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1 Introduction
This thesis is the result of my bachelor internship at the department of theoretical high
energy physics (THEF) in Nijmegen. I attended this internship in the spring of 2012,
during which I was supervised and guided by Thijs van den Broek. I want to express
my sincere gratitude for all the patience Thijs showed in guiding me and all the detailed
comments and suggestions he provided along the way. Furthermore I want to thank Walter
van Suijlekom for providing useful suggestions and remarks on my research.

The main focus of my research was to find a description of electrodynamics using the
framework of non-commutative geometry (from now: NCG). The course of this internship
can roughly be divided into two parts: first I had to familiarize myself with the concepts
of NCG, secondly these concepts needed to be applied to the theory of electrodynamics.
Since I do not presume the reader to have any prior knowledge about NCG this thesis will
share that structure. We will start out by motivating and introducing the concepts of NCG
and continue with their application.

1.1 What is non-commutative geometry?

Before we can attempt to work with NCG we should first develop a basic idea of what
this branch of physics envelopes. Here the word physics might be poorly chosen since
it is a purely mathematical theory at heart. However, we are interested in the physical
implications thus we regard it as physics.

In general, geometry can be defined as the theory of spaces. Spaces form the basis
of many fundamental theories in physics, take for example the space-time of relativistic
theory or the background manifold of quantum field theory. It can be shown [7, 1] that
there exists a one-to one correspondence between certain spaces and a certain class of
commutative algebras. The concept of an algebra will be introduced later but for now
it suffices to know that an algebra consists of elements and that two of these elements
can be multiplied with each other to form yet another element from the algebra. For a
commutative algebra we have that any two of these elements commute. In other words, for
two elements α and β from the algebra we have:

[α, β] ≡ αβ − βα = 0.

But what about non-commutative algebras? I.e. algebras for which [α, β] is not necessarily
equal to zero. Could they be related to spaces as well? The fundamental idea of NCG is
that indeed they are. NCG treats these non-commutative objects as if they are related to
“non-commutative spaces”. Although these spaces do not resemble the “classical” spaces,
many of the geometrical structures (metric structures, differential calculus, etc.) can be well
defined within them. The main objective of (physical) NCG is to find the non-commutative
objects that correspond to the spaces that describe the physical world. In this way NCG
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promises to provide a more general description of physics and possibly discovering new
physical laws along the way.

1.2 What are the benefits of NCG?

From the previous section we may conclude that some of the objects in modern physics
can be reformulated in the form of algebras. But what are the benefits of doing this? One
might argue that simply reformulating existing theories won’t give any new insights into
fundamental physics. There are two arguments against this.

First of all the framework of NCG offers a more general starting point for setting up
physical theories. For example: if our theory requires the use of differential geometry
(quantum Field theory, general relativity, etc.) we were traditionally restricted to using a
differential manifold. This limitation imposes restrictions on our theory since a manifold is
only one particular type of space. For example: if we were to use the framework of NCG to
set up quantum field theory we would notice that a differential manifold is now only one of
many possible differential geometries. With NCG the set of possible spaces we might chose
has been greatly extended and it might just turn out that the physical world is (better)
described by a non-commutative underlying space.

Secondly, this more general approach might provide us with new insights into already
existing ideas. Take for instance the framework of analytical mechanics, which at first
might just seem like an abstraction of Newton’s theories but turned out to give a toolbox
with much broader applications.

1.3 A shopping list for electrodynamics

As mentioned earlier, the main goal of my research is to derive a theory describing electro-
dynamics within the framework of NCG. Before we set out to do this, we ask the question:
what are the basic ingredients necessary for such a theory? To answer this question we
take a look at field theories describing electrodynamics, for a detailed analysis see [2]. First
of all we need a set of particles. In the case of electrodynamics we know these particles are
given by electrons, positrons and photons. Every one of these particles has a set of both
extrinsic and intrinsic properties. For example: the position and momentum of a particle
are extrinsic properties, spin and chirality are intrinsic ones. To account for these degrees
of freedom we need a space which contains all these properties. With the equivalence we
noted above in NCG this space will take the from of an algebra. Note that we use the
concept of a space in a more general sense than the physical space we can see around us.
Where in classical physics a particle’s properties are simply assigned to it we now define
them by the particle’s “position” in this generalized space.

As mentioned earlier, one of these properties is the chirality of a particle. Beware that
chirality is not the same as helicity, although in some textbooks these terms are used as
interchangeable. Helicity is related to the alignment of the spin and momentum vector,
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making it an extrinsic quantity. Chirality, on the other hand, is an intrinsic quantity, which
is determined by whether the particles transform in a left or right handed representation of
the Poincaré group. This difference in transformational properties allows us to distinguish
between left and right-handed particles respectively. When physicists say nature is left
handed this means we only observe interactions mediated by the weak force between left
handed particles in nature. So to account for the asymmetry we should better have a way
to distinguish between left and right-handedness in our theory.

Another fundamental property our theory also needs to exhibit is C-symmetry. A
theory is said to be C-symmetric if its laws are invariant under a transformation that
inverts the signs of the charges of all the particles in the theory. In quantum field theory
this process is called charge conjugation and although some theories are not C-symmetric
we know for a fact that electrodynamics is. So in our theory we need an operation that is
the non-commutative equivalent of charge conjugation.

Since up until now our theory has been static and we know electrodynamics is not,
we also need to take into account the possible interactions of the particles. So finally we
need some kind of operator (like the Laplacian of classical mechanics) that determines the
dynamical properties of the system and does that in a way that conforms with observations.
In modern physics this operator gives rise to a so called gauge field, which characterizes
the properties of the interactions. Furthermore, we know from quantum field theory that
this gauge field can be directly associated with the particles (or quanta) mediating the
interactions. In the case of electrodynamics these particles are the photons we mentioned
earlier and we therefore require the interactions in our theory to be described by a photonic
gauge field.

To summarize the basic ingredients of our theory we come to the following list:

• A set of particles corresponding to the known particles of electrodynamics

• An algebra from which the properties of all the particles can be derived

• Distinguishability between left and right-handed particles

• C-symmetry and a way to perform charge conjugation

• An operator that gives rise to an photonic gauge field

In the next chapter we will introduce the fundamental concepts of NCG, some of which we
can directly identify with the items in this list.
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2 Definitions and theorems
Now that we are familiar with the basic ideas of NCG the reader should familiarize
him/herself with some of its mathematical concepts. Since these concepts are fundamental
to NCG they will be introduced in this section, readers who are already familiar with these
concepts can skip this section or regard it as reference.

2.1 General mathematical concepts

I will begin by introducing the general mathematical concepts which are used extensively
within NCG. Note that some of the definitions differ slightly from the way they are defined
in mathematical literature or seem to be incomplete. The reason for this is that in this
case the usage of these concepts is restricted to our purposes and in some cases we do not
need to concern ourselves with the most general and complete mathematical definition.

Let V and W be vector spaces over a field F (C or R for example), we can now define
the following operations on V and W.

Definition 1. By V ⊕W we denote the direct sum of V and W , which is defined as
follows:

V ⊕W = {(v, w) | v ∈ V,w ∈W}. (1)

Furthermore we define addition and scalar multiplication on V ⊕W by:

• (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) for (v1, w1), (v2, w2) ∈ V ⊕W

• λ(v, w) = (λv, λw) for λ ∈ F.

With these operations V ⊕W is again a vector space. A useful identity concerning the
direct product is given by: dim(V ⊕W ) = dim(V ) + dim(W ).

