
Radboud University Nijmegen

Faculty of Science

Monte Carlo simulations of
dually-weighted maps

Thesis BSc Physics and Astronomy

Author:
Jasper Stokmans

Supervisor:
dr. Timothy Budd

Second reader:
prof. dr. Wim Beenakker

July 13, 2023

Abstract

To this day, there exists no theory of gravity at the Planck scale as attempts to formulate
such a theory have encountered considerable difficulties. One approach is Lattice Quantum
Gravity, which needs a second or higher-order phase transition to advance its development.
Using a novel approach to simulating a single slab of 2+1 dimensional Causal Dynamical
Triangulations (CDT), this thesis attempts to determine a more effective method of sim-
ulating phase transitions of higher order in CDT. The numerical results indicate that the
model used does not possess the phase transition observed in fully-fledged CDT simulations
of the same geometry.

1

Contents

1 Introduction 3

2 Theory 4
2.1 Towards a quantum theory of gravity . 4
2.2 2+1 Dimensional CDT . 5
2.3 Markov-Chain Monte Carlo . 6
2.4 Metropolis-Hastings algorithm . 7
2.5 Measuring observables . 8
2.6 The problem when simulating the phase transition in 2+1 dimensional CDT . . . 10
2.7 How dually-weighted maps help . 12

3 Methods 16
3.1 Implementing the flip moves . 16
3.2 Implementing the mass move . 18

3.2.1 First Attempt: Approximation for Large Mass 19
3.2.2 Second Attempt: Crossing-out Terms . 20
3.2.3 Third Attempt: Gamma Functions . 22

3.3 Improving the mass move . 23

4 Results 24

5 Conclusions 28

6 Acknowledgements 29

References 29

2

1 Introduction

In modern theoretical physics, one can roughly distinguish two main theories that each predict
certain phenomena with unparalleled precision. On the one hand, there is Einstein’s theory
of General Relativity, which describes gravity for large objects like celestial bodies. On the
other hand, there is Quantum Field Theory, which describes the interactions taking place on
the subatomic scale. Both theories have been proven to make accurate predictions about their
respective domains. However, both theories cannot tell us anything about gravity at the smallest
length scales [1]. Therefore, theoretical physicists have the desire to find a theory that can
describe gravity even at these extremely small scales.

Theorists have been attempting to find this theory for decades, exploring different avenues of
approach. One of these avenues has led to the development of Lattice Quantum Gravity, which
attempts to find a quantised theory of gravity by “glueing” geometrically flat objects together
in such a way that the resulting geometry corresponds to the classical spacetime geometry at
macroscopic length scales but still shows quantum mechanical behaviour at microscopic length
scales.

For the theory produced by Lattice Quantum Gravity to be valid for small length scales, one
must take the limit of the geometry where the size of its building blocks goes to zero [2]. In
taking this limit, the physics described by the model must remain unchanged. This imposes a
scale invariance condition on the theory of Lattice Quantum Gravity, meaning that the geometry
constructed in this way will have the same overall structure regardless of the scale at which it is
observed. To satisfy this scale-invariance condition, one must take the limit of lattice spacings
to zero near a so-called UV-fixed point in the parameter space [2].

Finding such a UV-fixed point is therefore key to developing the theory of Lattice Quantum
Gravity further. Searches for such a UV-fixed point focus on second or higher-order phase
transitions in the model for quantum gravity. It is known that at such phase transitions the
correlation length in terms of the lattice spacing of physical observables diverges. This diverging
correlation length means that one can take the limit of the lattice spacing to zero without losing
possible correlations between two points on the lattice, which means the model is scale-invariant
at such a phase transition.

However, determining such a second-order phase transition has proven to be more easily said
than done. Most phase transitions either turn out to be of first order or resist attempts to
determine their order. The latter phase transitions are of course the more interesting and will
be the subject of this thesis. More specifically, this thesis will focus on a phase transition in a
specific model for quantum gravity in 2 spatial dimensions and one time-like dimension. The
model considered here will be 2+1 dimensional Causal Dynamical Triangulations (CDT), which
will be introduced in section 2.2.

In 2+1 dimensional CDT, there exists a phase transition that is most likely of first order [3].
However, the problem with this phase transition is that the current simulation techniques suffer
from a phenomenon called critical slowing down when performing simulations near the phase
transition, making measurements near the phase transition difficult. A Dually-Weighted model
could provide an alternative way to perform these simulations that does not suffer from critical
slowing down.

While the phase transition studied in this thesis is most likely of first order, the possibility
exists that in variants of 2+1 dimensional CDT there exist phase transitions that are of higher
order. These models may also lend themselves to being simulated using Dually-Weighted models,
since critical slowing down does not occur exclusively in 2+1 dimensional CDT. The relative
simplicity of the model studied here does make it a good starting point.

3

Figure 1: A schematic depiction of what is meant by “discretising a geometry”. The sphere
on the left can be approximated using flat triangles to produce the object on the right. Figure
adapted from: [7]

2 Theory

2.1 Towards a quantum theory of gravity

As mentioned in the introduction, in theoretical physics one can roughly distinguish two major
theories: Quantum Field Theory (QFT) and General Relativity (GR). QFT describes interactions
taking place on a very small scale using a path integral formalism, where the quantum mechanical
behaviour of a field is described by an integral over all possible trajectories from point A to point
B [4]. These paths are all weighted using an appropriate action. This path integral gives the
transition amplitude between states of a system.

GR describes gravity as the curvature of spacetime, the more spacetime is curved, the stronger
the gravity. Each spacetime “shape” has an associated metric, which describes the properties of
the spacetime. For example, flat spacetime is described by the Minkowski metric ηµν .

The mutual shortcoming of these theories is that they cannot describe gravity at the very
smallest scale, the so-called Planck scale (lp = 1.6× 10−35 m) [1, 5]. Moreover, when attempting
to find such a theory of quantum gravity using standard perturbative methods, one encounters
divergences. Such divergences also appear in QFT, where they are dealt with via a process called
renormalisation [4]. In the case of gravity, however, the divergences are non-renormalisable, which
means other approaches are necessary.

There exist different approaches to the problem of finding a quantum theory of gravity [2]. In
this thesis, we will focus on so-called Lattice Quantum Gravity. Lattice Quantum Gravity aims
to describe gravity by using an approach very similar to the one used in QFT [4, 6]. It begins
by considering gravity as described by a metric field and constructing a path integral over these
metrics [1],

Z =

∫
Dg

Diff
e

i
ℏSEH . (2.1)

Since the path integral in Equation 2.1 is difficult to solve, one now attempts to transform it
into a sum over discretised geometries. Discretisation in this sense means that a “shape”, like
the sphere in Figure 1, is approximated using flat pieces. One such method of discretisation for
spacetime geometries is Causal Dynamical Triangulations (CDT) which will be discussed in the
next chapter.

4

Figure 2: Three different simplices in 2+1 dimensional CDT (colored green). From left to right:
a 31-simplex, a 22-simplex and a 13-simplex. Figure from [1]

2.2 2+1 Dimensional CDT

In this section, the basic idea of 2+1 dimensional CDT is explained to a degree that should be
sufficient to understand the remainder of this thesis. This is by no means a formal definition of
the model, but rather a conceptual introduction. A more formal definition is given by Ambjørn
et. al. in [3].

The CDT model is a model that discretises spacetime while maintaining a preferred time
direction. The CDT model can be viewed as consisting of layers of discretised two-dimensional
geometries indexed by a time parameter t ∈ N. These geometries can be constructed by attaching
discrete building blocks, like triangles, to each other. If triangles or their higher dimensional
equivalents, such as tetrahedra, are used, the constructed object is called a triangulation. The
individual building blocks are geometrically flat and all have the same, fixed shape1 but the way
they are connected to each other gives the layer a curved geometry.

Now, these layers are in turn connected to each other by using three-dimensional building
blocks called simplices. These building blocks come in three different flavours as shown in
Figure 2. These simplices are geometrically flat, but the way they are connected again gives rise
to curved spacetime.

The resulting model can be interpreted as a discrete version of spacetime where each layer
corresponds to a time t [8]. It is a network of nodes referred to as vertices connected by links.
These links can be spatial when they lie in a surface of constant time, or time-like when they
connect two such surfaces. The continuum limit of the model is obtained by taking the number
of simplices to infinity.

Mathematically, CDT turns the continuous path integral of Equation 2.1 into a discrete sum
over CDT configurations [3]:

ZCDT =
∑

TT (S1×S2)

1

C(T)
e−SE(N0,N3,T), (2.2)

1In the figures in this thesis, the building blocks do not have the same shape. This is done to make them easier
to draw.

