
The following equations are derived in the appendix (A.1 and A.2). Assuming no intrin-
sic curvature (k = 0), the 00 and ii component of the Einstein equations can respectively
be put in the form:

H2 ≡
(
ȧ

a

)2

=
8πG(ρM + ρR) + Λ

3
(16)

ä

a
= −4πG

3
(2ρR + ρM ) +

Λ

3
(17)

with the dot and double dot indicating single and double differentiation with respect to
time. Equation 17 shows that with a positive cosmological constant Λ > 0 an acceler-
ating expansion is possible.
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These two equations can be combined into a useful third dependent equation (see
appendix A.3):

˙ρM + ˙ρR +
ȧ

a
(3ρM + 4ρR) = 0 (18)

By dividing both sides of equation 16 by H2 and subsequently rewriting it, we obtain
(see appendix A.1):

ΩM +ΩR +ΩΛ = 1 (19)

where the convention Ωi = 8πG
3H2 ρi and ΩΛ = Λ

3H2 is used. It might seem that we do
not have enough equations to solve the system, and indeed, we do not. We have three
unknowns, ρM (t), ρR(t) and H(t) but only 2 equations. In this thesis we will only
consider the universe during the stage in which matter and radiation are decoupled and
therefore do not interact with each other. When this happens equation 18 decouples.
The decoupling of matter and radiation happens at the z-value of recombination (z∗ ≈
1100). The exact value of z∗ will be calculated later on.
The decoupling of equation 18 looks as follows:

˙ρM = −3
ȧ

a
ρM , ˙ρR = −4

ȧ

a
ρR (20)

Both of these equation can be easily solved using integration and have the solutions:

ρM = ρM,0a
−3, ρR = ρR,0a

−4 (21)

Or written in term of the redshift z:

ρM = ρM,0(z + 1)3, ρR = ρR,0(z + 1)4 (22)

Dividing equation 16 by H2
0 =

(
ȧ
a

)2 |t=t0 and using the equations 21 will result in the
following equation:

H(z) = H0

√
ΩR,0(z + 1)4 +ΩM,0(z + 1)3 +ΩΛ (23)

Here we have used a convention that we will use a lot throughout this thesis:

Ωi =
8πG

3H2
ρi, Ωi,0 = Ωi(t = t0) (24)

These omegas all have values between 0 and 1 and can thus be interpreted as the relative
contribution of the specific component in the universe. With this decoupling we have 3
unknown parameters and 3 equations. The only thing necessary now is a set of initial
conditions. The benchmark model tells us that at t = t0: ΩM,0 = 0.334 ± 0.018[7],
ΩR,0 = 7.74+0.178

−0.173 × 10−5[8] and ΩΛ,0 = 1 − ΩM = 0.666 ± 0.018, with ΩΛ,0 = 0.666
corresponding to a positive cosmological constant Λ > 0.

3.1 Acceleration redshift in the Λ-CDM model

The transition from deceleration to acceleration happens at the turning point called
acceleration redshift. This point is defined as the redshift with ä = 0. Using equation 17
and equating it to zero, gives us the equation: − 4πG

3 (2ρR+ρM )+ Λ
3 = 0. Assuming that

the acceleration happened relatively late in the evolution of the universe, which indeed
will be the case, we make the approximation of setting the radiation energy density to
zero ρR = 0. The assumption that the radiation energy density in the late universe is
negligible is here made because of the fact that radiation falls of much quicker than the
matter or dark matter components. This results in the equation: − 4πG

3 ρM + Λ
3 = 0.
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After rewriting this, we can say that acceleration happened when the matter energy
density equaled ρM = Λ

4πG . Using the left equation of 21 we find that the acceleration
happened at the scale factor:

aacc =

(
4πG

Λ
ρM,0

) 1
3

=

(
ΩM,0

2ΩΛ,0

) 1
3

(25)

or written in terms of the redshift:

zacc =

(
Λ

4πGρM,0

) 1
3

− 1 =

(
2ΩΛ,0

ΩM,0

) 1
3

− 1 (26)

4 Curvature-dependent dark energy model

To solve the Hubble tension, we introduce a curvature-dependent dark energy term.
In addition to the perfect fluid approximation (equation 12) we will add a curvature-
dependent stress-energy tensor that looks as follows:

TDE
µν = C

(
R

6

) 1
2

gFRWµν , C > 0 (27)

Here C is a positive constant that has yet to be determined, R is the Ricci scalar and
gFRWµν denotes the FRW-metric. The constant C needs to be positive for the universe
to experience accelerating expansion. The Ricci scalar has units of energy squared
([R] = eV2), and the curvature dependent stress-energy tensor has units of energy to
the power of 4: ([T vac

µν ] = eV4). Consequently, C has units of energy to the power of 3:

([C] = eV3). The total (effective) stress-energy tensor is therefore:

T eff
µν = TPF

µν + TDE
µν (28)

Note that the dark energy stress-energy tensor is not an independent perfect-fluid con-
tribution. It is dependent on the radiation and matter present in the universe because
radiation and matter create curvature. The quantity C

√
R/6 should be interpreted as

an energy density associated with the presence of matter and radiation, in contrast to a
vacuum energy density, which is what the cosmological constant term represents in the
Λ-CDM model.
With this stress-energy tensor we again get 2 equations. The 00 and ii component of
the Einstein equations can respectively be put in the forms (see appendix B):

ȧ2

a2
≡ H2 =

4πG

3

[
2(ρR + ρM ) + β +

√
β(ρM + β)

]
(29)

ä

a
= −4πG

3

[
ρM + 2ρR − β −

√
β(ρM + β)

]
(30)

Here we have defined: β = 16πGC2

3 . These two equations can be combined into the
equation:

˙ρR + ˙ρM +
ȧ

a
(3ρM + 4ρR) = − β

4
√

β(ρM + β)
˙ρM (31)

Just like in the Λ-CDM model we have 2 equations and 3 unknowns, and we will use
decoupling to solve the system after recombination. Equation 31 decouples when matter
and radiation stop interacting with each other:

˙ρR = −4
ȧ

a
ρR, ˙ρM

(
1 +

β

4
√

β(ρM + β)

)
= −3

ȧ

a
ρM (32)
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These differential equations are solved by:

ρR = ρR,0a
−4, ρM

1− 2

1 +
√

ρM+β
β

 1
4

= C ′a−3 (33)

The matter and dark energy components are not able to decouple. Matter and dark
energy will always interact with each other.
When both sides of Equation 29 are divided by H2 it can be rewritten as

1 = ΩM +ΩR +
1

2
Ωβ

(
1 +

√
1 +

ΩM

Ωβ

)
(34)

The 3 equations 32 and 34 can be written in terms of u = ln(z + 1) and Ωi:

d ln(H/H0)

du
=

3ΩM + 4ΩR

2
(35)

dΩR

du
= 4ΩR − 2ΩR

d ln(H/H0)

du
(36)

dΩM

du
= −2ΩM

d ln(H/H0)

du
+

3ΩM

1 + 1

4

√
1+

ΩM
Ωβ

(37)

We now have the 3 equation to solve the system. The initial conditions H0, ΩM,0, ΩR,0

and Ωβ,0 are the only things we need to find to solve the system. The benchmark model
tells us ΩM,0 = 0.334 ± 0.018[7], ΩR,0 = 7.74+0.178

−0.173 × 10−5[8] and ΩΛ,0 = 1 − ΩM =
0.666 ± 0.018, but these values are found by using the Λ-CDM model. Because we are
trying to solve the Hubble tension using a new model, we can not use these values. We
have to find these values with the CDDE model.

4.1 Acceleration redshift in the CDDE model

The universe transitioned from deceleration to acceleration at a turning point referred
to as the acceleration redshift. This point is defined as the moment when the second
derivative of the scale factor with respect to time equals zero (ä = 0). This happens
when equation 30 is equal to zero: ρM + 2ρR − β −

√
β(ρM + β) = 0. Assuming that

the acceleration redshift happened relatively late in the evolution of the universe, which
indeed will be the case, we again take the radiation energy density to be zero ρR = 0.
This assumption results in the equation: ρM − β =

√
β(ρM + β). This is solved by:

ρM = 3β, which we will insert into equation 33. This results in:

aacc(β) =
3

√
C ′

33/4β
(38)

or written as the z-value:

zacc(β) =
3

√
33/4β

C ′ − 1 (39)

4.2 Determining z∗

We assume that the decoupling of matter and radiation takes place during recombi-
nation. Recombination refers to the moment when the temperature of the universe
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sufficiently decreased, allowing electrons and protons to combine and form neutral hy-
drogen atoms. Before recombination, the plasma state was maintained due to high
energy and temperature levels, preventing the long-term existence of neutral atoms.
Photons continuously scattered off the free electrons within the plasma. This scattering
is called Thomson scattering. During this period, radiation and baryonic (non-dark)
matter were heavily interacting and coupled together. However, after recombination,
we witness their decoupling.
The moment of recombination will be defined as when the following equation is true:
H∗ = Γ(z∗). When the scattering rate equals or is less than the Hubble parameter, the
interactions between photons and electrons weaken significantly. Photons can now travel
more freely without constant scattering, leading to the decoupling of photons from the
charged particles. H∗ is the Hubble constant at recombination, using the early universe
measurement:

H∗ ≡ H(z∗) = Hearly
0

√
ΩR,0(z∗ + 1)4 +ΩM,0(z∗ + 1)3 +ΩΛ (40)