Definition 2. With V ⊗W we denote the tensor product of V and W over a field F.
The tensor product of V and W is, again, a vector space, defined by:

V ⊗W = {v ⊗ w | v ∈ V,w ∈W}. (2)

For which the following conditions apply:

• Bi-linearity: let λ ∈ F then (λv)⊗ w = v ⊗ (λw) = λ(v ⊗ w).

• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

• v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2
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For the tensor product we have: dim(V ⊗W ) = dim(V )dim(W ).

We will need these two operations later when constructing the fundamental objects of
NCG. One of these objects is the Hilbert-space, which is defined in the following way.

Definition 3. A Hilbert space is a vector space, H, endowed with an inner product
〈f ; g〉 with f, g ∈ H. Such that the norm defined by:

|f | =
√
〈f ; f〉

turns H into a complete metric space. I.e. it is a metric space in which every Cauchy
sequence is convergent.

In NCG the Hilbert space can be considered as the set containing the fermionic particle
states of the theory. In our case this means the electron and positron particle states should
be contained within the Hilbert space.

Definition 4. Let F be a field, and let A be a vector space over F equipped with an
additional binary operation from A×A to A, we use · to denote this operation . Then A
is an algebra over F if the following identities hold for all α, β, γ ∈ A, and a, b ∈ F:

• Left distributivity: (α+ β) · γ = α · γ + β · γ

• Right distributivity: α · (β + γ) = α · β + α · γ

• Compatibility with scalars: (aα) · (bβ) = (ab)(α · β).

As mentioned earlier, certain types of algebras can be identified with a space. In NCG
the algebra will take over the role of the space as it is used in classical theories. Within
the algebra all the extrinsic an intrinsic quantities describing the fermionic particles are
encoded. The algebra is also where NCG gets its name, since the elements of A do not
necessarily commute.

But rather than using the general form of an algebra as defined above, it uses a special
kind of algebra called a unital *-algebra, which is defined in the following two definitions.

Definition 5. Let A be an algebra, then A is a ∗-algebra if it is endowed with a map
∗ : A → A that satisfies:

• (α+ β)∗ = α∗ + β∗

• (aα)∗ = āα∗ where the bar denotes complex conjugation
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• (α · β)∗ = β∗ · α∗

For all α, β ∈ A, and a ∈ F.
In NCG the elements of the algebra are taken to be operators on a vector space which

can be represented as matrices for finite dimensional representations, in this case ∗ will
generally be equal to taking the adjoint of such a matrix.

Definition 6. An algebra A is said to be unital if it contains a multiplicative identity
element, 1,with property:

1α = α1 = α, ∀α ∈ A.

Definition 7. A left A−module E over an algebra A consists of (E ,+) an abelian group
and an operation A× E → E such that, for all α, β ∈ A and x, y ∈ E , we have:

• α(x+ y) = αx+ αy

• (α+ β)x = αx+ βx

• (αβ)x = α(βx)

• For λ ∈ F we have: α(λx) = λ(αx)

Similarly to the above we can also define a right A−module E for which the algebra
works on the right, i.e. we now have an operation: E ×A → E for which the above axioms
hold but with α and β written on the right side of x and y.

Definition 8. Let A and B be two algebra’s and (E ,+) an abelian group then we have an
A− B−bimodule if the following holds:

• E is a left A−module and a right B−module.

• For α ∈ A, β ∈ B and x ∈ E we have: α(xβ) = (αx)β

For A = B we denote the A−A−bimodule as A−bimodule.

2.2 The fundamental concepts of NCG

Now that we have introduced the general mathematical concepts needed for our purposes
within NCG we are ready to define some objects that are specific to NCG.

8



Definition 9. A spectral triple (A,H, D) is given by an involutive unital algebra A
represented as operators on a Hilbert space H and a self-adjoint (D∗ = D) operator D
with compact resolvent such that all commutators [D,α] are bounded for α ∈ A.

The spectral triple is the most fundamental object in NCG, from its properties all phys-
ical characteristics of the theory follow. The algebra is where non-commutativity comes
in, since its elements not necessarily commute. Thus choosing the right spectral triple is
essential in finding a viable theory for the physical world.

Definition 10. A spectral triple is called even if there exists an operator, γ, called a Z2
grading acting on the Hilbert space, for which the following properties hold:

• γ2 = 1

• For α ∈ A we have: [α, γ] = 0

• For the anti-commutator of γ and D we have: {γ,D} = 0.

The purpose of the Z2 grading is to differentiate between particles of different chirality.
It gives us a way to split the Hilbert space into two subspaces, one associated with left
handed particles, the other with right handed particles. A way to achieve this is to define
the projection operators 1

2(1 ± γ) which have the property that the plus sign projects to
the one subspace and the minus sign to the other.

Definition 11. A spectral triple is said to have real structure if there exists an anti-linear
isometry J : H → H, with the following properties:

• J2 = ε

• JD = ε′DJ

• For an even triple: Jγ = ε′′γJ

Where ε, ε′, ε′′ ∈ {±1} are determined by the KO-dimension, n ∈ Z/8, given by the
following values.

n 0 1 2 3 4 5 6 7
ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1
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The action of the operator J acts as charge conjugation on the particles in our theory
thus transforming a particle into its charge conjugated partner. We call a spectral triple
endowed with real structure a real spectral triple.

Definition 12. When a spectral triple has real structure we can define the right hand
action, β0, of an element β ∈ A as:

β0 = Jβ∗J−1.

Which must satisfy the following commutation relations for all α, β ∈ A:

•
[
α, β0] = 0

•
[
[D,α] , β0] = 0

The conditions on γ,D and J introduced in the definitions above will allow us to derive
expressions for these three operators from the properties of a given spectral triple. Since
most physically relevant theories require the spectral triple to be even and have real struc-
ture this will be the first step in coming to physical results. So for our purposes we will
write for a real even spectral triple:

(A,H, D, γ, J) .

Once γ, D and J are found we’d like to make an early examination of our results in
order to determine the viability of the spectral triple. In modern physics the way particles
interact is determined by the gauge group of the corresponding theory. Simply put: what
this means is that the interactions between particles can be derived from the transforma-
tions that leave the action of that theory invariant. These transformations are called the
gauge transformations and together the form the gauge group of a theory. In this way the
properties of the interactions in a theory and its gauge group are directly linked. In our
case the properties of the electromagnetic interaction are determined by U(1) symmetry.
So if we wish to describe electrodynamics within the framework of NCG we should intro-
duce the notion of the gauge group of a given spectral triple and require it to be equal to
U(1). We therefore define:

Definition 13. The gauge group G(A) of a real spectral triple (A,H, D, J) is given by:

G(A) ≡
{
g = uJuJ−1 | u ∈ U(A)

}
.

Where U(A) denotes the unitary elements of A, defined as:

U(A) = {u ∈ A | uu∗ = u∗u = I} .
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Where I is the identity operator.
At this point the reason for this definition might seem unclear, but we will see in

section 5 that it will provide us with the right gauge transformations. For now we just use
this definition to carry out preliminary checks on our spectral triple.

Definition 14. Let T1 = (A1,H1, D1, γ1) and T2 = (A2,H2, D2, γ2) be two even spectral
triples, both endowed with a real structures J1 and J2 respectively. We now denote the
tensor product of T1 and T2 by T = T1⊗ T2 = (A,H, D, γ), which is usually defined in
the following way:

T1 ⊗ T2 = (A1 ⊗A2,H1 ⊗H2, D1 ⊗ I + γ1 ⊗D2, γ1 ⊗ γ2) . (3)

The form of the combined real structure depends on the KO-dimension of the individual
triples, in this thesis we will take it to be J1⊗J2 since in our case we are limited to situations
where the KO-dimensions are such that this is indeed the right expression. The combined
Dirac operator takes this form because it must satisfy the relation {D, γ} = 0, if we would
have simply taken D = D1 ⊗D2 it is easy to see that this relation is no longer satisfied.
The expression for D in equation 3 does satisfy this relation which can be checked by direct
calculation.