5

Figure 3: An illustration of acceptance-rejection sampling. The target distribution is given by
f(x) and is shown by a solid line. We sample from the distribution cg(x) to find the horizontal
coordinate and sample from a uniform distribution to find the vertical coordinate of a sample
point. Such a point is accepted if it lies below f(x) (solid dots) and rejected if it is not (circles).
Source: [9].

where the sum runs over CDT configurations with geometry S1×S2. Each geometry is weighted
with a Boltzmann factor depending on the Euclidean three-dimensional Regge action SE . The
action depends on three parameters: the number of vertices N0, the number of simplices N3

and the total number of layers T +1. The factor 1/C(T) prevents double counting of equivalent
geometries. Since the equations involved in CDT models are often difficult to solve analytically,
one has to resort to the use of computer simulations to determine the behaviour of such a model.
Such simulations usually take the form of Markov-Chain Monte Carlo simulations, which will be
discussed in the next section.

2.3 Markov-Chain Monte Carlo

This section serves as an introduction to Monte Carlo techniques, specifically Markov-Chain
Monte Carlo as these will be used extensively.

Monte Carlo techniques are numerical methods that rely on random numbers to sample from
a given distribution [9]. These methods have applications in many numerical simulations, such
as simulations of the Ising model or computing integrals [10]. Perhaps the simplest example of a
Monte Carlo simulation is to sample from some distribution f(x) by using acceptance-rejection
sampling. Acceptance-rejection sampling draws random points from a distribution cg(x), c ∈ R
that satisfies ∀x(f(x) ≤ g(x)). This gives the x-coordinate of a sample, to obtain the y-coordinate
one samples from a uniform distribution cg(x)U . Here, U is the uniform distribution on the
interval [0, 1]. This procedure is illustrated in Figure 3.

But what if direct sampling methods like the one above do not perform sufficiently fast or
accurately?

In such scenarios, an alternative method can be found in Markov-Chain Monte Carlo (MCMC).
These methods do not attempt to sample the distribution directly, but rather they attempt to
approach the desired distribution over a large number of steps referred to as Markov-Chain

6

steps [9]. A Markov-Chain algorithm is concerned with a system that can be in a state Xi. The
collection of all the possible states a system can be in is called the state space Γ. An example
of a state space is the space Γ = {1,−1}N , corresponding to an Ising model with N spins. The
Hamiltonian of this model is given by [10]

H(s) =
∑
i∼j

sisj , (2.3)

where the sum runs over all neighbouring pairs of spins si and sj .
MCMC is now concerned with sampling states Xi ∈ Γ according to a specific probability

distribution, usually determined by the system. In the case of the Ising model on N spins, this
probability distribution would be given by

p(s) =
1

Z
e−βH(s), (2.4)

where s ∈ Γ = {1,−1}N is a specific state of the system, Z is the normalisation factor (in this
case: the partition sum), β = 1/kBT and H(s) is the Hamiltonian of the system. In this case, the
goal of MCMC would be to move from a state s to a state s′ with a certain probability such that
after enough steps, the probability of finding the system in a state s is given by Equation 2.4.
If one now denotes the states Xi as row vectors, the probability to move from state Xi to state
Xi+1 can be encoded in a transition matrix P [10]. This transition matrix is constructed such
that p(s) = π(s), where π is a left-eigenvector of P with eigenvalue one, i.e.: πP = π. For the
example of the Ising model, this so-called stationary distribution is given by

π(s) =
1

Z
e−βH(s), (2.5)

which is simply the probability of finding the system in the state s.
The idea of MCMC is to start from a manually chosen initial stateX0 and apply the transition

matrix P until the distribution approximates the stationary distribution with sufficient accuracy.
The problem lies in determining a suitable transition matrix, it must produce the stationary
distribution when applied often enough to the initial state X0. We note that the condition
π = πP implies that for all y ∈ Γ [10]∑

x∈Γ

π(x)P (x → y) = π(y) = π(y)
∑
x∈Γ

P (y → x) =
∑
x∈Γ

π(y)P (x → y). (2.6)

Since the total probability to move from a state x to any state must be 1. The simplest way to
satisfy this condition is called detailed balance and is expressed as follows:

∀x,y∈Γ (π(x)P (x → y) = π(y)P (y → x)). (2.7)

Equation 2.7 states that the flow of probability from any state x into a state y must be the same
as the flow of probability from state y into state x.

2.4 Metropolis-Hastings algorithm

One method to produce a suitable transition matrix is the so-called Metropolis-Hastings (MH)
algorithm [9]. The MH algorithm uses a manually constructed proposal probability matrix
Q(x → y), which serves to select a possible move from a state x to a state y. It then determines
whether to implement this move (accept it) or whether to reject it, which can be captured

7

in the acceptance probability matrix A(x → y). The matrix A(x → y) is chosen such that
P (x → y) = Q(x → y)A(x → y) is a suitable transition matrix for MCMC.

It is now possible to derive an expression for the acceptance probability A(x → y) given
a proposal probability Q(x → y) and a stationary distribution π. From the detailed balance
condition of Equation 2.7, it can be derived that the acceptance probability for the transition
from a state x to a state y is given by [9]

A(x → y) = min

{
1,

π(y)P (y → x)

π(x)P (x → y)

}
. (2.8)

One will likely notice that the acceptance probability of Equation 2.8 does not depend on the
normalisation of π. Since this normalisation factor is generally unknown, this fact makes the
MH algorithm a very powerful tool.

2.5 Measuring observables

If one wishes to perform simulations of lattice quantum gravity, this will be with the intent of
doing measurements. Therefore, it is vital that one can confidently do these measurements and
compute their errors. In the case of Monte Carlo methods, this means taking into account not
only the errors arising from the finite sample size but also the fact that Monte Carlo simulations
draw samples from an approximate distribution.

Before one can even think about doing useful measurements, one must be confident that
the simulation has approached the desired probability distribution sufficiently closely. This
confidence is usually achieved by letting the simulation perform a specified number of moves
before perfroming the actual measurements [9]. It can be useful to express the number of these
moves in terms of sweeps, where one sweep is usually defined to be the number of moves required
to perform on average one move per lattice point. In the example of the Ising model, one sweep
would correspond to the total number N of spins present in the model. The sweeps performed
to let the simulation approach the desired distribution are called burn-in sweeps and there is
no real consensus as to how many burn-in sweeps should be used [9]. One way to estimate the
number of burn-in sweeps required is to plot several observables using several different initial
configurations and estimating when the measurements of the different simulations agree [10].

Once the simulation has reached a point where one is confident that the distribution being
sampled from is approximately the desired distribution, one can perform the actual measure-
ments. These measurements usually involve taking a sum or product. For example: in the Ising
model, one might be interested in the absolute total magnetisation of the system

|M(s)| =

∣∣∣∣∣
N∑
i=1

si

∣∣∣∣∣ . (2.9)

Here, s is the state of the system and si is the value of spin i.
When using MCMC, it is incorrect to simply compute the mean of an observable and its error

in the usual way [9]. That is, treating each measurement of the observable as independent from
the others. This would neglect the fact that each configuration of the system is generated from
the previous one via a (usually small) move, and is therefore very much the same as the previous
configuration. Using the Ising model as an example: the observable |M(s)| will not change much
after performing one move (i.e. flipping one spin).

To resolve this issue, it is useful to quantify the similarity between two states in the Markov
Chain and use it to derive a new error formula that can be applied in the case of MCMC. This

8

process starts with defining the autocorrelation ρ of an observable f : Γ → R as [10]

ρ(t) = Corr(f(Xi), f(Xi+t)) :=
E [(f(Xi)− E[f(X)])(f(Xi+t)− E[f(X)])]

Var(f(X))
, (2.10)

where E[f(X)] and Var(f(X)) denote the analytical mean and variance of the observable, respec-
tively and the parameter t is often referred to as the simulation time. The autocorrelation is a
measure of how correlated, or dependent, the states at step i and step i+ t of the Markov-Chain
are. However, Equation 2.10 is an exact formula that cannot be applied directly to MCMC sim-
ulations. The estimate of ρ(t) obtained from an MCMC simulation is referred to as the sample
autocorrelation, ρ(t) and can be estimated using the sample autocovariance [10]:

γ(t) =
1

n− t

n−t∑
i=1

(f(Xi)− f(X)n)(f(Xi+t)− f(X)n), (2.11)

where f(X)n = 1
n

∑n
i=1 f(Xi) is the sample mean. The sample autocorrelation is now given by

the sample autocovariance normalised by γ(0):

ρ(t) =
γ(t)

γ(0)
, (2.12)

since γ(0) is the variance Var(f(X)) computed over the first n steps of the Markov Chain.
The obtained expression for ρ(t) is still not quite suitable to compute the errors in an MCMC

simulation since it shows large statistical errors when t is of the same order as n [10]. To
circumvent this, one might approximate ρ(t) by an exponential decay: ρ(t) ≈ e−t/τf . The
autocorrelation time τf can be determined either by doing an exponential fit to ρ(t) or by taking
the first Markov-Chain step where ρ(t) ≤ 1/e. The outcome of a measurement of the observable
f(X) can now be expressed as [10]

E[f(X)] = E[f(X)n]±
√

2τf
n

γ(0). (2.13)

While one is now equipped with a good way of computing the mean of measurements with
appropriate error, it might be worthwhile to consider how performing measurements can be
optimised. Looking back at Equation 2.9, it can be expected that computing the (absolute)
magnetisation will become computationally expensive for large systems. That is, it will take a
long time to compute the magnetisation for such a system. A solution would be to keep track
of the magnetisation at every Markov-Chain step, which only requires a small update to the
magnetisation. However, this approach will result in a total of N updates per sweep since a
sweep consists of N Markov-Chain steps. This may not seem like a problem, but each of these
measurements only contains a small amount of new information since each configuration is almost
identical to the previous one. It is therefore not a very efficient use of computational power to
perform a measurement at every Markov-Chain step.