Why we use this H∗ will be explained in chapter 4.4. Γ(z∗) is the scattering rate of
Thomson scattering, defined as:

Γ(z) = ne(z)σ (41)

Here ne is the number density of electrons and σ is the Thomson scattering cross-
section (σ = 6.6523 × 10−29m2 [9]). For determining ne(z) we will assume that the
plasma is neutrally charged particles and contains only electrons, hydrogen, helium
and their ions. Helium-4 has a relative contribution to the mass energy density ρM of

Y = ρM (4He)
ρM

= 0.2479± 0.0029 [10] in the universe. We will denote the number density
of a particle i with ni,x, with x=0 for neutrally charged and x= 1,2 for the particle
having charge +|e|, +2|e| in terms of the unit charge |e|. Ions are, of course, slightly less
massive than their neutrally charged counterparts, but the difference is so small that we
often consider them to have comparable mass. The total mass density must therefore
be:

ρM (z) = mH0[nH0(z) + nH1(z)] +mHe0[nHe0(z) + nHe1(z) + nHe2(z)] (42)

The mass density of helium is:

Y ρM (z) = mHe0[nHe0(z) + nHe1(z) + nHe2(z)] (43)

Subtracting these two from each other results in:

(1− Y )ρM (z) = mH0[nH0(z) + nH1(z)] (44)

In addition the trivial equation of the number density for a neutral plasma reads:

ne(z) = nH1(z) + nHe1(z) + 2nHe2(z) (45)

We also assume the plasma in the universe to be in thermal equilibrium. From this
follows the Boltzmann distribution of the particle density of particle i with charge x|e|:

ni,x = gi,x

(
mi,xkT (z)

2π

) 3
2

exp

(
− mi,x

kT (z)

)
(46)

here gi,x is the statistical spin weight and mi,x the mass of particle i with charge x|e|.
The statistical spin weight of an electron ge is 2. Again we use mi,x+1 ≈ mi,x to derive:

ni,x+1(z)ne(z)

ni,x(z)
=

gegi,x+1

gi,x

(
mi,x+1mekT (z)

mi,x2π

) 3
2

exp

(
−(mi,x+1 +me −mi,x)

kT (z)

)
=⇒ ni,x+1(z)ne(z)

ni,x(z)
=

2gi,x+1

gi,x

(
mekT (z)

2π

) 3
2

exp

(
−Qi,x+1

kT (z)

)
≡ fi,x+1(z)

(47)
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with Qi,x+1 being the ionization energy of the particle i with charge (x + 1)|e|. This
final equation results in:

ni,x+1(z) =
ni,x(z)

ne(z)
fi,x+1(z) (48)

This equation makes it possible to go from the number density of an element to the
number density of the next ionized element. With this equation we can rewrite equation
43:

Y ρM (z) =
mHe0nHe0(z)

n2
e(z)

(n2
e(z) + fHe1(z)ne(z) + fHe1(z)fHe2(z)) ≡

nHe0(z)

n2
e(z)

P2(z)

=⇒ nHe0(z) =
n2
e(z)

P2(z)
Y (z)ρM (z)

(49)

Here we have defined P2 = mHe0(n
2
e+fHe1ne+fHe1fHe2). Equation 44 can be rewritten

as:

(1− Y (z))ρM (z) =
mH0nH0(z)

ne(z)
(ne(z) + fH1(z)) ≡

nH0(z)

ne(z)
P1(z)

=⇒ nH0(z) =
ne(z)

P1(z)
(1− Y (z))ρM (z)

(50)

P1 is defined as: P1 = mH0(ne + fH1) Now we use equations 48, 49 and 50 to rewrite
equation 45:

ne(z) =
fH1(z)

ne(z)
nH0(z) +

(
fHe1(z)

ne(z)
+ 2

fHe1(z)fHe2(z)

n2
e(z)

)
nHe0(z)

=⇒ ne(z) =
fH1(z)

P1(z)
(1− Y (z))ρM (z) +

fHe1(z)ne(z) + 2fHe1(z)fHe2(z)

P2(z)
Y (z)ρM (z)

(51)

This is our final equation for ne(z). We substitute the expressions for P1 and P2, and
employ a numerical approach to solve equation 51 and obtain the positive, real solution.
The solution ne(z) is then applied in equation 41 and is necessary for determining the
recombination redshift z∗, which satisfies the equation H∗ = Γ(z∗). The computation
is done using a binary searching algorithm. This results in z∗ = 1088.65+0.85

−0.78. In this
computation, we utilize the upper and lower limits of the errors associated with the used
parameters.

