
RADBOUD UNIVERSITY

Faculty of Science
High Energy Physics Department

A cluster algorithm for simulating 2D

Dynamical Triangulations

March 7, 2023

Dion Bremer s1020299
Supervisor: Timothy Budd

Second reader: Harm Schoorlemmer

Abstract

Dynamical Triangulations are a theory that attempts to combine grav-
ity and quantum mechanics. A 2-dimensional toy model of this theory
introduces triangulations of the 2-sphere, which can be studied through
Markov chain Monte Carlo simulations. In these Markov chains, the tri-
angulation uses an algorithm to form a new triangulation. Previously,
this update was performed using a local update move, which results in
an autocorrelation time that scales exponentially with the size of the tri-
angulation, with exponent 1.54 ± 0.03. This thesis concerns more global
update move, based on the Wolff algorithm for the Ising model, which
results in a value of 0.98 ± 0.05. The algorithm also seems useful in the
case where an Ising model is attached to a triangulation.

1

Contents

1 Introduction 3

2 Causal Dynamical Triangulations 5
2.1 Gravity . 5
2.2 Triangulations . 5
2.3 Planar maps . 7
2.4 Ising model . 7

3 Monte Carlo simulations 8
3.1 Markov chains . 8
3.2 Edge flip . 8
3.3 Cluster move . 9
3.4 Wolff algorithm . 9

4 Peeling exploration 11

5 Observables 13
5.1 Diameter . 13
5.2 Laplacian matrix . 13
5.3 Magnetization . 14
5.4 Autocorrelation . 14
5.5 Equilibration . 15

6 Research question 17

7 Algorithmic design 18
7.1 Building the cluster . 18
7.2 Finding the boundary . 19
7.3 Rotating the cluster . 19
7.4 Ising model adaption . 20
7.5 Implementation details . 20

8 Measurements 21
8.1 Cluster sizes . 21
8.2 Diameter . 22
8.3 Laplacian eigenvalue . 25
8.4 Magnetisation . 27
8.5 Wall-clock time . 32

9 Conclusion and outlook 33

2

1 Introduction

Einstein’s theory of general relativity is the most accurate description of gravity
to date, with many observational successes. General relativity describes how
energy and momentum of matter and radiation curve space-time, and how space-
time affects the motion of matter and radiation. This notion of space-time makes
general relativity a theory of geometry.

However, the theory breaks down when the relevant length scales are close
to the Planck length, as quantum fluctuations at this scale are increasingly
dominant [12]. Therefore, a quantum theory that explains the behaviour of
space-time is necessary.

In order to find such a theory, it is useful to consider the so-called path
integral formulation of quantum mechanics. This formulation is equivalent to
the well-known Schrödinger formulation of quantum mechanics [3], but takes on
a different approach. In this formulation, in order to calculate the probability
to find a particle in a certain position, one integrates over all possible paths
that the particle could have taken to reach this position [3]. These paths are
weighted so that unlikely paths have only a small influence on the outcome,
whereas likely paths have a larger influence. In a sense, we integrate over the
particle’s entire history in order to find its current position. It is useful to note
that such paths are continuous objects, but can be discretised into piece-wise
linear parts. Shortening these linear parts while increasing the number of parts
will return the original path.

A similar approach can be taken to the problem of quantum gravity. In-
stead of considering a single space-time, we consider the entire history of this
space-time geometry, by using a so-called gravitational path-integral [12]. This
integral sums over all previous space-time geometries, analogously to the path-
integrals. Similar to the path-integrals, we can simplify the integrations by
discretising the geometries into regular polygons, which are the piece-wise lin-
ear parts in this scenario. These discretised geometries are called Dynamical
Triangulations [2], DT for short, which are the main topic of this thesis. In
fact, this thesis concerns only two-dimensional triangulations, which serve as a
toy-model to the four-dimensional real-world case.

In order to create a two-dimensional triangulation, imagine cutting a piece
of paper into equilateral triangles. Next, glue these triangles together along the
edges. Depending on how many triangles meet at each vertex, the resulting
geometry can have positive, negative, or no curvature.

While these triangulations provide a model for two-dimensional quantum
gravity, they only model empty space. How can one implement some notion of
matter into this model? One way to achieve this is to add a spin state to each
triangle, which combines the triangulations and the Ising model. In the Ising
model, a spin state is assigned to a lattice, which then provides a simple model

3

Figure 1: An example of a 2-dimensional triangulation, embedded in R3. (Fig-
ure: Timothy Budd)

for a ferromagnet.

In practice, these models are studied using computer simulations [12], so-
called Monte Carlo simulations. Using these simulations, we would like to ap-
proximate the previously mentioned integral, by averaging over many randomly
selected triangulations. This glosses over the fact that the problem of selecting
such a random triangulation is not entirely trivial. A solution is to move from
triangulation to triangulation, by randomly applying a local update on the first.
However, this updated triangulation is not very different from the first, so can
this even be called a random selection? In order to make sure that the trian-
gulations are different from each other, it is necessary to make many of these
updates instead. This can take a lot of time, especially for very large simula-
tions. Is there a way to improve upon these updates, by applying a non-localised
move instead?

This thesis attempts to answer this question, by designing and implementing
such a non-localised update algorithm. Firstly, a closer look is taken at DT,
as well as the Ising model. Secondly, the simulations themselves are elaborated
upon. Thirdly, some observables on triangulations are described, as well as a
method of ”traversing” a triangulation. Next, the research question is further
refined, and a cluster algorithm is described. After this, the measurements
on the simulations are presented, and finally, conclusions are drawn, and a
discussion on the results and future research is provided.

4

2 Causal Dynamical Triangulations

As touched upon in the introduction, causal dynamical triangulations (CDT for
short) are a proposed candidate theory for the problem of unifying quantum
mechanics with gravity [12].