An alternative solution is to only perform measurements when the configuration of the system
is appreciably different from the configuration at the last measurement, i.e.: the values of the
observable are sufficiently independent. Since the autocorrelation time τf is a measure of the
simulation time needed between measurements for the observable values to become independent,
it makes sense to perform a measurement at least every τf sweeps [10]. Waiting more than τf
sweeps between measurements would be a waste of potentially useful data. However, we have
already established that measuring too often is no good either. So one has to estimate a minimum
simulation time between measurements.

9

A rule of thumb is to not spend more than roughly half the time doing measurements and
the rest performing Markov-Chain steps [10]. For the Ising model, Equation 2.9 shows that a
full computation of the magnetisation in this model requires N − 1 additions. Assuming that
this requires roughly the same time as N − 1 Markov-Chain steps (roughly one sweep), a good
simulation time between measurements would therefore be at least one sweep [10].

2.6 The problem when simulating the phase transition in 2+1 dimen-
sional CDT

It is now possible to give a more precise statement of the problem encountered when attempting
to simulate the phase transition in 2+1 dimensional CDT. First of all, an intuitive understanding
of the different phases is required.

As discussed in Chapter 2.2, 2+1 dimensional CDT consists of three different types of sim-
plices: 13-, 31- and 22-simplices, which are shown in the left of Figure 4. Most of these simplices
can connect to each other, but 13-simplices cannot connect to 31-simplices. This means that 13-
and 31-simplices can form clusters consisting of only the same kind of simplices and that the
only way (a cluster of) 13-simplices can connect to (a cluster of) 31-simplices is via 22-simplices.

The phase transition is the transition between a phase with large clusters of simplices of
the same kind to a phase where these clusters are relatively small. So on one side of the phase
transition, there exists a phase called the de Sitter phase, where the number of 22-simplices is
roughly equal to the numbers of 31- and 13-simplices [1]. This means that while there may
exist clusters of only 31- or 13-simplices connected to each other, these clusters will generally be
small as they will quickly be cut off by a 22-simplex. On the other side of the phase transition,
however, the number of 22-simplices has fallen to be very small compared to the number of other
simplices. This implies that, in this phase, there exist clusters of either 31- or 13-simplices that
can contain numbers of simplices on the order of the total number of simplices of that kind. This
phase will be referred to as the crumpled phase. It is the clusters in this crumpled phase that
make simulating the phase transition through traditional means difficult.

To understand this difficulty, it is important to know how these simulations are performed in
the first place. The simulations of 2+1 dimensional CDT are performed using MCMC methods,
making small adjustments to a manually constructed triangulation. These adjustments are the
Monte-Carlo moves for the simulation and to understand them, it is necessary to translate the
complex problem of simulating CDT to a simpler problem of manipulating planar maps. Figure 4
from [1] shows one slab of 2+1 dimensional CDT, that is, two time slices at times t and t + 1
connected by simplices.

One can now construct a graph containing the information about the glueing of the triangles
in a time slice by letting each triangle correspond to a vertex in this new graph and connecting
these vertices when the triangles in the triangulation are adjacent [3]. The graph obtained in
this manner is shown in the middle of Figure 4. Since these graphs will be embedded in the
underlying geometry of the spatial slices, they are called maps2. Since these maps contain no
crossings of edges, they are planar maps. The vertices in these planar maps all have three edges
emerging from them, so they are of degree three. Maps with the property that all vertices have
the same degree n are called n-valent maps, our maps are therefore three-valent.

One can now superimpose these maps for each time slice in a nontrivial way to obtain a
bicoloured map that fully specifies the slab [1], such a map is shown in Figure 4. In such a
map, the vertices correspond to 31- or 13-simplices depending on their colour and a crossing
of a blue and a red edge corresponds to a 22-simplex. It can now be seen that a cluster of

2Note that in a map, one can define things that cannot be defined for a graph, like a rotation around a vertex
in (counter-) clockwise direction.

10

Figure 4: A single slab of 2+1 dimensional CDT with three different simplices. The planar maps
corresponding to the time slices have been drawn in blue and red. Note that only three simplices
are drawn, in reality, the entire space between the time slices is filled with simplices. Figure
from [1]

Figure 5: The MC moves relevant for simulating a single slab of 2+1 dimensional CDT. The
moves consist of pulling a blue edge over a red vertex, pulling a red edge over a blue vertex and
their inverse moves. In addition, since the spatial slices are not fixed, there are additional moves
allowed. These moves are the “rotation” of an edge in either the red or blue map and their
inverse. Figure adapted from: [1]

31-simplices corresponds to a cluster of red vertices in the bicoloured map surrounded by blue
edges (22-simplices). Similarly, a cluster of 13-simplices corresponds to a cluster of blue vertices
surrounded by red edges. Therefore, the crumpled phase will manifest itself in the bicoloured
map as one or more macroscopic clusters of vertices of the same colour.

We can now understand the difficulty of simulating the phase transition when considering
the Markov-Chain moves for such a bicoloured map. The Markov-Chain moves are given by
moving a blue vertex over a red edge or moving a red vertex over a blue edge, “rotating” an edge
and their inverse moves as shown in Figure 5. Since these moves are only capable of moving one
vertex from one cluster to another cluster, breaking up large clusters of vertices will require many
moves. Moreover, the moves cannot move the vertices very far, only across a single edge. This
means that it requires many moves to move a single vertex over a large number of edges, which
is required to distribute the vertices evenly over the clusters. Both these properties make going
from the crumpled phase back to the de Sitter phase a process that requires many Markov-Chain
steps and is therefore very time-consuming.

This phenomenon where a simulation slows down when approaching a certain point is referred
to as critical slowing down. It would be preferred if the simulation was capable of moving an

11

Figure 6: A representation of the process of contracting the clusters of vertices in the original
bicoloured map. On the left is the original map. In the middle, the clusters have been marked
with the appropriate colours. On the right, the marked clusters have been contracted into a
single vertex. Source: T.G. Budd, unpublished.

arbitrary number of vertices of the same colour over an arbitrary number of edges as such an
algorithm would not suffer from critical slowing down as much.

2.7 How dually-weighted maps help

Before we delve into the possible solution offered by dually-weighted map models, we will answer
the question of what a dually-weighted map is. The dual map of a given map M is the map
where each vertex corresponds to a face in M and the vertices are connected if the faces they
correspond to are adjacent. A dually-weighted map is a planar map where one has assigned
weights not only to the vertices of the map itself but also to the vertices of the dual map, hence
dually-weighted [11]. Assigning weights to the vertices of the dual map is equivalent to assigning
weights to the faces of the original map, M. The degree of the vertices in the dual map is the
number of faces adjacent to the face in M corresponding to this vertex. For example, if M has a
face that is adjacent to four other faces, the degree of the corresponding vertex in the dual map
will be four.

To see how such objects might help us to overcome the critical slowing down of simulations,
one must first understand how they can be constructed from a CDT configuration. The goal is
to produce a map where assigning weights to all vertices produces a dually-weighted map. The
resulting map will have as an additional benefit that all faces are squares (they have four bounding
edges). Such maps are called quadrangulations, in analogy to the triangulations encountered in
a single time slice of CDT.

To produce such a map, consider the slab of CDT of Figure 4. As has been already noted, this
slab can be represented by a bicoloured map. In this map, we had clusters of vertices surrounded
by edges of the other colour, cutting them off from the other vertices. We can now contract
the vertices within a cluster to form a single vertex of that colour such that we have precisely
one blue vertex per red face and one red vertex per blue face. This contracting procedure is
represented in Figure 6 for a random three-valent bicoloured map.

Since it will be important to be able to distinguish between vertices in the original bicoloured
map and the vertices obtained through contracting these vertices, we will refer to the uncon-
tracted vertices as cluster vertices and to the contracted vertices as quadrangulation vertices
when necessary.

Now, we simply connect the quadrangulation vertices of a different colour to each other,
provided we can do so without crossing a coloured edge. The resulting map is shown in Figure 7.