4.3 Initial conditions

The initial conditions we are looking for are: H0, ΩM,0, ΩR,0 and Ωβ,0. For H0, we will
take the late universe measurement as it is minimally affected by the Λ-CDM model.
We will take H late

0 = 73.3± 0.8 km/s/Mpc [4] as the correct Hubble constant.
ΩR,0 is also unaffected by the Λ-CDM model. The main contributions to ΩR,0 are
radiation from the cosmic microwave background and neutrinos. This value is calculated
using the present day vacuum temperature T = 2.72548 ± 0.00057K[11], resulting in
ΩR,0 = 7.74+0.178

−0.173 × 10−5[8].
The measurement of ΩM,0 is affected by Λ-CDM, whereas Ωβ,0 is not even defined in
Λ-CDM. So we will take these two as variables. Formula 34 can express ΩM,0 in terms
of Ωβ,0 as follows:

ΩM,0 =
1

8

(
−
√
Ωβ,0(9Ωβ,0 − 16ΩR,0 + 16)− 3Ωβ,0 − 8ΩR,0 + 8

)
(52)
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This means that we only have one parameter left: Ωβ,0. We will determine the value
of Ωβ,0 through fitting, ensuring that this model resolves the Hubble tension.

4.4 Solving the Hubble tension

We assume that the late universe measurement, H late
0 = 73.3±0.8 km/s/Mpc, is correct

and unaffected by the Λ-CDM model. Logically, the Hubble parameter of the CDDE
model has to pass through this late universe measurement. The Hearly

0 = 67.4 ± 1.1
km/s/Mpc is determined using the Λ-CDMmodel. Consequently, we find a disagreement
between both measurements: the Hubble tension. To resolve the Hubble tension, we
will employ reverse engineering, projecting the early universe measurement, Hearly

0 , to
the redshift of recombination using the Λ-CDM model. This process transforms the
Λ-CDM model-affected measurement, Hearly

0 , into an unaffected one at the redshift of
recombination, denoted as H∗. This reverse engineering is done using the equation:

H∗ ≡ HΛ−CDM(z∗) = Hearly
0

√
ΩR,0(z∗ + 1)4 +ΩM,0(z∗ + 1)3 +ΩΛ (53)

To solve the Hubble tension, we will determine the value of Ωβ,0 that makes H(z)
pass through both H late

0 and H∗. By achieving this, both measurements can be correct
simultaneously.
The following graph is provided for illustration purposes:

Figure 1: The Hubble parameter is plotted against the redshift. Within our CDDE
model we will fit Ωβ,0 such that the Hubble parameter will pass through both H late

0

and H∗ (blue dotted line). H late
0 represents the Hubble constant obtained from the late

universe measurement, while H∗ is the Hubble parameter at recombination, which is
reverse-engineered using the Λ-CDM early universe measurement (black line).
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5 Results

The Ωβ,0 that is found, while solving the Hubble tension within the CDDE model, is:
Ωβ,0 = 0.551+0.136

−0.129. This corresponds with C = 1.460+0.170
−0.182 × 1022eV3, resulting in an

energy scale of: C
1
3 = 24.442+0.915

−1.062MeV. As the Λ-CDM model falls short in achieving
this fit, it is possible that the CDDE model is a successful replacement. When we solve
the system of differential equations with the initial conditions we find some interesting
results and predictions for the CDDE model

5.1 Components of the universe

The following graph shows us the evolution of the components of the universe against
the natural logarithm of z + 1:

Figure 2: Components of the CDDE model plotted against the natural logarithm of
(z+1). The yellow line ’acceleration’ represents the z-value at which the universe began
accelerating.

As can be seen, the universe enters a phase of matter domination following recom-
bination. At a certain point, the significance of our dark energy term, denoted as β,
begins to emerge. The yellow dotted acceleration line marks the redshift at which the
universe initiates its accelerated expansion (ä = 0). Presently, we live in a universe that
is already undergoing acceleration. Looking ahead, as the influence of the matter term
keeps decreasing, the dark energy component will become more and more dominant.
The use of the logarithmic function ln(z + 1) on the x-axis allows us to focus our anal-
ysis on the present and future while providing a broader perspective on the past. This
is done, because over a large range of z-values in the past, minimal changes occurred.

5.2 Creation of matter

When studying the right-hand equation of 33, we encounter something remarkable. In
the context of the very late universe, the mass energy density is significantly smaller

14



compared to the dark energy β, allowing us to take the limit ρM/β −→ 0. By taking the
limit ρM/β −→ 0 and performing a Taylor expansion of the equation, we obtain:

ρM

1− 2

1 +
√

ρM+β
β

 1
4

= C ′a−3 ρM/β→0−−−−−−→ ρM (
ρM
4β

)
1
4 = C ′a−3 (54)

which can be rewritten as: ρ
5
4

M = C ′(4β)
1
4 a−3. Solving this equation for the mass

energy density reveals a non-trivial proportionality: ρM ∝ a−2.4. This finding is peculiar
because in the Λ-CDM model, we find: ρM ∝ a−3.
The graph below illustrates the relationship between B and ln(z+1), where B is defined
as the power in the formula ρM = ρM,0a

−B .