Now that we have defined the most important concepts of NCG we are ready to discuss
two general examples of spectral triples, which we’ll do in the next section.

2.3 Two important examples of spectral triples

We will now consider two important examples of spectral triples, both are used extensively
in NCG and form the main ingredients of most theories based on NCG.

Example 15. The canonical spectral triple,TM is given by the data:

TM = (A,H, D) = (C∞(M), L2(M,S), /DM , γM , JM ). (4)

HereM denotes a compact even-dimensional spin manifold, C∞(M) the algebra of infinitely
differentiable functions fromM to the complex numbers, L2(M) the Hilbert space of square
integrable sections of the spinor bundle and /D the canonical Dirac operator given by:
/D = iγµ(∂µ − Γµ), where γµ are the Dirac gamma matrices and the term Γµ is related to
the curvature of space time (see [8]).

It can be shown that the canonical spectral triple corresponds to a differential Rie-
mannian manifold which can be used to describe gravity [4, 5]. However, the canonical
triple alone does not predict any other particle interactions. It can also be shown that the
KO-dimension of a canonical spectral triple equals the dimension of the manifold [12]. We
will take this dimension to be four since we wish to describe a four dimensional space time.
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Example 16. A real even finite spectral triple, TM , is given by the data:

TF = (AF ,HF , DF , γF , JF ).

Where HF is a finite dimensional Hilbert space. As mentioned above, the canonical triple
does not predict any other particle interactions than gravity, since our goal is to describe
electrodynamics using only the canonical triple simply won’t do. Therefore we will use the
product of the canonical triple with a finite spectral triple. So that the canonical triple
holds our theory’s extrinsic properties, while the finite triple will hold the intrinsic degrees
of freedom. These intrinsic properties are what eventually determines the possible particles
and interactions of our theory.

Such a product of the canonical triple with a finite triple is called the almost commuta-
tive manifold. The reason for this being that the algebra of the canonical triple commutes,
while the algebra of the finite triple does not necessarily commute. This makes the product
of these two triples an object that has both commutative and non-commutative properties.
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3 A real-linear spectral triple
This thesis can be seen as an extension of [13], which showed that choosing a complexified
commutative spectral triple based on a two-point space yields the full classical theory of
electrodynamics on a curved background space. It was noted in [3] that a real spectral
triple at least has the same gauge group but the authors leave it as an open question what
physical properties this spectral triple might have. The purpose of this thesis is to clarify
this question.

In this paper we will concern ourselves with the following spectral triple:

(A = C,H = C2, D, J, γ) (5)

Where for α ∈ A and λ1 ⊕ λ2 ∈ H we have:

α(λ1 ⊕ λ2) = αλ1 ⊕ ᾱλ2 (6)

making the action of A real-linear. The action of J is defined by:

J(λ1 ⊕ λ2) = λ̄2 ⊕ λ̄1 (7)

Since in this case the Hilbert space is equivalent to C2, operators can simply be represented
by 2× 2 matrices for which we find the following form:

α =
(
α 0
0 ᾱ

)
,

J =
(

0 1
1 0

)
◦ C.

Where C denotes complex conjugation and ◦ composition of maps. For future purposes
the right hand action for any element α ∈ A can be determined as follows:

α0 ≡ Jα∗J−1

=
(

0 1
1 0

)
◦ C

(
ᾱ 0
0 α

)(
0 1
1 0

)
◦ C

=
(

0 1
1 0

)(
α 0
0 ᾱ

)(
0 1
1 0

)

=
(
ᾱ 0
0 α

)
= α∗.
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3.1 The gauge group

Before we can start working out the detailed properties of the real-linear spectral triple we
should first determine its viability. Since we aim to give a description of electrodynamics
within the framework of non commutative geometry we’d better start out by determining
its symmetry group. The electromagnetic force is described by the U(1) symmetry group,
therefore we should at least demand our spectral triple to have this property as well. We
recall, from definition 13, that the gauge group of a real spectral triple is defined by:

G(A) ≡ {U = uJuJ∗ | u ∈ U(A)}.

Since the algebra is equivalent to C it is immediately clear that U(A) = U(C) = U(1).
To find the symmetry group of our spectral triple we now introduce a homomorphism, φ,
defined by:

φ : U(A) → G(A)
φ(u) = uJuJ∗.

This enables us to use the isomorphism theorem (for a proof see:[11]) which states that:

U(A)/ker(φ) ' G(A).

Where ker(φ) is defined by:

ker(φ) ≡ {u ∈ U(A) | uJuJ∗ = 1}
= {u ∈ U(A) | u = u0}

First we find a representation for the elements of u ∈ U(1). Since for these elements uu∗ = 1,
we find:

1 =
(
u 0
0 ū

)(
ū 0
0 u

)
=
(
|u|2 0
0 |u|2

)
⇒ u =

(
eiθ 0
0 e−iθ

)
with θ ∈ R

Using the condition k = k0 for every k ∈ ker(φ) and the previously derived result for k0

we see that: (
eiθ 0
0 e−iθ

)
=
(
e−iθ 0

0 e+iθ

)
⇒ k = ±

(
1 0
0 1

)
Therefore we have:

ker(φ) =
{
±
(

1 0
0 1

)}
' C2

Now we are ready to apply the isomorphism theorem, which gives us:

G(A) ' U(1)/C2.
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To see this is actually the result we hoped for we first write:

U(1) =
{
eiλ | 0 ≤ λ < 2π

}
.

Next we see that:

U(1)/C2 =
{{
eiθ,−eiθ

}
| 0 ≤ θ < 2π

}
=

{{
eiθ, eiθ+π

}
| 0 ≤ θ < 2π

}
=

{{
eiθ, eiθ+π

}
| 0 ≤ θ < π

}
w

{
eiθ | 0 ≤ θ < π

}
.

We can now define a map:

ρ : U(1)/C2 → U(1)
ρ(eiθ) = e2iθ

ρ−1(eiλ) = eiλ/2.

It is immediately clear that ρ is a bijection. Furthermore, we see that ρ is also an homo-
morphism, since we have:

ρ(eiθ1eiθ2) = ρ(ei(θ1+θ2)) = ei2(θ1+θ2) = ei2θ1ei2θ2 = ρ(eiθ1)ρ(eiθ2).

This leads us to conclude that ρ is an isomorphism, which implies U(1)/C2 ' U(1). So
finally we must have:

G(A) ' U(1). (8)

This is exactly the answer we set out to find, indicating that the real-linear spectral
triple might indeed lead to a description of electrodynamics.

3.2 Determining γ

After our initial success with the gauge group we might proceed by determining the possible
solutions for the Z2 grading. We therefore introduce γ in general form:

γ =
(
a b
c d

)

and apply the restrictions as mentioned earlier.
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First, we must have Jγ − ε′′γJ = 0, so:

0 =
(

0 1
1 0

)
◦ C

(
a b
c d

)
− ε′′

(
a b
c d

)(
0 1
1 0

)
◦ C

=
(
c̄ d̄

ā b̄

)
◦ C − ε′′

(
b a
d c

)
◦ C

=
(
c̄− ε′′b d̄− ε′′a
ā− ε′′d b̄− ε′′c

)
◦ C.