12

Figure 7: A quadrangulation resulting from connecting the quadrangulation vertices in the right
map of Figure 6 without crossing any coloured edges. All faces have exactly four neighbours,
hence it is a quadrangulation. Source: T.G. Budd, unpublished.

A map constructed in such a way has faces that are bounded by exactly four edges. This might
seem counterintüıtive at first, certainly, the shaded region in Figure 7 is bounded by only two
edges, right? It is not, as we consider the edge connecting the blue vertex of degree one as a
bounding edge as well. This gives three bounding edges, the fourth edge comes from the fact that
we count the number of bounding edges by traversing them in a closed loop (imagine walking
along the boundary of a face). Using this definition, the edge connecting the blue quadrangulation
vertex of degree one to the red quadrangulation vertex in the lower left will be counted twice,
giving a total of four bounding edges.

For these quadrangulations to be equivalent to a single slab of 2+1 dimensional CDT, the
partition functions for these two models must be equivalent. This can be achieved by assigning
weights to each quadrangulation vertex. Since the blue quadrangulation vertices are the vertices
of the dual map of the red map in the right of Figure 6, assigning weights to both colours of
quadrangulation vertices corresponds to making the right map in Figure 6 dually-weighted. We
have now constructed a dually-weighted map from a single slab of CDT in 2+1 dimensions.

The weights assigned to the quadrangulation vertices are now given by [12]3:

Cl,N = Cl,l+2k =
4k

(1 + k)!

(2l + 3k − 2)!!

(2l + k)!!
l

(
2l

l

)
(2.14)

where N = l+2k is the number of cluster vertices contracted into that particular quadrangulation
vertex, l is the degree of the quadrangulation vertex and k is a parameter. Each vertex in the
quadrangulation will therefore have two independent parameters: its degree l and the number of
cluster vertices N it represents.

These weights have a combinatorial interpretation as they count the number of clusters that
can be made with N cluster vertices and l edges connecting the cluster to other clusters, with
the constraint that each cluster vertex must be connected to exactly three other cluster vertices.

This combinatorial interpretation can be extended to the number of clusters that can be
made with either N total 31- or 13-simplices and that are connected to a total of l 22-simplices.
To understand this, first consider the triangulations of the lower spatial slice in Figure 4. The
blue cluster vertices now each correspond to a triangle in this spatial slice and are connected if
and only if the triangles are adjacent to each other. The weights of Equation 2.14 now count the
number of triangulations that can be made using N triangles and with a total “circumference”

3With respect to the paper by Krikun, we have set r = 0 and m = l since we are considering triangulations
with a single boundary of length l.

13

Figure 8: Interpreting a cluster of vertices first as representing a triangulation in a single time
slice, and then as 31-simplices in a slab of CDT. Each vertex corresponds to a triangle in the
triangulation, which are adjacent if the vertices are connected. Each triangle is the lower face
of a 31-simplex and these simplices are adjacent if the triangles are adjacent and there are no
22-simplices involved.

Figure 9: Two 13-simplices that have adjacent faces in the upper spatial triangulation but are
not adjacent since they do not share a face. They are separated by a 22-simplex.

of l. This is visualised in the left part of Figure 8. Now the step to clusters of simplices can
be made by noting that each triangle in the spatial triangulation (the middle of Figure 8) is a
face of a 13-simplex. Since we consider clusters of 13-simplices without any 22-simplices, the
13-simplices are connected if and only if the triangles in the spatial triangulation are connected.
If there would have been 22-simplices involved, two triangles in the spatial triangulation could be
connected without their corresponding 13-simplices being adjacent. An example of this situation
is given in Figure 9.

Using the weights of Equation 2.14, it is possible to write down the partition function for a
single slab of CDT as a sum over quadrangulations Q. For a single slab of CDT, the partition
sum is given by Equation 2.2 with T = 1:

Z
(Single slab)
CDT =

∑
T1([0,1]×S2)

1

C(T)
e−SE(N0,N3,1), (2.15)

where the Euclidean action depends only on the number of vertices N0 and the number of
simplices N3 in the triangulation.

Note that the boundary conditions in the time dimension are free as opposed to periodic
as in Equation 2.2, resulting in the topology ([0, 1] × S2) of the slab. The the topology of the
quadrangulations representing this slab is that of the two-sphere, S2.

We now restrict our attention to triangulations with fixed N0 and N3. It can be shown that

14

fixing N0 and N3 is equivalent to fixing the total number of quadrangulation and cluster vertices
in a quadrangulation. This can be done using Euler’s formula for planar maps to express N0

and N3 in terms of
∏

v∈Q Nv and
∑

v∈Q 1. We can use the fact that the number of edges #E
in a quadrangulation is related to the number of faces #F by #E = 4 ·#F/2 = 2 ·#F . Using
Euler’s formula, the number of vertices #V in a quadrangulation is now given by

#V = #E −#F + 2 = #F + 2. (2.16)

Therefore, fixing the number of vertices in a quadrangulation also fixes the number of faces.
Which is equivalent to fixing the number of 22-simplices in the corresponding CDT triangulation.
As the total number of cluster vertices in a quadrangulation is fixed, the total number of 13- and
31-simplices in the corresponding CDT triangulation is also fixed. Therefore, N3 is fixed.

The number of vertices in a spatial slice of 2+1 dimensional CDT (which is a triangulation
in two dimensions) is again given by Euler’s formula. This time, the number of edges can be
related to the number of faces as #ESlice =

3
2#FSlice so that the number of vertices is given by

#VSlice = #ESlice −#FSlice + 2 =
#FSlice

2
+ 2. (2.17)

Since a single slab of 2+1 dimensional CDT contains two such slices, the total number of vertices
in such a slab is

N0 = #VRed +#VBlue =
#FRed +#FBlue

2
+ 4, (2.18)

where the subscripts “Red” and “Blue” serve to distinguish the two time slices. Recall that the
number of faces in both spatial slices corresponds to the number of 13- and 31-simplices in the
CDT triangulation and that the sum of these simplices is the total number of cluster vertices in
the quadrangulation. Therefore, fixing this total number of cluster vertices corresponds to fixing
N0.

The sum over all CDT triangulations, T , with fixed N0 and N3 can now be written as a
sum over all quadrangulations. To do this, the vertices v of Q are labelled with Nv, which is
the number of cluster vertices the vertex v represents. Recall that each triangulation can be
represented by a quadrangulation. However, this representation is not unique as each vertex of
the quadrangulation represents Cl,N triangulations meaning that each quadrangulation Q counts∏

v∈Q Clv,Nv CDT triangulations. Using this fact, the partition sum of Equation 2.15 can be
rewritten as

Z
(Single slab)
CDT =

∑
Q∈Q

1

C(Q)
e−SE(N0,N3,1)

∏
v∈Q

Clv,Nv
, (2.19)

where Q is the set of all quadrangulations with fixed numbers of cluster and quadrangulation
vertices and vertex labels Nv.

One can now study a single slab of 2+1 dimensional CDT by simulating the corresponding
quadrangulation. By moving the parameter Nv, one can move many cluster vertices over large
distances, as desired. The details of such a simulation will be discussed in Chapter 3.

It is worth pointing out that it is not a priori clear that the dually-weighted model constructed
in this chapter has the same phase transition as the original single slab of CDT. This is because
in the process of translating the single slab of CDT into a dually-weighted map, assumptions
have been made on the slab of CDT. These assumptions act as restrictions on the model and
could cause the two models to be inequivalent after all.

15

3 Methods

In this chapter, the details of the MCMC simulations of dually-weighted maps are discussed as
well as some of the results obtained through these simulations.

The simulations of the dually-weighted maps described in the previous section will be done
using a Markov-Chain Monte Carlo approach. This approach requires that one can sample
quadrangulations with fixed numbers of cluster and quadrangulation vertices from the correct
distribution which is governed by the weights of Equation 2.14. This distribution is given by [11]:

π(Q) =
1

Z

1

C(Q)

∏
v∈Q

Clv,Nv
, (3.1)

which is the probability of finding the statistical system of quadrangulations in the state with
vertex degrees lv and where the vertex v represents Nv cluster vertices. In simulations, the factor
1/C(Q) is often implicitly taken into account by working with labelled or marked quadrangula-
tions [1].

In the dually-weighted model under consideration, we will require two Markov-Chain moves:
one move to change the structure of the map and one to move the cluster vertices from one
cluster to another. These moves will be referred to as edge flips and mass moves, respectively.
It will be convenient to consider both of these moves separately. That is, first perform the flip
move while keeping the distribution of cluster vertices fixed and then perform the mass move
while keeping the map structure fixed. This way, only one parameter of the vertices involved in
the move will change as opposed to both of them.

The next challenge is to find suitable methods to sample from the desired stationary distri-
bution of quadrangulations. For the edge flips, the Metropolis-Hastings algorithm was found to
be suitable and we will discuss these moves first.