2.1 Gravity

Gravity is best described by the General theory of relativity. Central in this
theory are Einsteins field equations

Gµν =
8πG

c4
Tµν , (1)

where

Gµν = Rµν − 1

2
Rgµν . (2)

In these equations, Rµν is the Ricci tensor, gµν is the metric, R is the cur-
vature, G is the gravitational constant and Tµν is the stress-energy tensor. Note
that in both equations the Einstein summation convention is used. The impor-
tant part about equation (1) is that the geometry of space-time (on the left)
is influenced by the presence of matter, momentum and energy (on the right),
and vice-versa. We are often interested in the metric gµν , as this contains the
information of the geometry. The theory breaks down at the quantum scale, as
quantum fluctuations become too prominent [12].

In other quantum field theories, these fluctuations are renormalised. When
performing perturbation theory on the fields, one encounters infinities, which
are then countered by introducing a new term into the equations. If we were to
apply the same technique to gravity, and view the metric as a flat space-time
with a perturbation gµν(x) = ηµν + hµν(x), then each order of perturbation
theory would require a new counter term [7]. This tells us that perturbation
theory may not be the best approach to gravity.

2.2 Triangulations

Therefore, a new quantum-mechanical theory is necessary to describe gravity
at the quantum level. The theory that we are concerned with is called Causal
Dynamical Triangulations, which takes inspiration from path integrals.
In the path integral formulation of quantum mechanics, one calculates the values
of observables of a system using equation (3) [7], instead of using the Schrödinger
equation directly: ∫ xf

xi

[D(x)]e
i
~S[x(t)]. (3)

5

This equation is an integration over all possible paths from point xi to xf .
The function S[x(t)] is called the action, and is defined as

S[x(t)] =

∫ tf

ti

dtL(x(t), ẋ(t)), (4)

where L(x(t), ẋ(t)) is the Lagrangian of the system. The term e
i
~S[x(t)] in

equation (3) can be seen as a weight on each path.

The gravitational analogue to equation (3) [7] is given by

Z =

∫
[Dgµν]e

i
~S[gµν], (5)

where

S[gµν] =
c4

16πG

∫
d4x

√
−g(R− 2Λ) (6)

is the Einstein-Hilbert action. The integration in equation (5) is performed
over all possible geometries, instead of paths. This integral is very difficult to
perform formally, so we need to simplify some things. Firstly, assume the space
to be Euclidean. The integral now becomes

Z =

∫
[Dgab]e

− 1
~SE [gab], (7)

where

SE [gab] =
c4

16πG

∫
d4x

√
g(−R+ 2Λ). (8)

Next, we will be working in only 2 dimensions. The final assumption is that
any geometry corresponding to the metric gab can be approximated by a tri-
angulation. A triangulation is a manifold which consists of multiple equilateral
triangles glued together at the edges. When we increase the number of triangles,
and decrease the size of each triangle, we can approximate these geometries. In
this thesis, we will always take the approximated space-time manifold to be
topologically equivalent to the 2-sphere. The integral in equation (7) now be-
comes a sum

Z =
∑
T

e−SDT [T], (9)

where the action SDT depends on the dimension of the system. The 2-
dimensional case, which is the case that we are interested in, the action happens
to be SDT = 0. Equation (9) may look familiar to people who have studied
statistical physics before, as it resembles a partition sum often used in this field.
This is indeed how it is also used in dynamical triangulations. The partition
sum describes a probability distribution. Due to the trivial value of the action,
the partition sum becomes Z =

∑
T 1, and the corresponding distribution is the

uniform distribution over all triangulations of the 2-sphere of size N [7].

6

2.3 Planar maps

As elaborated upon before, in DT, the geometry of space-time is modeled by
”gluing” together triangles along the edges, see figure (1), creating planar maps.

A planar map is a connected graph where all vertices are disjoint, and the
edges only intersect at the vertices [9]. In practice, these triangulations are stud-
ied using computer simulations. Therefore, we need to define a representation
of triangulations that we can use in software. To this end, we use combinator-
ical descriptions to model our triangulations [8]. In these descriptions, we use
half-edges in order to build triangles. Each half-edge contains the information
for the next half-edge, as well as the adjacent half-edge. This means that when
we start at a random half-edge and move to the next three times, we end up at
the same half-edge. When we move to the adjacent edge, we end up in a new
triangle. If we now label all the half-edges, we can define the next and adjacent
operators to be permutations that move a label to the next or adjacent label
respectively [8], hence the name combinatorical description.

These planar maps make for good candidates for implementation in software,
as graphs are well-understood objects in the field of computing science.

2.4 Ising model

Using just triangulations, we can model ”empty” spacetime: there is no matter
present yet. In order to add matter to the model, we can introduce spin states
to the faces of the triangulation, in order to create an Ising model. In the Ising
model, there are only two spin states: spin up and spin down. This creates a
statistical system, with a corresponding partition sum

ZIsing =
∑
S

eβJ
∑

(i,j) σiσj , (10)

where the first summation is carried out over all possible spin configurations
S, and the second sum is carried out over adjacent spin pairs (i, j). In this
equation, σ represents a spin state, which has value 1 for spin up and −1 for
spin down. The value of β depends on the temperature β = 1

kbT
as usual, and

J is the coupling constant, which determines whether the spins prefer to align
themselves or anti-align.

When attaching the Ising model to a triangulation, the partition sum of the
entire system changes to

ZT+Ising =
∑
T

ZIsing(T), (11)

where ZIsing(T) means the Ising model partition sum on triangulation T . It
is important to note that this sum depends on the triangulation, as the adjacent
spin pairs depend on the triangulation.