From which we see that d = ε′′ā and c = ε′′b̄. Next we use that γ = γ∗, or:(
a b

ε′′b̄ ε′′ā

)
=

(
ā ε′′b

b̄ ε′′a

)
.

Giving a ∈ R and b = ε′′b. We continue by considering each of the two possible values for
ε′′ separately and applying the third condition: γ2 = 1.

Starting out with ε′′ = 1 we find:

1 =
(
a b

b̄ a

)2

=
(
a b

b̄ a

)(
a b

b̄ a

)
=
(
a2 + |b|2 2ab

2ab̄ a2 + |b|2

)
.

So either a = 0 or b = 0 and a2 + |b|2 = 1. Taking a = 0 we must have |b|2 = 1 ⇒ b 6= 0,
for b = 0 we find a = ±1. We now have the following set of solutions for γε′′=1:

γε′′=1 = ±
(

1 0
0 1

)
or
(

0 b

b̄ 0

)
for |b|2 = 1.

The first two of these solutions (±I) are trivial and not of much interest to us since they
don’t allow us to split the Hilbert space. The solutions for b 6= 0 are not allowed since we
still have to apply the final condition on γ which dictates that [γ, α] = 0 ∀ α ∈ A. This
is clearly not the case for these solutions and thus we may conclude that ε′′ = 1 does not
give any viable solutions for γ.

For ε′′ = −1 we see b = −b⇒ b = 0. Again we apply γ2 = 1, giving:

1 =
(
a 0
0 −a

)2

=
(
a 0
0 −a

)(
a 0
0 −a

)

=
(
a2 0
0 a2

)
⇒ γε′′=−1 =

(
±1 0
0 ∓1

)
.
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These solutions are in fact viable and non trivial since we see that [γ, α] = 0 now holds for
all α ∈ A. Finally we define:

γ =
(

1 0
0 −1

)
. (9)

This solution for γ leaves us with only one possible KO-dimension, namely KO-dimension
6. To see this we note that J2 = I and that Jγ = −γJ and use the table from definition
10.

3.3 Finding an expression for D

Now that we have found an expression for γ we are ready to determine the possible solutions
for the D. As before, we will start out with D in general form,

D =
(
a b
c d

)
and proceed by applying the conditions we mentioned in section 2.3. First we must have
DJ − ε′JD = 0 and D = D∗ and notice that these are the same conditions as used in
the previous section. In analogy with the previous result we can therefore immediately
conclude that:

D =
(
a b

ε′b̄ ε′a

)
, a ∈ R, b = ε′b.

Since {D, γ} = 0 we can further simplify this expression:

0 =
(
a b

ε′b̄ ε′a

)(
1 0
0 −1

)
+
(

1 0
0 −1

)(
a b

ε′b̄ ε′a

)

=
(
a 0
0 −ε′a

)
+
(
a 0
0 −ε′a

)

=
(

2a 0
0 −2ε′a

)
⇒ D =

(
0 b

ε′b̄ 0

)
.

With b = ε′b it is now clear that for ε′ = −1 we must have D = 0. To determine the
solution for ε′ = 1 we continue by applying [[D,α], β0] = 0 ∀ α, β ∈ A. We see:

[D,α] =
(

0 b

b̄ 0

)(
α 0
0 ᾱ

)
−
(
α 0
0 ᾱ

)(
0 b

b̄ 0

)

=
(

0 bᾱ

b̄α 0

)
−
(

0 bα

b̄ᾱ 0

)

=
(

0 b(ᾱ− α)
b̄(α− ᾱ) 0

)
.
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So with the previous result for β0 we get:

0 = [[D,α], β0]

=
(

0 b(ᾱ− α)
b̄(α− ᾱ) 0

)(
β̄ 0
0 β

)
−
(
β̄ 0
0 β

)(
0 b(ᾱ− α)

b̄(α− ᾱ) 0

)

=
(

0 b(ᾱ− α)β
b̄(α− ᾱ)β̄ 0

)
−
(

0 b(ᾱ− α)β̄
b̄(α− ᾱ)β 0

)

=
(

0 b(ᾱ− α)(β − β̄)
b̄(α− ᾱ)(β̄ − β) 0

)
.

This must hold for all α, β ∈ A, giving b = 0. So also in the case of ε′ = 1, we may
conclude:D = 0. With the above we have seen that, with the given properties of the
spectral triple we must have:

D = 0. (10)

Since eventually D will be responsible for attributing mass to the fermionic particles
in our theory this result induces a problem. We know for a fact that the fermions in
electrodynamics are indeed massive so if we were to continue with this particular spectral
triple we are bound to end up with unphysical results. To fix this problem the spectral
triple needs to be modified such that it allows non zero solutions for D. The next section
of this paper will be dedicated to that purpose.
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4 Extending the real-linear spectral triple
The spectral triple introduced in the previous section requires D to be zero which we know
to be unphysical. Our goal will be to modify the spectral triple in a way that preserves
its inherit characteristics but does allow D to be non zero. If we want to keep the real-
linear property of the algebra together with the action of J we have to come up with a
modification to the spectral triple that provides more degrees of freedom for D. The most
obvious way to do this is to extent the Hilbert space: C2 → C4. Giving us the modified
spectral triple:

(A = C,H = C4, D, J, γ). (11)

For α ∈ A we now redefine the real-linear action:

α(λ1 ⊕ λ2 ⊕ λ3 ⊕ λ4) = (αλ1 ⊕ ᾱλ2 ⊕ αλ3 ⊕ ᾱλ4) (12)

and the action of J will be defined as:

J(λ1 ⊕ λ2 ⊕ λ3 ⊕ λ4) = (λ̄2 ⊕ λ̄1 ⊕ λ̄4 ⊕ λ̄3). (13)

Operators on H can now be represented as 4x4 matrices, for α and J we find:

α =


α 0 0 0
0 ᾱ 0 0
0 0 α 0
0 0 0 ᾱ

 , J =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ C.
With this the right hand action for α ∈ A becomes:

α0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ C

ᾱ 0 0 0
0 α 0 0
0 0 ᾱ 0
0 0 0 α




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ C = α∗

4.1 What does this mean for the gauge group?

Although the modification we made to the spectral triple should allow more degrees of
freedom for D, we also require the gauge group to be unchanged. To make sure this is the
case, we repeat the procedure from section 3.1. It is clear that we still have U(A) = U(1).
With υυ∗ = 1 for υ ∈ U(A) we see that:

υ =


eiθ 0 0 0
0 e−iθ 0 0
0 0 eiθ 0
0 0 0 e−iθ

 , for θ ∈ R.

19



With φ defined in the same way as in section 3.1 and applying the isomorphism theorem
we find:

ker(φ) =

±


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ' C2 ⇒ G(A) ' U(1)/ker(φ) ' U(1)/C2.

And since we know from section 3.1 that U(1)/C(2) ' U(1) we may conclude:

G(A) ' U(1) (14)

This is exactly the result we wished to find, so from here we may proceed with our inves-
tigation of this spectral triple.

4.2 A new Z2 grading and fermionic particles

Now that we know this spectral triple at least still has the right gauge group we can
continue by determining possible solutions for the Z2 grading, γ. Instead of using an
algebraic derivation we will provide physical arguments to derive an expression for γ. The
reason being that an algebraic derivation will cause us to end up with a whole set of possible
solutions for γ still forcing us to use physical reasoning to select the right one.

We start by choosing a basis for the Hilbert space:

{ēR, eR, ēL, eL}.