3.1 Implementing the flip moves

For the Metropolis-Hastings algorithm, one needs both a suitable proposal probability and an
acceptance probability determined by the stationary distribution that needs to be sampled from.
For the proposal probability, we chose to uniformly select an edge in the quadrangulation and
flip it according to one of the two ways in Figure 10. This results in a proposal probability given
by

S(Q → Q′) =
1

2

1

#E
, (3.2)

where Q and Q′ are two different quadrangulations with #E edges. The factor 1/2 is due to
the fact that we want both types of flip moves to be proposed with equal probability. Note that
S(Q → Q′) = S(Q′ → Q), so detailed balance is satisfied.

Using this proposal probability, the acceptance probability becomes

A(Q → Q′) = min

{
1,

S(Q′ → Q)π(Q′)

S(Q → Q′)π(Q)

}
= min

{
1,

π(Q′)

π(Q)

}
. (3.3)

In Equation 3.3, the stationary distribution for quadrangulations is given by Equation 3.1. Since
only four vertices are affected in either of the two flip moves, the quotient in Equation 3.3
simplifies significantly and becomes

A(Q → Q′) = min

{
1,

Cl−1,NCk−1,MCp+1,FCq+1,G

Cl,NCk,MCp,FCq,G

}
, (3.4)

16

Figure 10: The two possible flip moves in a quadrangulation. Note that they are not their
own inverse, making it necessary to have two flip moves. This is in contrast to the situation in
triangulations, where we only require one flip move.

where the indices l, k, p, q,N,M,F,G correspond to the vertex parameters as shown in Figure 10.
It is now a natural step to attempt to simplify this expression further by plugging in the explicit
forms of the weights Cl,N given by Equation 2.14 and fixing N,M,F and G. However, this
brings with it a problem, which is that N = l + 2k. Because of this relation between N and
k, changing the value of l by one and keeping N fixed will result in a half-integer value for k,
which is not allowed. This problem can be easily circumvented by introducing a new parameter
f = k + 1 which counts the number of faces interior to a cluster as shown in Figure 11. We
call this new parameter the mass of the vertex. It can be shown that fixing the total mass in a
quadrangulation Q is equivalent to fixing the total number of cluster vertices:∑

v∈Q

Nv =
∑
v∈Q

(lv + 2fv − 2)

=
∑
v∈Q

lv −
∑
v∈Q

2 + 2
∑
v∈Q

fv

= 4n− 2(n+ 2) + 2
∑
v∈Q

fv

= 2n− 4 + 2
∑
v∈Q

fv, (3.5)

where n is the number of faces in the quadrangulation and the sum runs over all vertices, of
which there are n + 2. The derivation of Equation 3.5 also uses that the sum of the degrees of
all vertices in a map is equal to twice the number of edges and that in a quadrangulation, each
square adds two edges.

The problem of half-integer values can now be solved by fixing f instead of N . This can be
seen by rewriting the relation N = l + 2k to find:

N = l + 2k ⇒ k =
N − l

2
. (3.6)

One can now use the definition f = k + 1 to find:

f = k + 1 =
N − l

2
+ 1 ∈ Z. (3.7)

17

Figure 11: A visual representation of the meaning of the mass f of a quadrangulation vertex.
The cluster that will be contracted into a quadrangulation vertex is shaded in blue. Its mass f
is the number of faces in the shaded region, so 4 in this case.

For ease of notation we define: Cl,f := Cl,l+2f−2.
Due to the high similarity of terms in the nominator and denominator of Equation 3.4, it is

convenient to consider a fraction of the form Cl±1,f/Cl,f . These fractions can be rewritten as

Cl−1,f

Cl,f
=

2l + f − 1

2l + 3f − 5

l + 1

2(2l + 1)

Cl+1,f

Cl,f
=

2l + 3f − 3

2l + f + 1

2(2l + 1)

l
. (3.8)

These fractions no longer contain any factorials, making them easy to compute numerically even
for large values of l and k.

3.2 Implementing the mass move

To give the quadrangulation the correct distribution of cluster vertices, we follow the same
procedure as for the flip moves. We start by determining a suitable algorithm to sample from
the stationary distribution 3.1. We opt to again use the Metropolis-Hastings algorithm to perform
the mass moves.

The algorithm will select two different vertices at random and attempt to move a random
amount of mass from one vertex to the other. The vertices will be chosen uniformly amongst
all vertices and are demanded to be distinct. The probability of choosing a given pair of such
vertices is (N(N − 1))−1. Let these vertices have degrees l, k, and masses f, g and assume the
mass is moved from the vertex with degree l to the other vertex. Then the amount of mass ∆
that is being moved will be drawn uniformly from the set {n|1 ≤ n ≤ f}. Note that ∆ = 0
amounts to doing nothing so we exclude it as an option. The probability of selecting a particular
value of ∆ is now (#{n|1 ≤ n ≤ f})−1 = f−1, so the proposal probability for such a mass move
will be

S(Q → Q′) =
1

N(N − 1)

1

f
, (3.9)

18

where N is the total number of vertices in the simulation. The first factor takes into account the
uniform selection of two unique vertices, while the second factor takes into account the uniform
selection of ∆. Note that this proposal probability does not satisfy detailed balance unless
f = g +∆, this means it will contribute a prefactor to the acceptance probability depending on
f .

The acceptance probability will again take the form of Equation 3.3. But since only two
vertices participate in the move, there will only be two factors in the nominator and denominator
that do not cancel out. However, these factors will depend on five parameters: f, g, l, k and ∆.
The acceptance probability will be

A(Q → Q′) = min

{
1,

f

g +∆

Cl,f−∆Ck,g+∆

Cl,fCk,g

}
, (3.10)

where the fraction of weights can be written out as

Cl,f−∆Ck,g+∆

Cl,fCk,g
=

f !g!(2l + f − 1)!!(2k + g − 1)!!(2l + 3(f −∆)− 5)!!(2k + 3(g +∆)− 5)!!

(f −∆)!(g +∆)!(2l + 3f − 5)!!(2k + 3g − 5)!!(2l + (f −∆)− 1)!!(2k + (g +∆)− 1)!!
. (3.11)

The expression of Equation 3.11 presents a problem, the double factorials do not cancel out
as they did in the case of the flip move. The reason for this is that in the case of the flip
move, the only parameters that changed during the move were the degrees of the participating
vertices. These degrees are multiplied by a factor of two everywhere in Equation 3.11, so the
terms containing the degrees are always even. Furthermore, the degree of the participating
vertices could only change by one, making all but one term in each pair of double factorials
cancel out. Both of these things are not true for the mass move, where there is a range of mass
that can be moved and the factors multiplying the mass are odd.

These factorials are not only computationally expensive to calculate but they also grow very
fast. The size of the double factorial terms results in numerical accuracy problems that can have
profound consequences on the result. Therefore, we need an alternative method of determining
the acceptance probability.

3.2.1 First Attempt: Approximation for Large Mass

As a first attempt, one could realise that the problems with the double factorials only arise
when the numbers we wish to take the (double) factorial of become large. A natural thing to do
would therefore be to take the asymptotic limit of Cl,f as the parameters become large. As a
first attempt, we take the limit of large mass, f , since this will be the largest parameter. Since
the double factorial behaves differently depending on whether f is even or odd, there are two
different limits to consider4:

lim
f→∞

f mod 2=0

Cl,f ; (3.12)

lim
f→∞

f mod 2=1

Cl,f , (3.13)

4For those unfamiliar with the notation: f mod 2 gives the remainder of f when dividing by 2.

19

200 400 600 800 1000
f

-0.4

-0.2

0.0

0.2

0.4

A(l,f,k,g,Δ) - AApprox(l,f,k,g,Δ)
Relative accuracy of approximate acceptance probability

Figure 12: The difference between the exact value of Equation 3.11 and the value obtained using
the approximate weights Cl,f as in Equation 3.14. The values of the parameters used for this
plot are: l = 6, k = 9, g = 100,∆ = 20.

where f ∈ N. It turns out that both cases show the same asymptotic behaviour if expanded up
to second order in f around f = ∞:

lim
f→∞

f mod 2=0

Cl,f = lim
f→∞

f mod 2=1

Cl,f =
22f−

9
2 3

3f
2 +l−4 l (36f − 24l(2 + l)− 47)

f
7
2
√
π

(
2l

l

)
. (3.14)

The asymptotic forms of Cl,f can now be substituted into Equation 3.11 to obtain an ap-
proximate expression for Equation 3.10:

A(Q → Q′) ≈ min

{
1,

f
7
2 g

7
2 (47 + 36f − 24l(2 + l)− 36∆)(47 + 36g − 24k(2 + k) + 36∆)

(f −∆)
7
2 (g +∆)

7
2 (47 + 36f − 24l(2 + l))(47 + 36g − 24k(2 + k))

}
.