7

3 Monte Carlo simulations

Monte Carlo simulations are the central topic of this thesis. They are useful
when studying causal dynamical triangulations, but also in many other situa-
tions that involve random numbers [7]. The goal of a Monte Carlo simulation
is to randomly sample from some set of outcomes, which in our case are ran-
dom triangulations. This can then be used to approximate the aforementioned
gravitational path-integral, see equation (9).

3.1 Markov chains

In order to perform this sampling, we shall use a Markov chain. A Markov chain
is a sequence of states, in our case triangulations, where the i+1-th state follows
from performing a random move on the i-th state [7] [1]. It is also possible that
a certain move is rejected, since it may construct an impossible situation. In
this case, the i + 1-th state is the same as the i-th state. Markov chains are
useful in situations where it is difficult to directly sample states from a state
space, such as with triangulations. The starting state of our simulations will be
a triangulated 2-sphere.

It is clear that there must be some rules for the moves to ensure that the
simulation samples states from the desired distribution. One of these rules is
that the move from state i to i + 1 should satisfy detailed balance [7]. This is
the requirement that the desired probability of finding the system in state x,
and transitioning to state y must be the same as finding the system in state y
transitioning to state x,

P (x)P (x → y) = P (y)P (y → x), (12)

where P (x) is the desired probability of finding the system in state x and
P (x → y) is the probability of the system transitioning from state x to state y.

Another important requirement is called ergodicity. This requirement states
that every state must be reachable from every other state. This requirement
ensures that all interesting physical states can actually be reached, and there-
fore contribute to the simulation.

When both requirements of detailed balance and ergodicity are satisfied,
we can be sure that the Markov chain converges to the desired probability
distribution.

3.2 Edge flip

As described before, in order to move from the i-th triangulation to the i+1-th
triangulation, we require some sort of update move. The easiest way of per-
forming such a move is the edge flip move. By performing this move, an edge

8

Figure 2: The edge flip move on the edge with half-edges i and k. Since a flip
only affects a single edge, it is called a local update to the triangulation. Since
a triangulation is invariant under renaming of the labels, the labels themselves
are not important. Image from [7]

connecting two vertices is flipped, and now connects two other vertices instead.
This move is never rejected, as the resulting state will always be a viable trian-
gulation. By choosing the edge uniformly at random, this move satisfies detailed
balance, and is therefore a viable move, see figure (2)

3.3 Cluster move

As one may suspect, the edge flip move mentioned in the previous section does
not have much influence on the triangulation as a whole, especially on large
triangulations. Here we can draw an analogy to the Ising model. Consider a
move that updates a single spin in a large Ising model. This also does not have a
big influence on the overall magnetization, and it may take many updates before
anything significant happens. Because of this, people often use cluster moves to
simulate the Ising model. In a cluster move, several spins are updated at once,
for a more ”global” effect compared to updating a single spin. Particularly, the
Wolff algorithm is useful in these simulations.

3.4 Wolff algorithm

The Wolff algorithm is an algorithm that is often used in simulations of the
Ising model [1]. It uses a cluster to update several spins at once. The algorithm
works as follows [1]:

1. Create an empty cluster, as well as an empty stack.

2. Select a random spin, and add this to the cluster, as well as the stack.

3. Pop a spin off the stack, and add all parallel nearest neighbours of this
spin to both the cluster and the stack with some probability 0 < p < 1.

4. Repeat step (3) until the stack is empty.

5. Flip all the spins in the cluster.

9

The Wolff algorithm is rejection-free, meaning the cluster is always flipped.
The Wolff algorithm generates statistically independent configurations quicker
than when using single spin flips, making it a useful algorithm in Monte Carlo
simulations.

10

4 Peeling exploration

If we wish to translate the Wolff algorithm to dynamical triangulations, it will
be helpful to know how to traverse a planar map. The method that we will be
using is called a peeling exploration [9]. A peeling exploration is an exploration
of a planar map, guided by an algorithm. In a peeling exploration of a triangu-
lation, we keep track of triangles that we have already explored, and triangles
that we have not yet explored, called the holes.

To start the exploration, we should select a triangle to start with. This tri-
angle is called the root, and all other triangles are holes. The boundary is the
set of edges that are between the explored region and the holes [9], so in this
case, the boundary consists of the three edges of the root triangle.

The goal of the exploration is now to explore the holes, by repeatedly ex-
panding the boundary. To do so, we define an operation called peeling, which
takes as arguments the explored region E, an edge e on the boundary, and the
full planar map M . Now, Peel(E, e,M) is a new map, that is obtained by gluing
the triangle that lies in the hole adjacent to e, onto E.

Formally, a peeling exploration is now the sequence of maps

E0 → E1 → · · · → M, (13)

where E0 is only the root face, which eventually becomes the entire map.
There is a lot of freedom in this exploration: the exact edge that is peeled each
step is determined by some algorithm.

(a) Situation before the peeling operation.
The red edge is selected to be peeled.

(b) Situation after peeling, where the ex-
plored region has expanded.

Figure 3: The peeling operation on a triangulation. The yellow area represents
the explored region, while the gray area represents the hole.

With some foresight into the cluster update move of the triangulation, it
will prove useful to define a filling operation as well. During an exploration, it
often happens that the boundary becomes disconnected, or creates more than
one cycle. The Fill operation resolves this issue, by filling in any internal holes

11

in the explored region. Before the exploration starts, we select a target triangle,
which is a triangle that is as far away from the root as possible. This triangle will
help with deciding which holes to fill. The Fill operation takes as arguments
the explored region E, as well as the entire map M . Now Fill(E,M) is the
region obtained by filling in every hole in the map, except for the hole that
contains the target. This means that after a fill operation, the map consists of
the explored region and only one hole. A filled-in peeling exploration is now the
sequence of maps

E0 → Fill(E1,M) → · · · → M, (14)

which is equal to a regular peeling exploration, but with a Fill operation
at each Peel operation. The use of a target triangle introduces one more issue:
what if after a Peel the target is explored? Since this would be an issue with
regard to the Fill operation, we stop the exploration when this happens.