These basis vectors correspond to the four fermionic particles in electrodynamics: left and
right handed electrons and positrons. Here the subscript-L denotes left handed particles
while the subscript-R denotes right particles. The bar denotes charge conjugation. We
remark that, with its definition, J transforms a particle into its charge conjugated partner
as it is expected to do. Since we need γ to split the Hilbert space in a left and right handed
subspaces we set: γeL = eL and γeR = −eR. As in the previous section we set ε′′ = −1
giving us the identity: Jγ = −γJ. This relation implies that γēL = −ēL and γēR = ēR,
making ēL right-handed and ēR left-handed. Now that we know the action of γ on all four
basis vectors we may conclude:

γ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (15)

From which we see that γJ = −Jγ, together with J2 = 1 we conclude that the extended
triple has a KO-dimension of 6.
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As mentioned above the four basis vectors of our Hilbert space should correspond to the
four fermionic particles in our theory. As an additional argument for this identification we
will proceed by determining a fundamental quantum number for these basis vectors: the
hypercharge. The value of the hypercharge is determined by letting an element from the
gauge group work on the basis vectors. To clarify this let υ ∈ G(A) be an element from our
gauge group. In the previous section we saw that there exists a one to one correspondence
between the elements of our gauge group and the complex numbers with absolute value
one. For υ we’ll take this number to be λ = eiθ and we write υλ to emphasize this. We
can now apply a general theorem of NCG (see [6]) which states that for the action of the
element υλ on one of the basis vectors, e, we must have:

υλe = λwe.

Where the right hand side of the equation simply has scalar multiplication of e with λw.
The main conclusion of this theorem is that w now corresponds to the hypercharge of the
particle state e.

If we now apply this theorem to what we have already derived in the previous section
we find for basis vector eL:

υλeL =


eiθ 0 0 0
0 e−iθ 0 0
0 0 eiθ 0
0 0 0 e−iθ




0
0
0
1

 = e−iθeL = λ−1eL.

Meaning the hypercharge of the particle identified with eL is equal to −1, which is exactly
the result we expect to find. When repeating this procedure for all four of our basis vectors
we find the results listed in the table below.

Fermion eL eR ēL ēR
Hypercharge −1 −1 1 1

If we compare these results to the values found in the scientific literature we notice that
the values for the charge conjugated particles seem to differ. However, we remark that our
theory does not take into account weak interactions so that the weak hypercharge coincides
with the electric charge of the particles. When we keep this in mind the results agree with
the values we expect. This leads us to conclude we did make the right identification of the
basis vectors with our fermionic particles.

4.3 Finding a non-zero D

With our new found solution for γ we are ready to work out a solution for D. We will do
so with the same procedure as in section 3.3. Once again we’ll start out with a general
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expression for D:

D =


a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 .
First we apply {γ,D} = 0 , giving us:

0 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

+


a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



= 2


a1 0 0 a4
0 −b2 −b3 0
0 −c2 −c3 0
d1 0 0 d4

 ⇒ D =


0 a2 a3 0
b1 0 0 b4
c1 0 0 c4
0 d2 d3 0

 .
Next we use the fact that D∗ = D:

0 b̄1 c̄1 0
ā2 0 0 d̄2
ā3 0 0 d̄3
0 b̄4 c̄4 0

 =


0 a2 a3 0
b1 0 0 b4
c1 0 0 c4
0 d2 d3 0

 ⇒ D =


0 a2 a3 0
ā2 0 0 b4
ā3 0 0 c4
0 b̄4 c̄4 0

 .
Since we concluded earlier that our triple has KO-dimension 6 we may take ε′ = 1, this
gives us DJ = JD or:

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ C


0 a2 a3 0
ā2 0 0 b4
ā3 0 0 c4
0 b̄4 c̄4 0

 =


0 a2 a3 0
ā2 0 0 b4
ā3 0 0 c4
0 b̄4 c̄4 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ◦ C

a2 0 0 b̄4
0 ā2 ā3 0
0 b4 c4 0
a3 0 0 c̄4

 =


a2 0 0 a3
0 ā2 b4 0
0 ā3 c4 0
b̄4 0 0 c̄4

 .
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So we must have ā3 = b4. Finally we have the condition [[D,α], β0] = 0 ∀α, β ∈ A. For
this we first calculate:

[D,α] =


0 a2 b̄4 0
ā2 0 0 b4
b4 0 0 c4
0 b̄4 c̄4 0



α 0 0 0
0 ᾱ 0 0
0 0 α 0
0 0 0 ᾱ

−

α 0 0 0
0 ᾱ 0 0
0 0 α 0
0 0 0 ᾱ




0 a2 b̄4 0
ā2 0 0 b4
b4 0 0 c4
0 b̄4 c̄4 0



=


0 ᾱa2 αb̄4 0
αā2 0 0 ᾱb4
αb4 0 0 ᾱc4
0 ᾱb̄4 αc̄4 0

−


0 αa2 αb̄4 0
ᾱā2 0 0 ᾱb4
αb4 0 0 αc4
0 ᾱb̄4 ᾱc̄4 0



= (α− ᾱ)


0 −a2 0 0
ā2 0 0 0
0 0 0 −c4
0 0 c̄4 0

 .
With which we can determine [[D,α], β0] :

0 = (α− ᾱ)




0 −a2 0 0
ā2 0 0 0
0 0 0 −c4
0 0 c̄4 0



β̄ 0 0 0
0 β 0 0
0 0 β̄ 0
0 0 0 β

−

β̄ 0 0 0
0 β 0 0
0 0 β̄ 0
0 0 0 β




0 −a2 0 0
ā2 0 0 0
0 0 0 −c4
0 0 c̄4 0




= (α− ᾱ)




0 −βa2 0 0
β̄ā2 0 0 0
0 0 0 −βc4
0 0 β̄c̄4 0

−


0 −β̄a2 0 0
βā2 0 0 0
0 0 0 −β̄c4
0 0 βc̄4 0




= (α− ᾱ)(β − β̄)


0 −a2 0 0
−ā2 0 0 0

0 0 0 −c4
0 0 −c̄4 0

 .
This must hold for all α, β ∈ A so we must have a2 = c4 = 0. We are left with one complex
parameter, b4, which we relabel to d. Finally we may conclude that the Dirac operator is
given by:

D =


0 0 d̄ 0
0 0 0 d
d 0 0 0
0 d̄ 0 0

 (16)

With this non zero solution for the Dirac operator we have completed the construction
of a real even spectral triple, furthermore it blows new life into our theory since we might
now expect to find massive fermionic particles.
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5 Physical implications
In this section we will attempt to derive some physical predictions from our theory, in
particular we want do the derive the nature of the interactions in our theory. Before we
can start out, we will first introduce some concepts necessary for doing this.

5.1 Gauge fields in NCG

Since we are aiming to derive the possible particle interactions in our theory we first
consider how interactions are described in modern physics.

As mentioned earlier, in field theory all fundamental interactions arise from local sym-
metries of a given theory. This means that the Lagrangian is invariant under a continuous
group of local transformations of the fields. These transformations are called the gauge
transformations and we will need the equivalent notion of these transformations within
the framework of NCG. In this thesis we will simply provide these equivalent definitions
without providing a detailed analysis. For a derivation and discussion of these concepts we
refer to: [12].

Before we can carry on we need to introduce some new concepts which lead to NCG’s
equivalent of the gauge fields from modern field theories.