Figure 3: The factor B plotted against ln(z+1). The factor B begins at 3.0 in the early
universe and gradually approaches 2.4 as the universe ages.

The CDDE model predicts a z-dependency of B, while Λ-CDM predicts B to be a
constant: 3. This suggests that the CDDE model has a slower matter dilution in the
expanding universe than in the Λ-CDM model, implying the presence of matter creation
as a consequence of the loss of dark energy density caused by the decrease of R in the
expanding universe. The explanation for this matter creation can only be obtained by
employing quantum field theory in curved spacetime, which falls outside the scope of
this thesis.

5.3 Deviation from Λ-CDM

Comparing the benchmark of the Λ-CDM model (equation 19) to the CDDE model
(equation 34), shows a profound difference. The following plot shows the sum of the
omegas:

15



Figure 4: This plot shows on the y-axis the sum of omegas in the CDDE model. The blue
acceleration redshift line is the redshift at which the universe initiates its accelerated
expansion. The red dotted line shows the benchmark of Λ-CDM in which the sum of
omegas is 1.

In this plot we treat β the same way Λ/8πG gets treated in the Λ-CDM model.
Equation 34 can be rewritten as:

ΩM +ΩR +Ωβ = 1 +
1

2
Ωβ

(
1−

√
1 +

ΩM

Ωβ

)
(55)

It is easy to observe that in the CDDE model, the sum is always lower than 1. In the

very late universe (β >> ρM ) the latter term 1
2Ωβ

(
1−

√
1 + ΩM

Ωβ

)
≈ 0 and the sum of

the omega becomes 1. Therefore, in the very late universe the curvature dependent dark
energy in the CDDE model behaves as a constant vacuum energy, like in the Λ-CDM
model.
In the very early universe (β << ρM ) the latter term can be approximated as follows:
1
2Ωβ

(
1−

√
1 + ΩM

Ωβ

)
≈ − 1

2

√
ΩMΩβ . The quantity is certainly not constant; however,

it is exceedingly small, resulting in the sum of the omegas approaching 1. At the
acceleration redshift we see the largest deviation from 1.

5.4 Deceleration parameter q

Doing the Taylor series expansion of the scale factor a(t) in the vicinity of t = t0, gives:

a(t) = a(t0) +
da

dt

∣∣∣∣
t=t0

(t− t0) +
1

2

d2a

dt2

∣∣∣∣
t=t0

(t− t0)
2 + ... (56)

By utilizing the fact that a(t0) = 1 and considering the first three terms, we obtain the
approximation for the scale factor as follows:

a(t) ≈ 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2 (57)
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where the deceleration constant q0 is defined as: q0 = −
(
äa/ȧ2

)∣∣
t=t0

Using the CDDE model, we can create a plot of the deceleration parameter q(z) =
−
(
ä(z)a(z)/ȧ2(z)

)
against ln(z + 1) for the CDDE model. The plot includes the Λ-

CDM model for comparison.

Figure 5: The deceleration parameter q(z) plotted against ln(z+1) for both the CDDE
model (red) and Λ-CDM model (blue). The zCDDE

acc and zΛ−CDM
acc are respectively the

acceleration redshifts from the CDDE and Λ-CDM model.

The red bands represent the prediction of the CDDE from the parameter envelope
that solves the Hubble tension. Meanwhile the blue bands represent the upper and lower
errors from the late universe fit within the Λ-CDM model. The bands for the CDDE
and Λ-CDM model come from the upper and lower errors from all parameters in the
models. As shown, there is significant overlap between both models. This overlap is
not trivial, as the CDDE model only by construction is supposed to solve the Hubble
tension. The presence of such overlap in the deceleration parameters occurs naturally
within the model, without requiring further modifications. It implies that the CDDE
model can solve the Hubble tension and at the same time still be consistent with the
observed acceleration of the late universe. This is an encouraging indication for the
CDDE model, providing further motivation to continue researching it.

6 Conclusion

The Hubble tension presents a significant challenge in the field of cosmology, in need of
a solution. This thesis proposes a potential solution through the Curvature Dependent
Dark Energy (CDDE) model, which incorporates a curvature-dependent dark energy
term represented as TDE

µν = C
√
(R/6)gµν .