(a) Situation before the fill operation. The
boundary is not a single cycle.

(b) Situation after the fill operation. The
hole within the boundary is removed.

Figure 4: The fill operation on a triangulation. The yellow area represents the
explored region, while the gray area represents the hole.

12

5 Observables

In order to gauge the ”efficiency” of an algorithm, we should keep track of some
observables of the triangulations. For formality, denote the space of all possible
triangulations as Γ. Then we can define an observable on a triangulation X as
a function:

f : Γ → R (15)

In order to define some observables, it is useful to view a triangulation as
a graph, so that it is possible to define our observables as graph invariants.
Graph invariants are observables of graphs that are invariant under graph-
isomorphisms. Since physical observables may not rely on the representation
of the triangulation, this is an important property to have. Note that not all
graph invariants define useful observables, for example, the girth (the length of
the shortest cycle in a graph) of a triangulation is always 3.
In the remainder of this section, I will use the usual graph definition G = (V,E),
where V is the set of vertices and E is the set of edges, to describe triangulations.

5.1 Diameter

The first observable that was studied in this thesis, is the diameter of the tri-
angulation. First, we define the eccentricity of a vertex v ∈ V as

ecc(v) = max
u∈V

d(u, v) (16)

where d(u, v) is the shortest distance between vertices u and v. Now, the
diameter can be defined as

diam = maxv∈V ecc(v) (17)

The diameter is an important observable, as it encompasses the entire tri-
angulation, and therefore says something about the global structure of the ge-
ometry.

In order to calculate the diameter, one could calculate the distances between
every pair of vertices in the triangulation, and select the largest value. This is
obviously computationally very expensive, as it scales quadratically with the size
of the triangulation. A more efficient algorithm to calculate the diameter is the
iterated Fringe Upper Bound algorithm [10], which calculates these distances in
a good order, so that not all of the distances have to be calculated. This could
save a lot of computing time.

5.2 Laplacian matrix

Finally, we will consider the Laplacian matrix, or, to be more precise, the eigen-
values of this matrix. To construct this matrix, we can first construct the degree

13

matrix of the triangulation. Let the vertices be labeled by indices i (this is fine,
since the eigenvalues of the Laplacian matrix will be graph-invariant). Then the
degree matrix is defined as the matrix with the degrees of the vertices on the
diagonal:

Dij =

{
deg(ui), if i = j

0, if i ̸= j
(18)

Now define the adjacency matrix as

Aij =

{
1, if (ui, uj) ∈ E

0, otherwise
(19)

Now, we can define the Laplacian matrix as the difference between the two:

Lij = Dij −Aij (20)

This matrix once again contains information about the graph as a whole,
and can therefore lead to interesting observables. We will use the smallest eigen-
value of the system as an observable.

In order to calculate these eigenvalues, I used the Eigen [11] and Spectra
[13] C++ libraries. These libraries have functions to construct the Laplacian
matrix, and to calculate the first N eigenvalues of this matrix.

5.3 Magnetization

In the case of the Ising model coupled to a triangulation, we can use the mag-
netization as an order parameter, which is calculated as

M =
1

N

N∑
i=1

σi, (21)

where N is the number of triangles. More precisely, we will use the absolute
value of this observable. It is clear that the magnetization can be measured
quite trivially, by simply summing up all spin-values.

5.4 Autocorrelation

These observables will function as order parameters. The behaviour of these
order parameters will depend on the underlying triangulation, and when an
update-move of the triangulation is performed, the parameter may change.
However, it should be clear that it may take several moves in order to com-
pletely change the value of the observable. Therefore, two measurements of
the same observable may take multiple updates to be completely independent
of one another. This phenomenon is called autocorrelation [7], and associated
with this is the autocorrelation time, which is what we will use to measure how

14

well our algorithm performs.

We define the autocorrelation explicitly as the correlation between the i-th
and the (i+ t)-th value of the given observable:

ρ(t) = Corr(f(Xi), f(Xi+t)) =
E
[(
f(Xi)− E[f(X)]

)(
f(Xi+t)− E[f(X)]

)]
V ar(f(X))

.

(22)
However, equation (22) is not easy to work with. Instead, as an estimate,

we use the sample autocorrelation, defined as:

ρ̄(t) =
γ̄(t)

γ̄(0)
, (23)

where we use the sample autocovariance:

γ̄(t) =
1

n− t

n−t∑
i=1

(f(Xi)− f(X)n)(f(Xi+t)− f(X)n). (24)

Now one final step is required to calculate the autocorrelation time. To this
end, we assume that the sample autocorrelation decays exponentially, so that
we can fit an exponential curve to the autocorrelation,

ρ̄(t) ∝ e−t/τ , (25)

which results in an autocorrelation time τ . Note that this does introduce a
systematic error, as the sample autocorrelation needs not decay exponentially.
Nevertheless, the autocorrelation time obtained using this method is still useful
in most measurements, as an experimenter could take this autocorrelation time
into account when performing measurements on a statistical system.

In previous work, it was shown that the autocorrelation time when using
edge-flip moves scales as Nα,

τ ∝ Nα (26)

where α = 1.54 ± 0.03 [5], and N is the number of triangles. We shall use
equation (26) in order to determine the value of α in the case of the cluster
algorithm. This value will then determine if the cluster algorithm improves
upon the edge flips.

5.5 Equilibration

One should be careful when measuring the autocorrelation, however. The prob-
lem lies with the fact that the first configuration in the Markov chain is pre-
determined. Therefore, the first measurements should be ignored, as these are
biased by the initial configuration. When is it safe to start measuring? Since

15

we would like to sample from the set of all triangulations, we should wait until
the observable is near its expected value. The time it takes until this value is
reached, is called the equilibration time.