(3.15)
Unfortunately, the approximation of Equation 3.15 does not fare too well, as can be seen

from Figure 12. In this figure, the approximated acceptance probability deviates from the exact
acceptance probability by about 0.17, even for large values of f . While this might be due to the
fact that g is too small, the approximation also diverges from the exact value for small values of
f , which is to be expected since the approximation consists of taking the large f limit. However,
to implement this approximation effectively, one needs to know for what range of values of the
parameters it is valid. It turns out that determining the location of the deviation as a function
of the other parameters is not easy.

3.2.2 Second Attempt: Crossing-out Terms

Given the difficulties with the approximation approach to the acceptance probability, it might
be worthwhile to consider another approach that does not rely on approximate expressions, but
rather on clever simplification of the expression to be calculated. For this, we note that the
expression of Equation 3.11 consists of a fraction of two products. Usually, when faced with
such a problem, the first simplification step would be to cross out equal terms in the nominator
and denominator. But it was noted earlier that the parity of f and g gives rise to two different

20

double factorials and that the fraction in Equation 3.11 can therefore not be simplified in a
general manner. It is thus necessary to evaluate each case individually. That is, to perform the
simplification for each mass move individually. Needless to say, this requires an algorithm so
that it can be done by the simulation code itself.

The algorithm used to simplify Equation 3.11 computes the value of each factor in nominator
and denominator and stores them in a single associative container (more specifically, a C++
map, which is comparable to a Python dict). The container uses the value of the factor as the
key identifier of the entry and assigns to each entry an integer value. This value will be raised
by one if the factor appears in the nominator and lowered by one if the factor appears in the
denominator. The resulting container will contain all factors and an integer value, which is the
exponent of the factor. For example, consider the case where l = 1, f = 3, k = 1, g = 1,∆ = 1,
then:

Cl,f−∆Ck,g+∆

Cl,fCk,g
=

3! 1! (2 + 3− 1)!! (2 + 1− 1)!! (2 + 3(3− 1)− 5)!! (2 + 3(1 + 1)− 5)!!

(3− 1)! (1 + 1)! (2 + 3 · 3− 5)!! (2 + 3− 5)!! (2 + (3− 1)− 1)!! (2 + (1 + 1)− 1)!!

=
3! · 1! · 4!! · 2!! · 3!! · 3!!
2! · 2! · 6!! · 0!! · 3!! · 3!!

=
3 · 2 · 4 · 2 · 2 · 3 · 3
2 · 2 · 6 · 4 · 2 · 3 · 3

. (3.16)

The associative container will now contain the key-value pairs: (6,−1), (4, 0), (3, 1), (2, 0) since
6, 4, 3 and 2 are all the factors that appear when expanding the double factorials5. For specific
values of the parameters, Equation 3.11 can now be expressed as the product of all keys in the
container raised to the power of their value. So the fraction of Equation 3.16 can be expressed
as 6−1 · 3. Note that this procedure has reduced the number of multiplications required in this
example from 13 down to 1.

One might wonder if this algorithm will run into numerical accuracy problems for large values
of the parameters, as the integers being divided may be of vastly different orders of magnitude.
This problem can be circumvented by dividing the largest factor in the nominator by the largest
factor in the denominator first, multiplying these with the intermediate answer F and iterating
this procedure. This way, the ratio of two factors will always be close to one, since the factors are
not expected to change much from the largest to the second largest. This has another problem,
which is that F might reach a point where it no longer fits in its designated computer memory
before all factors have been accounted for. In such an event, the simulation will (depending on
the programming language, which in our case is C++) simply assign F the value zero or infinity,
depending on whether it was too small or too large to fit in the memory. All ratios of factors
following this will not be able to change the value of F .

In an attempt to circumvent this problem, one might try to follow a multiplication of F
with a factor greater than one by a multiplication with a factor smaller than one. The question
that remains is how to find ratios that are greater and smaller than one efficiently. Luckily, it
turns out that the largest and the smallest factors are either both in the nominator or both in
the denominator. One can therefore alternate between taking the largest and smallest factor in
both the nominator and denominator and divide them. An example of the procedure is given by
taking l = k = g = ∆ = 2, f = 3:

C2,3−2C2,2+2

C2,3C2,2
=

11 · 9 · 7 · 6 · 5 · 5 · 4 · 3 · 3 · 3 · 2 · 2 · 2 · 2
8 · 7 · 6 · 5 · 5 · 4 · 4 · 4 · 3 · 3 · 3 · 2 · 2 · 2

=
11 · 9 · 2
8 · 4 · 4

. (3.17)

5In the simulation code, a key of 1 is allowed, but since this should not affect the results of the computation,
it is omitted here.

21

Here, the largest factors are marked in red and the smallest factors in blue. Applying the
aforementioned procedure, we find:

C2,3−2C2,2+2

C2,3C2,2
=

11

8
· 2
4
· 9
4
, (3.18)

where indeed the factors alternate between being larger than one and smaller than one.
This algorithm of expanding the factorials, crossing out identical factors and computing the

product of surviving factors could theoretically be very accurate and efficient. When the compu-
tation of the product of ratios is done cleverly, the only limiting factor would be the numerical
accuracy. It is also potentially faster than computing the fraction Cl,f−∆Ck,g+∆/Cl,fCk,g di-
rectly since the number of multiplications is generally greatly reduced. However, neither benefit
applies if one cannot prevent divergences in the intermediate answer F . The latter proves to be
difficult, even with the mentioned precautions. It will therefore again be worthwhile to explore
a different method of computing Equation 3.11.

3.2.3 Third Attempt: Gamma Functions

For the third attempt to compute Cl,f−∆Ck,g+∆/Cl,fCk,g, we write the (double) factorials in
terms of the gamma-function. One can write factorials in terms of gamma functions as

n! = Γ(n+ 1), (3.19)

for n ∈ N. Double factorials can be written in terms of single factorials, but the expression
depends on the parity of the integer in the double factorial. This results in the two expressions:

n!! = (2k)!! = 2kk!

n!! = (2k + 1)!! =
(2k)!

2kk!
, (3.20)

with k ∈ Z. These expressions can both be written in terms of gamma functions using Equa-
tion 3.19.

Note that Equation 3.11 consists of several fractions of similar form:

Cl,f−∆Ck,g+∆

Cl,fCk,g
=

f !g!(2l + f − 1)!!(2k + g − 1)!!(2l + 3(f −∆)− 5)!!(2k + 3(g +∆)− 5)!!

(f −∆)!(g +∆)!(2l + 3f − 5)!!(2k + 3g − 5)!!(2l + (f −∆)− 1)!!(2k + (g +∆)− 1)!!
=

f !

(f −∆)!
· g!

(g +∆)!
· (2l + f − 1)!!

(2l + 3f − 5)!!
· (2k + g − 1)!!

(2k + 3g − 5)!!
·

(2l + 3(f −∆)− 5)!!

(2l + (f −∆)− 1)!!
· (2k + 3(g +∆)− 5)!!

(2k + (g +∆)− 1)!!
. (3.21)

Since the ratios of double factorials all have such a similar form, we will only rewrite one in terms
of gamma functions. Doing this for (2l + f − 1)!!/(2l + 3f − 5)!!) with f even gives:

(2l + f − 1)!!

(2l + 3f − 5)!!
=

22−f Γ
(

1+f
2 + l

)
Γ
(
3
2 (f − 1) + l

) . (3.22)

22

Doing the same for f odd gives the exact same result, meaning there is no need to distinguish
between even and odd vertex mass. Note that this need never existed for the degree of the vertex,
since it is always multiplied by an even integer.

Since the gamma functions grow as fast as factorials, it is necessary to take precautions to
avoid numbers that are too large for the simulation to handle. To this end, we consider the
logarithm of Equation 3.11. This allows Equation 3.11 to be written as a sum of logarithms.
Since the full expression is rather cumbersome and mostly contains similar terms, we give only
the logarithm of Equation 3.22, which can be written as

log

(
(2l + f − 1)!!

(2l + 3f − 5)!!

)
= log(22−f) + log

(
Γ

(
1 + f

2
+ l

))
− log

(
Γ

(
3

2
(f − 1) + l

))
, (3.23)

where the first logarithm will drop out in the final expression for the acceptance probability.
The sum of these logarithms will be small enough to store in computer memory and perform

operations on. The final result of these operations can then be converted back by taking the
exponential. This procedure has as a benefit that one can use the built-in functions of the C++
cmath library, which contains a function for computing the logarithm of the gamma function,
ln(Γ(x)). This function has accuracy as good as a direct computation while being significantly
faster and less prone to coding errors than the other methods discussed previously. It is for these
reasons that using log-gamma functions is the preferred method for computing Equation 3.11
and will be used in the remainder of this thesis.

3.3 Improving the mass move

In the previous section, it was discussed how the acceptance probability for the mass move can
be computed efficiently. This section will delve into improving this move to make the simulations
more efficient. In this context, more efficient means that fewer proposed moves are required to
achieve the same results.