Definition 17. For a spectral triple (A,H, D) we define a set of differential one forms,
Ω1
D(A), which is given by the following definition:

Ω1
D(A) =

{∑
i

αi[D,βi] | αi, βi ∈ A
}
. (17)

Definition 18. For a spectral triple (A,H, D) endowed with a real structure , J , we define
the fluctuated Dirac operator by:

Dω ≡ D + ω + ε′JωJ−1. (18)

For self adjoint ω = ω∗ ∈ Ω1
D(A). The elements ω are called inner fluctuations of the

spectral triple and will be interpreted as the gauge potentials or gauge fields of our theory.
In order to determine the properties of these fields we will look at the way they transform
under various transformations. In this way we may check whether the fields in our theory
behave the way we expect them to do from electrodynamical field theory.

Example 19. Before we continue we will determine the inner fluctuations of the canonical
spectra triple as an example. We mentioned earlier that the canonical triple (introduced in
example 15) alone does not predict any interactions except for gravity. We will show this by
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proving the inner fluctuations of the canonical triple vanish. We start out by determining
Ω1
DM

, if we take αi, βi ∈ C∞(M) we have:

Ω1
/D =

{∑
i

αi[ /D, βi]
}

=
{∑

i

αi[iγµ(∂µ + ωµ), βi]
}

=
{∑

i

αiiγ
µ∂µ(βi)

}
=
{∑

i

iγµαµ(i)

}
= {γµαµ}

Where we absorbed all elements of the algebra into one element, αµ. Now that we know
the form of the elements ω ∈ Ω1

/D
we calculate JMωJ−1

M , keep in mind that since ω = ω∗

and γµ∗ = γµ (see [15])we must have α ∈ R from which we know that Jαµ = αµJ . So that
we have:

JMωJ
−1
M = JMγ

µαµJ
−1
M

= −γµαµ

Where we have used the identity {JM , γµ} = 0 which is derived in [14]. Putting the terms
together and remarking that the canonical triple has a KO-dimension of four (ε′ = 1) we
find for the fluctuated Dirac operator:

/Dω = /D + γµαµ − γµαµ
= /D.

So we may conclude that the inner fluctuation terms cancel each other out. This confirms
the previous statement that the canonical triple does not predict any interactions except
for gravity since these interactions are contained within the inner fluctuations.

We proceed by introducing the concept of gauge transformations within the framework
of NCG.

Theorem 20. Transformations, UDωU
∗, with U ∈ G(A) of the fluctuated Dirac operator

are in general equivalent to a transformation of ω of the form:

ω → uωu∗ + u[D,u∗]. (19)

We will interpret these transformations as the gauge transformations of the gauge field
in physics and will apply it to our theory in section 5.4.

Proof. We calculate the action of a unitary transformation U ∈ G(A) on the fluctuated
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Dirac operator. First we write: U = uJuJ−1 = uu∗
0 ≡ uv, next we determine:

UDU∗ = uvDv∗u∗ = u (D + v[D, v∗])u∗

= uDu∗ + uvu∗[D, v∗]
= uDu∗ + uu∗

0
u∗[D, v∗]

= uDu∗ + v[D, v∗]
= D + u[D,u∗] + v[D, v∗].

Where we have used that [[D, v∗] , u∗] = 0 and
[
u∗

0
, u∗

]
= 0. Next we see that:

v[D, v∗] = JuJ−1[D,Ju∗J−1] = ε′Ju[D,u∗]J−1.

Furthermore we have:

UωU∗ = uJuJ−1ωJu∗J−1u∗ = uJuJ−1ωu0u∗ = uJuJ−1Ju∗J−1ωu∗ = uωu∗.

Where we used the identities from definition 12 to see that
[
ω, u0] = 0. Using the same

identities it is also easy to see that
[
u, J−1uJ

]
=
[
w, J−1uJ

]
= 0, which gives us:

UJωJ−1U∗ = uJuJ−1JωJ−1Ju∗J−1u∗

= uJuωu∗J−1u∗

= JJ−1uJuωu∗J−1u∗
(
multiplication with I = JJ−1

)
= Juωu∗J−1uJJ−1u∗

= Juωu∗J−1.

Putting these terms together we find:

UDωU
∗ = D + uωu∗ + u[D,u∗] + ε′J (uωu∗ + u[D,u∗]) J−1.

From which we can easily see that the unitary transformations of the fluctuated Dirac
operator correspond to a transformation of ω of the form:

ω → uωu∗ + u[D,u∗].

Note that the transformed inner fluctuation is again an inner fluctuation. Which in turn
means that the transformation of the fluctuated Dirac operator can again be written in the
form of a fluctuated Dirac operator. We can only do this because we use transformations
from the gauge group G(A). If we would have taken arbitrary transformations the expres-
sion for J would have transformed as well and we would end up with a fundamentally
different result.

These unitary transformations will now be interpreted in physics as the gauge trans-
formations of the gauge field.
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5.2 The almost commutative manifold

Now that we have composed a spectral triple that conforms to the fundamental physical
restrictions we are ready to extract some real physics from its properties. The final goal
will be to derive an expression for the Dirac equation in order to make predictions on the
nature of the interactions in our theory.

Before we can start this procedure we should combine our spectral triple with the
canonical spectral triple since, as mentioned earlier, our framework is set up so that our
finite dimensional triple can act as an extension of the canonical triple. Combining our
triple with the canonical triple is achieved by taking the tensor product of their components,
giving us a combined triple which we will call the almost commutative manifold. From now
on we write all the components of our finite triple with subscript F. With the given
definition of the canonical triple we then find the following components of the almost
commutative manifold:

• A = C∞(M)⊗ C

• H = L2(M,S)⊗ C4

• D = /D ⊗ I + γ5 ⊗DF

• γ = γM ⊗ γF = γ5 ⊗ γF

• J = JM ⊗ JF

The result for D might seem unexpected but the reason for choosing it is that it satisfies
the condition {D, γ} = 0, simply taking the tensor product of /D and DF would not satisfy
this since:{

/D ⊗DF , γ5 ⊗ γF
}

= /Dγ5 ⊗DFγF + γ5 /D ⊗ γFDF = 2 /Dγ5 ⊗DFγF 6= 0

Combining these components gives us an almost commutative manifold of the form:

(C∞(M)⊗ C, L2(M,S)⊗ C4, /D ⊗ I + γ5 ⊗DF , γ5 ⊗ γF , JM ⊗ JF ) (20)

We note that any operator a working on H can now be expressed as the tensor product,
αM ⊗αF of an operator αM working on L2(M,S) and an operator αF working on HF . So
that for the product of two operators a and b we have:

ab = (αM ⊗ αF )(βM ⊗ βF ) = αMβM ⊗ αFβF .
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5.3 The inner fluctuations

The almost commutative manifold forms the basis from which we will try to extract an
expression for the action. As mentioned previously, the action consists of two parts: the
spectral action and the fermionic action. Before we can make any attempt at deriving the
spectral action the fluctuated Dirac operator needs to be found. For this we first determine
the inner fluctuations of our theory. We start out by finding an expression for Ω1

D from its
definition:

Ω1
D (A) =

{∑
i

ai [D, bi] | ai, bi ∈ A
}

=
{∑

i

ai
[
/D ⊗ I + γ5 ⊗DF , bi

]
| ai, bi ∈ A

}

=
{∑

i

ai
[
/D ⊗ I, bi

]
+
∑
i

ai [γ5 ⊗DF , bi] | ai, bi ∈ A
}

= Ω1
/D⊗I(A)⊕ {αMiγ5βMi} ⊗ Ω1

DF
(AF )

= Ω1
/D⊗I ⊕ γ5 ⊗ Ω1

DF
(AF ).