16

6 Research question

With all the theory in mind, the main research question can be formulated as
follows:

Can one develop a cluster algorithm for Dynamical Triangulations and does it
improve the simulations’ efficiency?

In order to answer the question, it is divided into several sub-questions, some
of which are answered in the previous sections.

• What cluster growth algorithms are suitable for the job? Can one leverage
the peeling explorations studied in the mathematical literature?

• Observables in Quantum Gravity are generally hard to come by, especially
ones that are sensitive to the global aspects of the geometry. What are
observables that can be effectively used to gauge autocorrelation times in
the simulation?

• How does the cluster algorithm perform compared to a local updating
procedure in autocorrelation time (both in units of Markov chain updates
and CPU time)?

• Can the cluster algorithm aid in improving the challenging simulation of
Dynamical Triangulations coupled to a critical Ising model?

17

7 Algorithmic design

With all the previous in mind, I designed a cluster algorithm for use in simula-
tions of dynamical triangulations. The Wolff algorithm was used as a basis of
the algorithm. It uses the scale-invariance that both the triangulations as well
as the Ising model exhibit, which means that the same properties of the system
appear on all length scales (the system ”looks” the same regardless of how far
we ”zoom in”). The algorithm consists of three steps:

1. Build a cluster of triangles, using a certain probability of adding more
faces.

2. Find the correct boundary of the cluster using a target edge.

3. Rotate the cluster in an appropriate manner.

7.1 Building the cluster

As mentioned before, the algorithm is based on the Wolff algorithm, and it
generates a cluster in the same way the Wolff algorithm does:

1. Randomly select a face.

2. Add the half-edges of this face to both the stack as well as the boundary.

3. Calculate the edge that is farthest away from the initial face using breadth-
first search. This is the target edge.

4. For each edge in the stack, peel the edge with probability p, and remove
it from the stack.

5. Continue until the stack is empty, or the target edge is peeled.

The peeling of a half-edge e used in this algorithm is implemented as one
of four operations, depending on the adjacent face F . Using the notation A(e)
for ”the half-edge adjacent to e”, N(A(e)) for ”the half-edge next to A(e)” and
P (A(e)) for ”the half-edge next to N(A(e))”, we get the following situations:

1. If e is not in the boundary, do nothing.

2. If both N(A(e)) and P (A(e)) are not in the boundary, add them to the
boundary and the stack, and remove e from the boundary.

3. If one of N(A(e)) and P (A(e)) is in the boundary, remove this half-edge
from the boundary, and add the other to the boundary and the stack, and
remove e from the boundary.

4. If both N(A(e)) and P (A(e)) are already in the boundary, remove e,
N(A(e)) and P (A(e)) from the boundary.

18

Figure 5: The naming convention for the half-edges. The half-edge e is to be
peeled.

These situations all add the face F to the cluster, with the exception of the
first situation, by appropriately altering the boundary of the cluster.

This phase will eventually stop when the stack is empty, so that all edges
in the boundary have failed to peel, or when the target edge is peeled, or when
the entire triangulation has been added to the cluster.

7.2 Finding the boundary

Now that the cluster has formed, there is still a problem to tackle: the cluster
most likely has holes in it, so that the boundary is not cyclical. This is why the
target edge was introduced at the start of the algorithm. The algorithm uses
this edge in the following manner to find the boundary:

1. Run a breadth-first search starting at the target edge to find the boundary
element closest to the target.

2. Run a depth-first search from this element, considering only boundary
elements, to find the cycle.

3. Retrace the depth-first search tree to find all the elements of the cycle.

The result of this operation will be a cyclical boundary, such that there are
no more holes in the cluster.

7.3 Rotating the cluster

At last, a proper cluster has formed, so that it is now possible to perform a clus-
ter operation. First, define the boundary elements as Bi, with i = 1 . . . N , with
N the size of the boundary. Now define the ”outer boundary” as Oi = A(Bi),
the half-edges adjacent to the boundary. Next, define an angle of rotation. In
this case, the angle is a number in {1 . . . N − 1}. We cut the cluster out of
the triangulation, and glue it back together using the angle. Now, Bangle+i is
glued to Oi, so that the entire boundary is rotated angle elements. Obviously,
angle+ i is calculated modulo N .

19

This rotation completes the entire cluster move, and after it is performed,
the algorithm can be run again.

7.4 Ising model adaption

Due to the fact that the Wolff algorithm on the Ising model adds only parallel
spin states to a cluster, it is necessary to make some adjustments to the algo-
rithm when combining triangulations with the Ising model. One change is the
obvious change that only faces with parallel spins will be added to the cluster
in the build phase. The other change is that all spins in the cluster are flipped
before filling in the holes. This is to ensure that all spins that are flipped are
indeed parallel (since a hole may contain an anti-parallel spin). The resulting
algorithm therefore handles both the flipping of the spins as well as the rotating
of the faces with a single cluster.

7.5 Implementation details

The algorithm was implemented in C++, using a template for triangulations
provided to me by Timothy Budd. The source code can be found on GitLab [6].
After building the project, the first argument is the desired number of triangles,
the second is the number of measurements, the third the number of moves per
measurement, the fourth the number of burns before measuring, the fifth the
probability of peeling an edge (only used when building clusters), the sixth is
the output file and the last argument is the mode, represented by an integer.
The mode dictates both the observable that is measured, as well as whether
the program uses cluster moves or edge flips. When edge flips are used, the
probability value is ignored.