To achieve a higher efficiency for the simulations, one might try to tweak the proposal prob-
ability to propose more moves that have a larger probability of being accepted. For this, it can
be useful to look at the acceptance probability for the mass move given by Equation 3.10 and
attempt to determine for what values of ∆ it is largest. However, due to the erratic nature of the
acceptance probability and its dependence on five variables, this is more easily said than done.
Although the acceptance probability is difficult to analyse, one can expect it to be relatively
large for small values of ∆ since the configuration does not change much when applying such a
small mass move.

We choose to limit the mass ∆ that can be moved to be at most ⌊f/2⌋+1. By restricting the
range of possible values of ∆ that can be proposed, the proposal probability of Equation 3.9 will
need to be altered. The set of values ∆ can take will now be {n|1 ≤ n ≤ ⌊f/2⌋+ 1} so that the
probability of selecting a particular value of ∆ will be (⌊f/2⌋+ 1)−1. The proposal probability
for this improved move will be:

S(Q → Q′) =
1

N(N − 1)

1

⌊f/2⌋+ 1
. (3.24)

Another move worth attempting is a move that selects two vertices at random and exchanges
their masses. The proposal probability for such a move will be

S(Q → Q′) =
1

N(N − 1)
, (3.25)

23

0 10 20 30 40
f0.0

0.2

0.4

0.6

0.8

1.0

A(Q->Q')

Figure 13: The acceptance probability of a mass move that exchanges the masses of two random
vertices as a function of one of the vertex masses. The plot was made using l = 4, k = 2, g = 5
and with f ranging from 1 to 40. The acceptance probability is decent for all values of f . In
particular, for f ≥ g it is equal to one.

and the resulting MH acceptance probability will be

A(Q → Q′) = min

{
1,

Cl,g · Ck,f

Cl,f · Ck,g

}
, (3.26)

where l, k and f, g are the degrees and masses of the participating vertices, respectively. The
acceptance probability of Equation 3.26 will generally be quite significant, as can be seen in
Figure 13.

Theoretically, the moves that exchange vertex masses are not necessary for the simulation to
be able to sample the full space of quadrangulations. In practice, however, it is useful to include
these moves to increase the efficiency of the simulation. That is, the simulation will first attempt
to move a small mass 1 ≤ ∆ ≤ ⌊f/2⌋ + 1 from the vertex with mass f to the other vertex. If
this fails, it will attempt to exchange both masses.

4 Results

We will now discuss the results from simulating the model of dually-weighted maps. The code
used for these simulations can be found at [13]. The main goal of these simulations is to determine
the existence of a phase transition that corresponds to the phase transition in a single slab of 2+1
dimensional CDT. To find such a phase transition, it is necessary to know what it is expected to
look like.

Recall that the phase transition in a single slab of CDT is from a phase where there are
macroscopic clumps of 13- and 31-simplices to a phase where these clumps are much smaller.
Since the size of a clump is related to the mass and degree of a quadrangulation vertex by
N = l + 2f − 2, a large clump will manifest itself in the quadrangulation as a vertex with a
large degree or a large mass. However, the mass and degree of a quadrangulation vertex are not
independent. This can perhaps be better understood using the three-valent maps in the leftmost

24

part of Figure 6. For increasingly larger clusters of vertices in such a map, it is increasingly
unlikely the vertices of such a cluster can all link to three other vertices inside the cluster.
This forces some of them to link with vertices from other clusters, increasing the number of
outgoing edges. Since this number of outgoing edges is exactly the degree of the vertex in the
quadrangulation, the degree of this vertex will increase with the mass of the vertex. It is therefore
expected that a large cluster of simplices manifests itself as a quadrangulation vertex with both
a large mass and a large degree. The expected phase transition in the Dually-Weighted model
is therefore from a phase where the degrees and masses of the vertices are rather uniform to a
phase where there exist a few vertices with large degree and large mass.

To probe the existence of a phase transition, we measure four observables:

• the maximum vertex degree (max{lv|v ∈ Q});

• the maximum vertex mass (max{fv|v ∈ Q});

• the sum of all squared vertex degrees
(∑

v∈Q l2v

)
;

• the sum of all squared vertex masses
(∑

v∈Q f2
v

)
,

where Q is the quadrangulation on which the measurements are performed. The reason for
including the last two observables is that, in contrast to the first two, they contain information
on the entire quadrangulation instead of just one vertex. By the reasoning performed earlier,
the observables should all show a jump at the phase transition.

The results from the simulations are shown in Figure 14. These simulations were performed
with 1002 vertices and a total mass ranging from 10 to 2010. Each point is the average of 40000
measurements of that observable at that total mass.

What is immediately clear is that there is no jump in any of the observables, which indicates
there is no phase transition. The maximum mass remains relatively low, meaning that no macro-
scopic amount of mass has gathered at a single vertex. What is more suspicious is the fact that
the maximum vertex degree is very large for small total masses N . From the discussion so far,
there is no apparent reason for the vertices to prefer having a large degree when there is little
mass in the simulation. A possible explanation for this will be given later.

To perform a check on the simulation code, we measure the distribution the mass move
samples from to confirm that it is indeed the distribution it should be. This can be done by
selecting two vertices and repeatedly applying the mass move on them while keeping the map
itself fixed. That is, we repeatedly attempt to move mass between the same two vertices but do
not perform any flip moves.

The mass of one of these vertices should follow the distribution given by

π(l, k, f,N) =
1

Z

1

C(Q)

∏
v∈Q

Clv,fv ∝ Cl,NCk,N−f . (4.1)

Here, l and k are the degrees of the participating vertices, f is the mass of one of these vertices
and N is the total mass of these two vertices. Note that l, k and N are kept fixed during the
test so f is the only free parameter determining the quadrangulation. This is the reason the
mass f of a single vertex should follow the distribution of Equation 4.1, even though this is a
distribution of quadrangulations. By keeping track of the mass of one of the vertices during the
test, a histogram of the vertex mass can be made.

Performing such a test for a quadrangulation with 102 vertices, a total mass of 10000 and
vertices with degrees l = 1 and k = 3 and total mass N = 16 gives rise to the histogram

25

Figure 14: Results from a simulation of quadrangulations with 1002 vertices and a total mass
N . The maximum mass remains rather low for all values of N . However, the maximum degree
shows odd behaviour for low N , where it assumes very large values.

shown in Figure 15. The exact distribution of Equation 4.1 is shown in Figure 16. While the
histogram in Figure 15 shows the correct preference for large masses, the overall shape is far
from correct. The scale on the y-axis in this histogram is also much broader than that for the
exact distribution due to the existence of a single histogram entry of mass zero. Neglecting this
etnry gives the histogram in Figure 17, which has a shape that is more similar to, but is still not
in good agreement with the exact distribution. This might indicate a flaw in the code that could
have impacted the results of the simulations.

This discrepancy between the measured and exact mass distributions does, however, not
explain the oddly large vertex degrees present in quadrangulations with small total mass. This
behaviour can be explained using an approximation to the weights of Equation 2.14 for large
degrees and zero mass:

Cl,N = Cl,l−2 ≈ 22l−7 · 8l + 15

l5/2
√
π
. (4.2)

These weights decrease with increasing degree l of the vertex, suggesting that such a vertex is
unlikely to exist. However, it is the probability of finding a particular quadrangulation that

26

Figure 15: A histogram of the mass of a sin-
gle vertex in a simulation of quadrangulations
with 102 vertices and a total mass of 10k. The
mass of the vertex has been recorded 200k
times to make the histogram. The vertices in-
volved had degrees of l = 1 and k = 3, re-
spectively and a total mass of N = 16. The
preference for large masses is clearly visible,
but the shape is hard to judge given the scale
on the y-axis.

Figure 16: A plot of Equation 4.1 for
l = 1, k = 3 and N = 16. The maximum of
this histogram at large vertex degrees agrees
with the histogram obtained from numerical
simulations.

must be considered. The probability of finding a particular quadrangulation Q is governed by
the Boltzmann weight of Q:

WBoltzmann(Q) ∝
∏
v∈Q

Clv,Nv

≈
∏
v∈Q

22lv−7 · 8lv + 15

l
5/2
v

√
π

= 2(
∑

v∈Q(2lv−7)) ·
∏
v∈Q

8lv + 15

l
5/2
v

√
π
, (4.3)

where the sum and product run over all vertices in the quadrangulation Q. The larger the
Boltzmann weight of a quadrangulation, the more likely it is to occur. Since the number of faces
in a quadrangulation is fixed during a simulation, the number of edges is as well. Also, the sum
of all vertex degrees equals twice the number of edges in a map so the sum in the exponent is a
constant factor and does not contribute to the behaviour of the simulation.