Where we have used that:

ai [γ5 ⊗DF , bi] = αMi ⊗ αFi (γ5βMi ⊗DFβFi − βMiγ5 ⊗ βFiDF )
= αMi ⊗ αFi (γ5βMi ⊗DFβFi − γ5βMi ⊗ βFiDF )
= αMi ⊗ αFi (γ5βMi ⊗ [DF , βFi])
= αMiγ5βMi ⊗ αFi [DF , βFi] ,

the fact that αMi and βMi are just complex valued scalar functions which can be moved
from one side of the tensor product to the other and finally that an element in Ω1

DF
(AF )

multiplied by a scalar is again an element in Ω1
DF

(AF ).
We conclude that Ω1

D(A) contains both Ω1
/D⊗I(A) and Ω1

DF
(AF ), therefore we continue

by determining these two terms individually starting out with Ω1
DF

(AF ). We have:

Ω1
DF

(AF ) =
{∑

i

αFi [DF , βFi] | αFi, βFi ∈ AF

}
.

To calculate [DF , βFi] we can simply use the results for βFi and DF we found earlier, we
find:

[DF , βFi] =


0 0 d̄ 0
0 0 0 d
d 0 0 0
0 d̄ 0 0



β 0 0 0
0 β̄ 0 0
0 0 β 0
0 0 0 β̄

−

β 0 0 0
0 β̄ 0 0
0 0 β 0
0 0 0 β̄




0 0 d̄ 0
0 0 0 d
d 0 0 0
0 d̄ 0 0

 = 0.
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So we may conclude Ω1
DF

(AF ) = {0} and we have Ω1
D(A) = Ω1

/D⊗I. We continue by
determining Ω1

/D⊗I(A) from its definition for ai, bi ∈ A:

Ω1
/D⊗I(A) =

∑
j

aj
[
/D ⊗ I, bj

]
=

∑
j

(αMj ⊗ αFj)
[
/D ⊗ I, βMj ⊗ βFj

]
=

∑
j

αMj

[
/D, βMj

]
⊗ αFjβFj


=

∑
j

αMj [iγµ(∂µ − Γµ), βMj ]⊗ αFjβFj


=

∑
j

αMjiγ
µ ([∂µ, βMj ]− [Γµ, βMj ])⊗ αFjβFj


=

iγµ∑
j

αMj∂µ(βMj)⊗ αFjβFj


=

iγµ∑
j

αµ(Mj) ⊗ αFj


=

{
iγµαµ(M) ⊗ αF

}
In this derivation we have used the product rule for writing [∂µ, βMj ] = ∂µ(βMj) and the
fact that we can absorb sums of elements from our algebra into one element (since we are
interested in the set of all the possible summations) to come to the final result.

Next we determine what the restriction ω = ω∗ means in our case:

iγµαµ(M) ⊗ αµ(F ) =
(
iγµαµ(M) ⊗ αF

)∗
= −iγµα∗µ(M) ⊗ α

∗
F

= iγµα∗µ(M) ⊗−α
∗
F .

With which we have α∗µ(M) = αµ(M) and α∗F = −αF so that we may conclude αµ(M) to
be real and αF to be skew-Hermitian, which means that all its components are purely
imaginary. Using the bi-linearity of the tensor product we may now move αµ(M) to the
right hand side. The product αµ(M)αF , which we’ll denote by αµ(F ), is an object that
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again consists of elements of our finite algebra, since:

αµ(M)αF =


αµ(M)αF 0 0 0

0 αµ(M)ᾱF 0 0
0 0 αµ(M)αF 0
0 0 0 αµ(M)ᾱF


and αµ(M) is real we have αµ(M)αF = αµ(M)ᾱF . We can now write an element ω ∈ Ω1

D as:

ω = iγµ ⊗ αµ(F ) (21)

Before we can determine the fluctuated Dirac operator, Dω, we also need to find an ex-
pression for JωJ−1. We see:

JωJ−1 = JM ⊗ JF (iγµ ⊗ αF ) J−1
M ⊗ J

−1
F

= iγµ ⊗ JFαµ(F )J
−1
F

= iγµ ⊗ α∗0µ(F )
= iγµ ⊗ αµ(F )

Where we have used the identity {JM , γµ} = 0 to calculate the left hand side of the tensor
product. For the right hand side we used the fact that in our case α0

F = α∗F ⇒ α∗0F = αF .
With this we have gathered all the necessary components of Dω, which we can now find

from its definition. Adding up all these expressions, we find for the the fluctuated Dirac
operator:

Dω = D + ω + ε′JωJ−1

= D + iγµ ⊗ αµ(F ) + iγµ ⊗ αµ(F )

= D + iγµ ⊗ 2αµ(F )

≡ D + iγµ ⊗−iAµe.

Where Aµ is an real valued covariant four-vector field that is an infinitely differentiable
function of the manifold M :

Aµ =


A0(x)
A1(x)
A2(x)
A3(x)

 for x ∈M

and e is a 4× 4 matrix given by:
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e =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .
The matrix e obtains this form because αF is skew-Hermitian resulting in an diagonal
signature of form: (+−+−). Note that the product Aµe should be read as multiplication
of the index Aµ with the entire matrix e and not as a matrix multiplied with a vector.

The notation we chose for Aµ is very suggestive since we know in electrodynamics the
vector potential is denoted with the same symbol. We will see in the next section that
there actually is some merit to this choice of notation.

5.4 Gauge transformations of the gauge field

With the expression for the inner fluctuations of the almost commutative manifold we
effectively found the gauge field of our theory. To determine the nature of this field we
take a look at how it transforms under gauge transformations, U = uJuJ−1 ∈ G(A). We
use the transformation characteristics given by equation 19. If we write ωT for transformed
ω = iγµ ⊗ αµ(F ) we see:

ωT = uωu∗ + u[D,u∗]
= uM ⊗ uF (iγµ ⊗ αµ(F ))u∗M ⊗ u∗F + uM ⊗ uF

[
/D ⊗ I + γ5 ⊗DF , u

∗
M ⊗ u∗F

]
= uM iγ

µu∗M ⊗ uFαµ(F )u
∗
F + uM ⊗ uF

([
/D ⊗ I, u∗M ⊗ u∗F

]
+ [γ5 ⊗DF , u

∗
M ⊗ u∗F ]

)
= ω + uM ⊗ uF

([
/D, u∗M

]
⊗ u∗F + u∗Mγ5 ⊗ [DF , u

∗
F ]
)

= ω + uM [iγµ(∂µ − Γµ), u∗M ]⊗ I
= ω + uM iγ

µ∂µ(u∗M )⊗ I.

We note that the unitary elements of the canonical algebra are of the form: uM = eiθ(x)

where θ(x) ∈ R ∀ x. Using this property we see:

ωT = ω + eiθ(x)iγµ∂µ(e−iθ(x))⊗ I
= ω − eiθ(x)iγµie−iθ(x)∂µ(θ(x))⊗ I
= ω − iγµi∂µ(θ(x))⊗ I
= ω − iγµ ⊗ i∂µ(θ(x))

Which means the gauge transformations can be expressed as transformations of Aµ which
takes the following form:

Aµ → Aµ + ∂µ(θ(x)). (22)
Finally, this result enables us to make a comparison between our theory and the already

existing theory of electrodynamics. We recall from [2] that our gauge field transforms in
exactly the same way as the vector potential Aµ of electrodynamics.
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5.5 The Dirac equation

In this section we will compare the Dirac equation of our theory with the Dirac equation
for electrodynamics on a curved background.

From [8] we know that the general-relativistically covariant Dirac equation derived by
Fock for a particle of rest mass m and charge e in an electromagnetic potential Aµ is:

[iγµ (∂µ − Γµ − ieAµ)−m]ψ = 0. (23)

Taking Ded = iγµ (∂µ − Γµ − ieAµ) −m enables us to rewrite this equation as Dedψ = 0.
As a way of comparison we will now determine the form this equation will take if we use
the fluctuated Dirac operator we found earlier.