The primary objective of this study was to accurately determine the parameter C within
the CDDE model, aiming to provide a solution to the Hubble tension. Through param-
eter tuning and analysis, we successfully obtained a best-fit value that resolves the ten-
sion. The specific value of C determined in our research is: C = 1.460+0.170

−0.182 × 1022eV3,

corresponding with an energy scale of C
1
3 = 24.442+0.915

−1.062MeV.
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In the process of parameter fitting, we also investigated the critical value of z∗, which
represents the redshift at which matter and radiation decouple in the early universe.
Our findings revealed a value of z∗ = 1089.59+3.22

−1.88.
An odd consequence arising from the implementation of the CDDE model is the creation
of matter, a distinctive feature that sets it apart from conventional cosmological mod-
els. This helped solving the Hubble tension. The CDDE model has 2 ingredients that
[4] describes to be necessary to solve the Hubble tension: a non-constant cosmological
constant and dilution of matter that does not go with a−3.
Furthermore, when comparing the deceleration parameters between the CDDE and
Lambda-CDM models, we observed a significant overlap. This agreement not only
reaffirms the viability and compatibility of the CDDE model within the existing cosmo-
logical framework but also inspires further investigations into the underlying dynamics
and implications of the CDDE model.

7 Discussion

The hypothesis suggesting a direct connection between matter creation and the enigma
of dark matter presents an intriguing avenue for future research. In following studies, it
would be valuable to investigate the amount of extra matter that is created in the CDDE
model compared to the Λ-CDM model and how this creation relates to the amount of
dark matter required to describe the universe. Exploring the possibility that matter
creation within the CDDE model could contribute to our understanding of dark matter
would provide profound insights into the fundamental nature of the universe.
Additionally, I am excited to mention the recent research undertaken by my fellow stu-
dents and researchers, Thijs van Rossum and Tijmen Melssen. They have embarked on
an investigation of Baryon Acoustic Oscillations (BAO) within the CDDE model, specif-
ically focusing on the epoch before recombination. As this epoch lacks one differential
equation due to the absence of the decoupling of matter and radiation, their aim is to
find this missing equation and further our understanding of this plasma phase.
Although this research is still in its early stages, it holds great promise in enhancing
our comprehension of cosmological dynamics during the epoch before recombination.
The efforts to uncover the missing equation will contribute valuable insights into our
understanding of the CDDE model and its implications for the evolution of the universe.

A Derivations for the Λ-CDM model

A.1 First Friedmann equation

The 00 component of the Einstein equations can be found by inserting equation 3, 9, 12
and 15 into the Einstein equations 14. This will result in:

−3
ä

a
+ 3

(
ä

a
+

ȧ2

a2

)
− Λ = 8πG(ρM + ρR) (58)

which after simplifying can be brought in the form:

H(t)2 ≡
(
ȧ

a

)2

=
8πG(ρM + ρR) + Λ

3
(59)

Dividing both sides of equation 59 by H2 results in:

1 =
8πG

3H2

(
ρM + ρR +

Λ

8πG

)
(60)
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which can be rewritten as:
ΩM +ΩR +ΩΛ = 1 (61)

Where the convention Ωi =
8πG
3H2 ρi and ΩΛ = Λ

3H2 is used.

A.2 Second Friedman equation

The ii component of the Einstein equation can be found in a similar way by filling in 3,
10, 12 and 15 into the Einstein equations 14. This will result in:

−
(
ä

a
+ 2

ȧ2

a2

)
gFRWii + 3

(
ä

a
+

ȧ2

a2

)
gFRWii − ΛgFRWii = −8πG

3
ρRg

FRW
ii (62)

This can be rewritten and simplified as follows:

2
ä

a
+

ȧ2

a2
= Λ− 8πG

3
ρR (63)

After substituting equation 59 into this equation we get:

2
ä

a
+

8πG(ρR + ρM ) + Λ

3
= Λ− 8πG

3
ρR (64)

which can be simplified to the second Friedmann equation:

ä

a
= −4πG

3
(2ρR + ρM ) +

Λ

3
(65)

A.3 The ’third’ Friedmann equation

It is useful to rewrite the two Friedmann equations into a new equation. We will start this
by multiplying both sides of the first Friedmann equation 59 with a2 and differentiating
both sides with respect to time t. This results in:

2äȧ = 2ȧa

(
8πG(ρM + ρR) + Λ

3

)
+ a2

(
8πG( ˙ρM + ˙ρR)

3

)
(66)

Now we will substitute the second Friedmann equation 65 into equation 66:

2ȧa

(
−4πG

3
(2ρR + ρM ) +

Λ

3

)
= 2ȧa

(
8πG(ρM + ρR) + Λ

3

)
+ a2

(
8πG( ˙ρM + ˙ρR)

3

)
(67)

Simplifying this results in the final equation:

˙ρM + ˙ρR +
ȧ

a
(3ρM + 4ρR) = 0 (68)

B Derivations for the CDDE model

Using the total stress-energy tensor 28 we will now derive the differential equations that
follow from the Einstein equations. Inserting everything in the Einstein equations we
will find for the 00 component:

−3
ä

a
+ 3

(
ä

a
+

ȧ2

a2

)
= 8πG(ρM + ρR) + 8πGC

(
ä

a
+

ȧ2

a2

) 1
2

(69)
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This can be simplified as:

ȧ2

a2
− 8πG(ρM + ρR)

3
=

8πG

3
C

(
ä

a
+

ȧ2

a2

) 1
2

(70)

After squaring both sides and rearranging, we end up with:

ä

a
+

ȧ2

a2
=

(
3

8πGC

)2(
ȧ2

a2
− 8πG

3
(ρR + ρM )

)2

(71)

The ii component gives us:(
ä

a
+ 2

ȧ2

a2

)
gFRWii −3

(
ä

a
+

ȧ2

a2

)
gFRWii =

8πG

3
ρRg

FRW
ii −8πGC

(
ä

a
+

ȧ2

a2

) 1
2

gFRWii (72)

The gFRWii can be divided out and after rewriting we will get:

−2
ä

a
− ȧ2

a2
− 8πG

3
ρR = −8πGC

(
ä

a
+

ȧ2

a2

) 1
2

(73)

The right-hand side of this equation can be replaced by the right-hand side of equa-
tion 70 and will result in:

−2
ä

a
− ȧ2

a2
− 8πG

3
ρR = −3

ȧ2

a2
+ 8πG(ρM + ρR) (74)

Rewriting this gives:
ȧ2

a2
=

ä

a
+

4πG

3
(4ρR + 3ρM ) (75)

Substituting equation 75 into equation 73 gives:(
ä

a

)2

+
ä

a

8πG

3
(ρM + 2ρR − β) +

(
4πG

3

)2 (
[ρM + 2ρR]

2 − β[3ρM + 4ρR]
)

(76)

Here we have defined β = 16πGC2

3 . This can easily be solved using the quadratic formula:

ä

a
= −4πG

3

[
ρM + 2ρR − β ±

√
(ρM + 2ρR − β)2 − (ρM + 2ρR)2 + β(3ρM + 4ρR)

]
(77)

The part underneath the square root can be much simplified, resulting in:

ä

a
= −4πG

3

[
ρM + 2ρR − β ±

√
β(ρM + β)

]
(78)

To determine if the upper or lower sign of the plus-minus is correct we notice that the
left-hand side of equation 70 must be positive. This is true because C and the square
root term are both positive. From equation 75 we derive that ä

a + 4πG
3 (ρM +2ρR) must

also be positive. This means that β ∓
√

β(ρM + β) ≥ 0. Because
√
β(ρM + β) ≥ β the

lower sign is correct. The final result is therefore:

ä

a
= −4πG

3

[
ρM + 2ρR − β −

√
β(ρM + β)

]
(79)

Plugging equation 79 into equation 75 and rewriting yields:

ȧ2

a2
≡ H2 =

4πG

3

[
2(ρR + ρM ) + β +

√
β(ρM + β)

]
(80)
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Dividing both sides by H2 and using the convention 24 will result in:

1 = ΩM +ΩR +
1

2
Ωβ

(
1 +

√
1 +

ΩM

Ωβ

)
(81)

Differentiating equation 80 multiplied by a2 results in:

2äȧ−8πG

3
ȧa
[
2(ρM + ρR) + β +

√
β(ρM + β)

]
=

4πG

3
a2

[
2( ˙ρM + ˙ρR) +

β

2
√

β(ρM + β)
˙ρM

]
(82)

Substituting equation 79 into equation 82 and rewriting gives:

˙ρM + ˙ρR +
ȧ

a
(3ρM + 4ρR) = − β

4
√

β(ρM + β)
˙ρM (83)

After recombination this decouples in two equations:

˙ρR = −4
ȧ

a
ρR, ˙ρM

(
1 +

β

4
√

β(ρM + β)

)
= −3

ȧ

a
ρM (84)

The right-hand equation of 84 can be analytically solved by integration:∫
dρM
ρM

(
1 +

β

4
√

β(ρM + β)

)
=

∫
−3

da

a
(85)

The solution of this is, up to a constant:

ln(ρM ) +
1

4
ln

−1 +
√

ρM+β
β

1 +
√

ρM+β
β

 = −3 ln(a) (86)

Now expression 86 will be exponentiated with base e:

ρM

−1 +
√

ρM+β
β

1 +
√

ρM+β
β


1
4

= C ′a−3 (87)

Note here that:

C ′ = ρM

1− 2

1 +
√

ρM

β + 1

 1
4

∣∣∣∣∣∣∣
a=1

(88)

B.1 Transforming the two differential equations

Equations 81 and 83 are the two equations we will use in this thesis. However we will
now rewrite them in terms of omegas (equation 24) and ln(z + 1). We will start by
rewriting the equation in terms of z and its derivative. For this we will use equation 1
and the transformation of the time derivative:

d

dt
=

dz

dt

d

dz
(89)
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This transformation transforms the time derivative of the scale factor to:

ȧ =
d

dt
a =

dz

dt

da

dz
= − 1

(z + 1)2
dz

dt
(90)

Using equation 89 and 90 we transform equation 83 in:

dz

dt

dρM
dz

+
dz

dt

dρR
dz

− 1

1 + z
(3ρM + 4ρR)

dz

dt
= − β

4
√

β(ρM + β)

dz

dt

dρM
dz

(91)

This can be simplified by removing dz
dt on both sides and rearranging terms:

dρM
dz

(
1 +

β

4
√
β(ρM + β)

)
+

dρR
dz

=
3ρM + 4ρR

1 + z
(92)

To summarize, we have now two final equations:

1 = ΩM +ΩR +
1

2
Ωβ

(
1 +

√
1 +

ΩM

Ωβ

)
(93)

dρM
dz

(
1 +

β

4
√
β(ρM + β)

)
+

dρR
dz

=
3ρM + 4ρR

z + 1
(94)

We will now transform these equations in terms of ΩM , ΩR, Ωβ and ln(z+1). We start
this by differentiating equation 81 with respect to z:

d

dz

[
ΩM +ΩR +

1

2
Ωβ

(
1 +

√
1 +

ΩM

Ωβ

)]
= 0 (95)

This will result in the equation:(
ΩM +ΩR +

1

2
Ωβ

(
1 +

√
1 +

ΩM

Ωβ

))
H2 d

dz
H−2+

8πG

3H2

dρM
dz

1 +
1

4
√

1 + ρM

β

+
dρR
dz

 = 0

(96)
Using equation 81 and 92 this becomes:

H2 d

dz
H−2 +

8πG

3H2

(
3ρM + 4ρR

1 + z

)
= 0 (97)

This is easy to transform to u = ln(z + 1). This relation gives us:

d

dz
=

du

dz

d

du
=

1

1 + z

d

du
(98)

Using the convention 24 and equation 98, equation 97 transforms in:

−2
1

H

dH

du
+ 3ΩM + 4ΩR = 0 (99)

which can be rewritten using the fact that 1
H

dH
du = d ln(H/H0)

du :

d ln(H/H0)

du
=

3ΩM + 4ΩR

2
(100)

22



To transform equation 92 we start by differentiating equation 24 with respect to z:

dΩM,R

dz
=

d

dz

(
8πG

3H2
ρM,R

)
=

8πG

3H2

dρM,R

dz
+

8πG

3
ρM,R

(
d

dz
H−2

)
(101)

Here we can again use the identity 1
H

dH
dz = d ln(H/H0)

dz :

dΩM,R

dz
=

d

dz

(
8πG

3H2
ρM,R

)
=

8πG

3H2

dρM,R

dz
− 2ΩM,R

d ln(H/H0)

dz
(102)

Next we will substitute equation 100 into equation 102 using equation 98 and rearrange:

8πG

3H2

dρM,R

dz
= ΩM,R

(
3ΩM + 4ΩR

1 + z

)
+

dΩM,R

dz
(103)

Plugging equation 103 into equation 92 yields:

[
dΩM

dz
+ΩM

(
3ΩM + 4ΩR

1 + z

)]1 +
1

4
√
1 + ΩM

Ωβ

+

[
dΩR

dz
+ΩR

(
3ΩM + 4ΩR

1 + z

)]
=

(
3ΩM + 4ΩR

1 + z

)
(104)

Rewriting this gives:

dΩM

dz

1 +
1

4
√
1 + ΩM

Ωβ

+
dΩR

dz
=

(
3ΩM + 4ΩR

1 + z

)1− ΩM

1 +
1

4
√

1 + ΩM

Ωβ

− ΩR


(105)

Using equation 98 we can transform this equation in terms of u = ln(z + 1):

dΩM

du

1 +
1

4
√
1 + ΩM

Ωβ

+
dΩR

du
= (3ΩM + 4ΩR)

1− ΩM

1 +
1

4
√
1 + ΩM

Ωβ

− ΩR


(106)

After recombination equation 106 decouples in two equations:

dΩR

du
= 4ΩR − 2ΩR

d ln(H/H0)

du
(107)

dΩM

du
= −2ΩM

d ln(H/H0)

du
+

3ΩM

1 + 1

4

√
1+

ΩM
Ωβ

(108)

Now we have transformed the equations 93 and 94 into the equations:

d ln(H/H0)

du
=

3ΩM + 4ΩR

2
(109)

dΩR

du
= 4ΩR − 2ΩR

d ln(H/H0)

du
(110)

dΩM

du
= −2ΩM

d ln(H/H0)

du
+

3ΩM

1 + 1

4

√
1+

ΩM
Ωβ

(111)
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