Using that every weight assigned to a vertex with degree l carries with it a factor of 22l−7,
we find that the behaviour of the Boltzmann weights is approximately dependent on the weight
of each vertex divided by this factor:

Cl,l−2

22l−7
. (4.4)

This means that the Boltzmann weight of a quadrangulation will be proportional to the product
over all these reduced weights:

WBoltzmann(Q) ∝
∏
v∈Q

Clv,Nv

22lv−7
. (4.5)

27

Figure 17: The histogram of Figure 15 with an adjusted range of the y-axis to better show the
shape of the histogram. The similarities with Figure 4.1 are now more apparent, but the two
histograms are still quite different.

Some values of the reduced weights of Equation 4.4 for fixed f = 0 are shown in Figure 18.
The values of the reduced weights decrease with increasing degree, but what is interesting is
that the decay is rapid at first and then slows down as the degrees of the vertices become
larger. Therefore, it will be beneficial for maximising the Boltzmann weights if the vertices
in a quadrangulation have a minimal degree. But since the sum of all vertex degrees is fixed,
vertices with small degrees must be offset by vertices with large degrees. This means that
quadrangulations with a few vertices with very large degrees will have higher Boltzmann weights
than quadrangulations where all vertices have approximately the same degree. For example:
consider two quadrangulations, Q1 and Q2, each with 12 vertices and 20 edges. Assume that
Q1 has 8 vertices of degree four and four vertices of degree 2. Also, assume that Q2 has a single
vertex of degree 18 and all other vertices have degree 2. The ratio of the Boltzmann weights for
these two maps would be

WBoltzmann(Q1)

WBoltzmann(Q2)
=

∏
v∈Q1

Clv,Nv

22lv−7∏
w∈Q2

Clw,Nw

22lw−7

=
18 · 84

(17678835/268435456)1 · 811
= 5.79224 · 10−5, (4.6)

so Q2 is strongly preferred over Q1. This means that the quadrangulations with a few vertices
of very large degrees are more likely to occur during simulations than quadrangulations where
all vertex degrees are approximately equal.

5 Conclusions

To conclude, we have investigated an alternative method for simulating a single slab of 2+1 di-
mensional CDT. This method is based on the manipulation of dually-weighted planar maps using
Markov-Chain Monte Carlo methods. The goal of this thesis was to find out if this alternative
approach would be better suited for simulating the phase transition in 2+1 dimensional CDT
than traditional simulation methods, as previous simulations suffered from critical slowing down.

Unfortunately, the results show no sign of a phase transition in the dually-weighted model. A
quick check on the generated distribution of vertex masses shows that this part of the simulation
code does not quite produce the desired results. So although the results suggest the absence of
a phase transition, one cannot draw a definitive conclusion from these results.

28

0 5 10 15 20
l

2

4

6

8

Cl,N

22 l-7

Figure 18: Values of the reduced weights of the vertices Cl,N/22l−7 as a function of the vertex
degree, l. The weights decrease with increasing vertex degree, which gives rise to a preference
for a couple of large vertex degrees and many small degrees.

The reason for the possible absence of a phase transition will most likely have to do with
the constraints imposed on the dually-weighted model. One of these constraints is that all maps
inside a cluster must be connected, while this is not required by CDT. Since it is currently
unknown which constraints possibly cause the phase transition to vanish, further investigation
will be necessary.

6 Acknowledgements

I would like to thank Dr. Timothy Budd for being my supervisor during my internship. He has
masterfully guided me through this part of my bachelor’s by providing excellent explanations
on a subject that used to be completely foreign to me and always taking time to answer my
questions.

References

[1] T. G. Budd. “Non-perturbative quantum gravity: a conformal perspective”. PhD thesis.
Universiteit Utrecht, Mar. 20, 2012.

[2] Jan Ambjørn. Lattice Quantum Gravity: EDT and CDT. 2022. doi: 10.48550/ARXIV.
2209.06555.

[3] J. Ambjørn, J. Jurkiewicz, and R. Loll. “Non-perturbative 3d Lorentzian Quantum Grav-
ity”. In: Phys. Rev. D 64 (July 2001). doi: 10.1103/PhysRevD.64.044011.

[4] Michael E. Peskin and Daniel V. Schroeder. An introduction to quantum field theory.
Addison-Wesley Pub. Co., 1995, p. 842. isbn: 978-0-201-50397-5.

29

https://doi.org/10.48550/ARXIV.2209.06555
https://doi.org/10.48550/ARXIV.2209.06555
https://doi.org/10.1103/PhysRevD.64.044011

[5] F. Wilczek. “On absolute units, I: Choices”. English. In: Physics Today 58.10 (Oct. 2005).
WOS:000232422000002, pp. 12–13. issn: 0031-9228. doi: 10.1063/1.2138392. url: https:
//www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=

DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=

EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=

American+Institute+of+Physics (visited on 07/05/2023).

[6] Jan Ambjørn. Quantization of Geometry. 1994. doi: 10.48550/ARXIV.HEP-TH/9411179.

[7] Raymond K. W. Wong et al. “Fiber direction estimation, smoothing and tracking in dif-
fusion MRI”. In: The annals of applied statistics 10.3 (2016), p. 1137.

[8] R. Loll. “Quantum gravity from causal dynamical triangulations: a review”. In: Classical
and Quantum Gravity 37.1 (Dec. 2019), p. 013002. doi: https://doi.org/10.1088/1361-
6382/ab57c7.

[9] Art B. Owen. Monte Carlo theory, methods and examples. 2013. url: https://artowen.
su.domains/mc/.

[10] T.G.Budd. Monte Carlo Techniques. Nov. 16, 2022. url: https://hef.ru.nl/~tbudd/
mct/intro.html (visited on 06/13/2023).

[11] Vladimir A. Kazakov, Matthias Staudacher, and Thomas Wynter. “Character expan-
sion methods for matrix models of dually weighted graphs”. en. In: Communications in
Mathematical Physics 177.2 (Apr. 1996), pp. 451–468. issn: 1432-0916. doi: 10.1007/
BF02101902. url: https://doi.org/10.1007/BF02101902 (visited on 06/06/2023).

[12] Maxim Krikun. “Explicit enumeration of triangulations with multiple boundaries”. En-
glish. In: Electronic Journal of Combinatorics 14.1 (Aug. 2007). WOS:000249217900001,
R61. issn: 1077-8926. doi: https : / / doi . org / 10 . 48550 / arXiv . 0706 . 0681. url:
https://www-webofscience-com.ru.idm.oclc.org/wos/woscc/full-record/WOS:

000249217900001 (visited on 07/05/2023).

[13] Jasper Stokmans. Quadrangulation source code. Comp. software. July 9, 2023. url: https:
//gitlab.science.ru.nl/jstokmans/quadrangulation-flip/-/tree/main (visited on
07/09/2023).

30

https://doi.org/10.1063/1.2138392
https://www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=American+Institute+of+Physics
https://www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=American+Institute+of+Physics
https://www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=American+Institute+of+Physics
https://www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=American+Institute+of+Physics
https://www-webofscience-com.ru.idm.oclc.org/api/gateway?GWVersion=2&SrcAuth=DOISource&SrcApp=WOS&KeyAID=10.1063%2F1.2138392&DestApp=DOI&SrcAppSID=EUW1ED0CB8CKqJtYaP96MzuX545pL&SrcJTitle=PHYSICS+TODAY&DestDOIRegistrantName=American+Institute+of+Physics
https://doi.org/10.48550/ARXIV.HEP-TH/9411179
https://doi.org/https://doi.org/10.1088/1361-6382/ab57c7
https://doi.org/https://doi.org/10.1088/1361-6382/ab57c7
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/
https://hef.ru.nl/~tbudd/mct/intro.html
https://hef.ru.nl/~tbudd/mct/intro.html
https://doi.org/10.1007/BF02101902
https://doi.org/10.1007/BF02101902
https://doi.org/10.1007/BF02101902
https://doi.org/https://doi.org/10.48550/arXiv.0706.0681
https://www-webofscience-com.ru.idm.oclc.org/wos/woscc/full-record/WOS:000249217900001
https://www-webofscience-com.ru.idm.oclc.org/wos/woscc/full-record/WOS:000249217900001
https://gitlab.science.ru.nl/jstokmans/quadrangulation-flip/-/tree/main
https://gitlab.science.ru.nl/jstokmans/quadrangulation-flip/-/tree/main

	Introduction
	Theory
	Towards a quantum theory of gravity
	2+1 Dimensional CDT
	Markov-Chain Monte Carlo
	Metropolis-Hastings algorithm
	Measuring observables
	The problem when simulating the phase transition in 2+1 dimensional CDT
	How dually-weighted maps help

	Methods
	Implementing the flip moves
	Implementing the mass move
	First Attempt: Approximation for Large Mass
	Second Attempt: Crossing-out Terms
	Third Attempt: Gamma Functions

	Improving the mass move

	Results
	Conclusions
	Acknowledgements
	References