Before we can attempt to do this we need to determine the form of the wave function
for our almost commutative manifold which we will denote by ξ. We remark that particles
in our theory should be either left or right handed and that in nature only left handed
particles can have weak interactions. We therefore consider only left handed wave functions
and determine the left handed subspace of our Hilbert-space, which we denote byH+. From
[10] we note that any element from the Hilbert space, ψ ∈ L2(M,S) can be decomposed
into ψL and ψR. Here subscript L and R denote left and right handedness respectively.
Next, it is important to note that for the almost commutative spectral triple, the combined
grading γ = γM⊗γF determines the chirality of a particle so that we must look for products
of vectors from the canonical and finite basis to find a basis for H+. Taking into account
the bi-linearity of the tensor product it is easy to see that:

H+ = L2(M,S)+ ⊗H+
F ⊕ L

2(M,S)− ⊗H−F .

If we now take two vectors (qLeL + wReR) ∈ H+
F and (qReR + wLeL) ∈ H−F any vector

ξ ∈ H+can be represented as:

ξ = ψL ⊗ (qLeL + wReR) + ψR ⊗ (qReR + wLeL)
= ψL ⊗ qLeL + ψL ⊗ wReR + ψR ⊗ qReR + ψR ⊗ wLeL
= qLψL ⊗ eL + wRψL ⊗ eR + qRψR ⊗ eR + wLψR ⊗ eL
≡ χL ⊗ eL + χR ⊗ eR + ηR ⊗ eL + ηL ⊗ eR (24)

Where we have absorbed the coordinate coefficients of the finite part into the four different
functions ηL, χL ∈ L2(M,S)+ and ηR, χR ∈ L2(M,S)−. The Dirac equation for our theory
now becomes:

0 = Dωξ

=
[
/D ⊗ I + γ5 ⊗DF + iγµ ⊗−iAµe

]
ξ

= [iγµ(∂µ − Γµ)⊗ I + γ5 ⊗DF + iγµ(−iAµ)⊗ e] ξ
= [iγµ ((∂µ − Γµ)⊗ I− iAµ ⊗ e) + γ5 ⊗DF ] ξ. (25)
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We can now directly identify the term (∂µ − Γµ) ⊗ I in our equation (24) with the term
∂µ−Γµ from equation (23). Previously we noted that we need a non zero Dirac operator in
order to attribute mass to our particles. We will now clarify this statement by identifying
the terms γ5 ⊗DF and −m. We will first dispose of the γ5 term on the left hand side of
the product. To do this we introduce a new field, φ, defined by a unitary transformation
of ξ (see [9]): ξ = (ei

π
4 γ5 ⊗ I)φ. This transformation is called a chiral rotation and has

no physical significance for our theory. If we now substitute ξ in the Dirac equation and
multiply the right hand side of the equation with ei

π
4 γ5 ⊗ I, we find:

0 = (ei
π
4 γ5 ⊗ I) [iγµ ((∂µ − Γµ)⊗ I− iAµ ⊗ e) + γ5 ⊗DF ] (ei

π
4 γ5 ⊗ I)φ

=
[
iei

π
4 γ5γµei

π
4 γ5 ((∂µ − Γµ)⊗ I− iAµ ⊗ e) + ei

π
4 γ5γ5e

iπ4 γ5 ⊗DF

]
φ

=
[
iγµ ((∂µ − Γµ)⊗ I− iAµ ⊗ e) + γ5e

iπ2 γ5 ⊗DF

]
φ.

Where we have used {γµ, γ5} = 0 ⇒ ei
π
2 γ5γµ = γµe−i

π
2 γ5 and the fact that [ei

π
2 γ5 , γ5] = 0.

Next we notice (with γ2
5 = 1) that:

ei
π
2 γ5 =

∞∑
k=0

(
iπ2γ5

)k
k! =

∞∑
k=0

(−1)k

(2k)!

(
π

2 γ5

)2k
+ i

∞∑
k=0

(−1)k

(2k + 1)!

(
π

2 γ5

)2k+1

=
∞∑
k=0

(−1)k

(2k)!

(
π

2

)2k
+ iγ5

∞∑
k=0

(−1)k

(2k + 1)!

(
π

2

)2k+1

= cos(π2 ) + iγ5sin(π2 ) = iγ5.

So that we are left with:

0 = [iγµ ((∂µ − Γµ)⊗ I− iAµ ⊗ e) + i⊗DF ]φ.

We now simply set the value of the complex parameter which determines DF equal to
d = im. So that we can write DF = imD0. Where D0 is the operator on our finite
Hilbert-space defined by:

D0 ≡


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 .
With this we see that i⊗DF = i⊗ imD0 = −m⊗D0, where we have used the bilinearity
of the tensor product. So that, finally, the expression for the Dirac equation becomes:

[iγµ ((∂µ − Γµ)⊗ I− iAµ ⊗ e)−m⊗D0]φ = 0. (26)

Furthermore we identify −iAµ ⊗ e (24) with the term −ieAµ (23). We now see the
difference between classical theory and NCG. In the classical theory the charges of the
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particles were simply assigned to the particles. In NCG we see that the matrix e automat-
ically assigns the right charges to the particles in our theory based on the particle’s wave
function. Take for instance ψF = eL then multiplication by e gives us a factor −1, on the
other hand we have eēL = ēL. We conclude that these eigenvalues of e correspond to the
charges we would have assigned to the left-handed electron and right-handed positron in
classical theory.
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6 Conclusion
In this thesis we explored the possibility of describing electrodynamics within the frame-
work of non-commutative geometry. In particular we determined the consequences of using
a real-linear algebra to do so.

We started out with a real-linear spectral triple endowed with a Hilbert space of di-
mension 2:

(A = C,H = C2, D, J, γ).

While determining the associated expression for the Dirac operator we had to conclude
that this spectral triple would lead to unphysical results. The reason for this being that
the Dirac operator turns out to be zero which, in turn, would mean that the fermionic
particles in our theory are massless. Since we know the fermions in electrodynamics are in
fact massive this would yield an non-viable theory.

To overcome this shortcoming we proceeded by extending the Hilbert-space to four
dimensions. This provides more degrees of freedom for the expression of the Dirac operator
and yielded a non-zero result. Furthermore we showed that the fermionic particles in our
theory carry the correct hypercharges. From this we continued by taking the product
of our finite triple with the canonical spectral triple to form the almost commutative
spectral triple. This enabled us to determine the inner fluctuations which resulted in a
U(1) gauge field with the same transformation characteristics as the four-vector potential
of electrodynamics.

After these positive results we continued by deriving the Dirac equation associated
with our theory. When compared to the known Dirac equation of a general-relativistically
covariant particle in an electromagnetic potential the analogy is evident. In fact, a one-
to-one identification of the terms in both equations can be made. The interaction of the
fermions with the gauge field is opposite for electron an positron states, exactly like we
expect from the classical theory. Furthermore the scalar which determines our finite Dirac
operator, can be linked directly to the mass of the particles in our theory.

In summary, we have shown that as far as our research goes, the extended real-linear
spectral triple provides a promising starting point for describing electrodynamics. There
were no results conflicting with this hypothesis.

Since time was a limiting factor in this research, a final conclusion about the validity
of this hypothesis can not be made at this time. In future research it would therefore be a
logical next step to derive an expression for the spectral action of our theory. This would
enable a more direct comparison with the results of [13].
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