Integer Mode
0 Diameter in cluster mode
1 Degree sequence in cluster mode
2 Radius in cluster mode
3 Diameter in naive mode
4 Radius in naive mode
5 Degree sequence in naive mode
6 Laplacian in cluster mode
7 Cluster size
8 Magnetization in cluster mode
9 Laplacian in naive mode
10 Magnetization is naive mode

Table 1: Different mode options for the program.

20

Figure 6: Average cluster size for different probabilities, on a triangulation of
100000 triangles.

8 Measurements

The following section shows the measurements that were performed in order to
test the algorithm. I would like to thank the department of High Energy Physics
for allowing me to execute the simulations on their cluster computing system.

8.1 Cluster sizes

Before running the actual simulations, it is necessary to determine the optimal
value for the probability parameter in the algorithm. This parameter will, after
all, determine how large the clusters will become. Figure (6) shows the results of
a small test, which measured how many triangles each cluster contained. If the
cluster contains over half of the triangles in the triangulation, I measured the
size of the hole instead, as there is no real difference between rotating the hole
and rotating the cluster. What becomes clear from figure (6) is that the right
probability lies in the vicinity of 0.8. Interestingly, the field of percolation theory
suggests that there is a critical threshold in the probability at p ≈ 0.81699 [4].
Choosing probabilities lower than this will cause the process to die out quickly,
while larger probabilities cause the cluster to grow to the size of the entire
triangulation, which is also what figure (6) suggests.

21

8.2 Diameter

The diameter is the first observable that was studied in this thesis. The sample
autocorrelation of the diameter was measured using triangulations of sizes 125,
250, 500, 1000, 2000 and 4000 triangles, in order to determine the scaling of the
autocorrelation.
The figures on the left show the edge flip measurements, while the figures on the
right show the cluster measurements. All cluster moves were performed with
peel probability ppeel = 0.81699.

(a) Autocorrelation of edge flips on a tri-
angulation of size 125. Correlation time:
733 flips. Time per flip: 9.0µs

(b) Autocorrelation of cluster moves on
a triangulation of size 125. Correlation
time: 122 cluster moves. Time per move:
6.8 · 102µs

(c) Autocorrelation of edge flips on a tri-
angulation of size 250. Correlation time:
2557 flips. Time per flip: 9.0µs

(d) Autocorrelation of cluster moves on
a triangulation of size 250. Correlation
time: 182 cluster moves. Time per move:
1.4 · 103µs

22

(e) Autocorrelation of edge flips on a tri-
angulation of size 500. Correlation time:
7709 flips. Time per flip: 9.1µs

(f) Autocorrelation of cluster moves on
a triangulation of size 500. Correlation
time: 278 cluster moves. Time per move:
2.9 · 103µs

(g) Autocorrelation of edge flips on a tri-
angulation of size 1000. Correlation time:
22805 flips. Time per flip: 9.6µs

(h) Autocorrelation of cluster moves on
a triangulation of size 1000. Correlation
time: 441 cluster moves. Time per move:
5.8 · 103µs

(i) Autocorrelation of edge flips on a tri-
angulation of size 2000. Correlation time:
53079 flips. Time per flip: 11µs

(j) Autocorrelation of cluster moves on
a triangulation of size 2000. Correlation
time: 756 cluster moves. Time per move:
1.2 · 104µs

23

(k) Autocorrelation of edge flips on a tri-
angulation of size 4000. Correlation time:
203047 flips. Time per flip: 12µs

(l) Autocorrelation of cluster moves on
a triangulation of size 4000. Correlation
time: 1387 cluster moves. Time per move:
2.6 · 104µs

As with all measurements, it is important to get a grasp on the error on
the values that were found. In order to approximate these errors, we split
the data of each triangulation size up into multiple equally long batches, such
that each batch is way larger than the autocorrelation time. We then calculate
the autocorrelation time on each batch, which hopefully resembles the original
autocorrelation time, and take the standard error of all batches. This results
in an approximation on the error. Table (2) shows the correlation times and
statistical errors of the diameter measurements, obtained through this method.

Triangulation size Edge flip autocorrelation time Cluster move autocorrelation time
(#faces) (#flips) (#cluster moves)

125 733± 76 122± 10
250 2557± 301 182± 16
500 7709± 924 278± 16
1000 22805± 4712 441± 16
2000 53079± 6251 756± 22
4000 203047± 17882 1387± 24

Table 2: Autocorrelation times including an approximation on the error.

In order to see how well the autocorrelation times scale with respect to the
size of the triangulation, we plot the values into a log-log plot. Figure (8) shows
the results for both the edge-flip move as well as the cluster move.

24

(a) Scaling of the autocorrelation time us-
ing edge flips with respect to triangulation
size. All values are taken 2log. Exponent:
1.57± 0.04.

(b) Scaling of the autocorrelation time us-
ing cluster moves with respect to triangu-
lation size. All values are taken 2log. Ex-
ponent: 0.68± 0.02.

Figure 8: Log-log plots of the diameter observable.

A few things stand out from these measurements. Firstly, the autocorrelation
time in the naive edge flips data scales as expected, as measured in [5], with
an exponent of 1.57 ± 0.04. Secondly, the result from the cluster algorithm,
0.68± 0.02 seems very low, as it is less than half that of the edge flip data. In
order to test this value more thoroughly, more and longer measurements would
be necessary.

8.3 Laplacian eigenvalue

The second observable, the smallest eigenvalue of the Laplacian matrix of the
system, was measured in a similar fashion. The autocorrelation time of this
eigenvalue is way lower than that of the diameter, so that we can get proper
results using fewer measurements. Figure (9) shows the results of these mea-
surements.

Triangulation size Cluster autocorrelation time
(#faces) (#cluster moves)
1000 5± 1 moves
2000 10± 1 moves
4000 25± 3 moves
8000 118± 4 moves
16000 148± 17 moves

Table 3: Autocorrelation times including an approximation on the error.

Figure (10) shows the result when fitted using the exponential equation. The
resulting value for the exponent is 1.27± 0.10. This reveals that the statistical
error of the experiment is quite large, as this value is a lot higher than the
diameters value. Combining this exponent with the diameter exponent gives a

25

(a) Autocorrelation of cluster moves on
a triangulation of size 1000. Correlation
time: 5 cluster moves. Time per move:
4.6 · 103µs

(b) Autocorrelation of cluster moves on
a triangulation of size 2000. Correlation
time: 10 cluster moves. Time per move:
1.0 · 104µs

(c) Autocorrelation of cluster moves on
a triangulation of size 4000. Correlation
time: 25 cluster moves. Time per move:
2.4 · 104µs

(d) Autocorrelation of cluster moves on
a triangulation of size 8000. Correlation
time: 118 cluster moves. Time per move:
5.1 · 104µs

(e) Autocorrelation of cluster moves on a
triangulation of size 16000. Correlation
time: 148 cluster moves. Time per move:
1.1 · 105µs

Figure 9: Results for the Laplacian eigenvalue observable for different sizes of
triangulations.

26

final exponent with a value of 0.98± 0.05, which suggests that the scaling may
be linear. However, because of the big difference in the two exponents, this
value must be taken with a grain of salt. In order to improve upon this value,
a wider variety of observables should be considered.

Figure 10: Scaling data for the eigenvalue observable, together with a fit. The
fit results in a value of 1.27± 0.10 for the critical exponent.

8.4 Magnetisation

Finally, I present measurements on triangulations with an Ising model coupled
to them. In these measurements, I measure both the magnetization as well as
the diameter. For the naive measurements, I used both edge flips as well as single
spin flips. Figure (11) shows the results for the magnetization measurements,
and figure (12) shows the results for the diameter measurements.

27

(a) Autocorrelation of edge flips on a tri-
angulation of size 125. Correlation time:
29 flips.

(b) Autocorrelation of cluster moves on
a triangulation of size 125. Correlation
time: 3 cluster moves.

(c) Autocorrelation of edge flips on a tri-
angulation of size 250. Correlation time:
57 flips.

(d) Autocorrelation of cluster moves on
a triangulation of size 250. Correlation
time: 3 cluster moves.

(e) Autocorrelation of edge flips on a tri-
angulation of size 500. Correlation time:
116 flips.

(f) Autocorrelation of cluster moves on
a triangulation of size 500. Correlation
time: 4 cluster moves.

28

(g) Autocorrelation of edge flips on a tri-
angulation of size 1000. Correlation time:
232 flips.

(h) Autocorrelation of cluster moves on
a triangulation of size 1000. Correlation
time: 4 cluster moves.

(i) Autocorrelation of edge flips on a tri-
angulation of size 2000. Correlation time:
454 flips.

(j) Autocorrelation of cluster moves on
a triangulation of size 2000. Correlation
time: 4 cluster moves.

(k) Autocorrelation of edge flips on a tri-
angulation of size 4000. Correlation time:
905 flips.

(l) Autocorrelation of cluster moves on
a triangulation of size 4000. Correlation
time: 5 cluster moves.

Figure 11: Magnetization measurements on a triangulation.

29

(a) Autocorrelation of edge flips on a tri-
angulation of size 125. Correlation time:
819 flips.

(b) Autocorrelation of cluster moves on
a triangulation of size 125. Correlation
time: 64 cluster moves.

(c) Autocorrelation of edge flips on a tri-
angulation of size 250. Correlation time:
2745 flips.

(d) Autocorrelation of cluster moves on
a triangulation of size 250. Correlation
time: 84 cluster moves.

(e) Autocorrelation of edge flips on a tri-
angulation of size 500. Correlation time:
7491 flips.

(f) Autocorrelation of cluster moves on
a triangulation of size 500. Correlation
time: 110 cluster moves.

30

(g) Autocorrelation of edge flips on a tri-
angulation of size 1000. Correlation time:
35537 flips.

(h) Autocorrelation of cluster moves on
a triangulation of size 1000. Correlation
time: 157 cluster moves.

(i) Autocorrelation of edge flips on a tri-
angulation of size 2000. Correlation time:
69224 flips.

(j) Autocorrelation of cluster moves on
a triangulation of size 2000. Correlation
time: 224 cluster moves.

(k) Autocorrelation of edge flips on a tri-
angulation of size 4000. Correlation time:
160083 flips.

(l) Autocorrelation of cluster moves on
a triangulation of size 4000. Correlation
time: 270 cluster moves.

Figure 12: Diameter measurements on a triangulation combined with the Ising
model.

We analyse the error on the data in the same manner as with the previous
measurements, resulting in table (4).

31

Triangulation size Magnetization autocorrelation time Magnetization autocorrelation time
(#faces) (naive #flips) (#cluster moves)

125 29± 3 3± 1
250 57± 5 3± 1
500 116± 10 4± 1
1000 232± 19 4± 1
2000 454± 39 4± 1
4000 905± 81 5± 1

Triangulation size Diameter autocorrelation time Diameter autocorrelation time
(#faces) (naive #flips) (#cluster moves)

125 819± 74 64± 6
250 2745± 446 84± 8
500 7491± 2166 110± 11
1000 35537± 4380 157± 28
2000 69224± 9585 224± 26
4000 160083± 11618 270± 30

Table 4: Results of the measurements on the Ising model coupled to a triangu-
lation, including an error estimate.

Interestingly, the cluster data does not seem to follow the exponential scaling,
whereas the naive data still does. From these few data points, it appears as
though the cluster algorithm scales much better than the naive algorithm, but
it is too early to draw any conclusions on the exact scaling that it exhibits.

8.5 Wall-clock time

For practical reasons, it is important to measure how long it takes to perform
the edge flips and cluster moves. Figure (13) shows the scaling of the wall-clock
time as a function of the size of the triangulation. As expected, the edge flips
take constant time (we can attribute the slope of the fit to statistical error),
and the cluster moves take linear time. Unfortunately, due to the large slope in
figure (13b), the cluster algorithm does not outperform the edge flips in many
situations.

32

(a) Scaling of average time per edge flip.
A linear fit returns a slope of 0.001.

(b) Scaling of average time per edge flip.
A linear fit returns a slope of 60.6.

Figure 13: Average wall-clock times per Markov chain update.

9 Conclusion and outlook

The cluster algorithm appears to scale better than the local edge flip algorithm,
when looking at the number of updates necessary to achieve autocorrelation.
However, when taking into account the time it takes to perform a move, the
edge flip algorithm seems to be the faster algorithm.

The two main obstacles in this research were the statistical errors and the
time it takes to perform a cluster move. In the future, the errors can be reduced
in several ways. For starters, the number of different sizes considered was quite
low in this thesis. The reason for this is that the larger sizes take a long time
to complete calculation, due to the linearity of the cluster moves. Considering
more sizes results in more data, which should also reduce the error that the
least-mean-square fits produce.
Another way to get more accurate results is to consider more observables. How-
ever, observables are often difficult to come by, or are computationally expensive.

The other obstacle is the long time it takes to perform a cluster move. This
time obviously depends on the machine that the simulation is performed on,
but the slope of the scaling may still be brought down. To this end, it may
be worthwhile to adapt the algorithm, so that it keeps track of the amount of
edges it peels in the building phase. If the number of peels is smaller than some
predetermined threshold, it should disregard the cluster. This way, no valuable
computing time is wasted on small moves that will not have a big impact any-
way. This rejection of the cluster should be done before finding the boundary,
so that no O(N) operation is performed when building the cluster (this means
that finding the target edge should also be moved to after the building phase).

An interesting follow-up project may be to design another way of generating

33

cycles in the triangulation, and then flipping the cluster. It would be interesting
to see if there are more efficient ways of generating these cycles, as opposed to
the algorithm studied in this thesis.

Finally, it may be interesting to re-conduct the experiments using different
values of the probability p, to see the effect that this has on the autocorrelation
time. In this thesis, I made the choice to put p on its critical value, so that
the clusters grow linearly with the size of the triangulation. However, the mea-
surements on the Ising model seem to suggest that smaller clusters may lead to
smaller statistical errors, and still result in good autocorrelation times. There is
also one more situation that I did not try out in this thesis: compare the cluster
algorithm on the Ising model to the hybrid algorithm that performs edge flips
on the triangulation, but cluster moves on the spins.

Acknowledgements

I would like to thank Timothy Budd for being my supervisor for this bachelor
thesis. He found a topic for my thesis that involved both physics as well as
computing science, which are two fields in which I have a large interest. It was
interesting to work on a project where both of these fields meet.
I would also like to thank Harm Schoorlemmer for wanting to be the second
reader.

References

[1] M. Ferrario et al. Computer Simulations in Condensed Matter Systems:
From Materials to Chemical Biology Volume 1. Lect. Notes Phys. 703.
Berlin Heidelberg 2006: Springer. doi: 10.1007/b11604457.

[2] J. Ambjørn et al. “Nonperturbative quantum gravity”. In: Physics Reports
519.4-5 (Oct. 2012), pp. 127–210. doi: 10.1016/j.physrep.2012.03.007.
url: https://doi.org/10.1016%5C%2Fj.physrep.2012.03.007.

[3] Jan Ambjorn. Elementary Quantum Geometry. 2022. doi: 10.48550/
ARXIV.2204.00859. url: https://arxiv.org/abs/2204.00859.

[4] Omer Angel and Nicolas Curien. Percolations on random maps I: half-
plane models. 2013. doi: 10.48550/ARXIV.1301.5311. url: https:
//arxiv.org/abs/1301.5311.

[5] Anna van Asselt. Simulating Random Triangulations. Finding a Planck
scale in 2d Quantum Gravity Simulations. 2022.

[6] Dion Bremer. Source code for the triangulations. url: https://gitlab.
science.ru.nl/dbremer/dynamical-triangulations/-/tree/main.

[7] T. Budd. Monte Carlo techniques. 2022. url: https://hef.ru.nl/

~tbudd/mct/intro.html.

34

[8] Timothy Budd. Monte Carlo methods in Dynamical Triangulations. 2017.

[9] Timothy Budd. Peeling of random planar maps. Lecture notes for a mini-
course given at the Mini-School on Random Maps and the Gaussian Free
Field at École normale supérieure de Lyon. 2017.

[10] Pilu Crescenzi et al. “On computing the diameter of real-world undirected
graphs”. In: Theoretical Computer Science 514 (2013). Graph Algorithms
and Applications: in Honor of Professor Giorgio Ausiello, pp. 84–95. issn:
0304-3975. doi: https://doi.org/10.1016/j.tcs.2012.09.018.
url: https : / / www . sciencedirect . com / science / article / pii /

S0304397512008687.

[11] Eigen is a C++ template library for linear algebra: matrices, vectors, nu-
merical solvers, and related algorithms. url: https://eigen.tuxfamily.
org/index.php?title=Main_Page.

[12] R Loll. “The emergence of spacetime or quantum gravity on your desktop”.
In: Classical and Quantum Gravity 25.11 (May 2008), p. 114006. doi:
10.1088/0264-9381/25/11/114006. url: https://doi.org/10.1088%
5C%2F0264-9381%5C%2F25%5C%2F11%5C%2F114006.

[13] Spectra C++ Library For Large Scale Eigenvalue Problems. url: https:
//spectralib.org/.

35

