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Abstract

Cosmogenic neutrinos originate from the interaction of intergalactic
ultra-high-energy cosmic rays (UHECR) with photons of the cosmic mi-
crowave background (CMB). This process is known as the GZK pro-
cess, which predicts an upper limit on the energies of cosmic rays of
EGZK = 5 · 1019 eV. A flux of cosmogenic neutrinos is expected due
to the decay of pions, which are created by the GZK process. Ultra-
high-energy neutrinos are of great research interest, but currently remain
undetected. The Glashow Resonance (GR) could increase the ease of de-
tectiong of cosmogenic νe at EGR = 6.3 ·1015 eV. In this bachelor thesis,
the feasability of measuring cosmogenic neutrinos using the Glashow res-
onance is researched by performing a Monte Carlo simulation, assuming
mono-energetic cosmic rays with a pure proton composition. Two differ-
ent decay scenarios were simulated: a two-body and a three-body decay
simulation. The results show that both simulations describe the same
physics, within the reached accuracy, as expected. The simulation finds
that for every 100,000 GZK interactions, about 1-30 GR candidate νe
are expected, depending on the GR resonance range that is chosen. To
conclude, further research needs to be done to determine the feasibility
of using the GR in cosmogenic neutrino research and to determine what
information we can extract from GR neutrino measurements.
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1 Introduction

Ever since their discovery, cosmic rays have proven to be a mystery for physi-
cists. They can originate from a large variety of sources and differ vastly in their
composition, but all cosmic rays have in common that they are particles that
transverse the universe. Nowaday, most physics research focused on high-energy
cosmic rays. The energies associated with cosmic rays span a spectrum of 10
orders of magnitude, with a flux spanning over 30 orders of magnitude. Parti-
cle accelerators on earth, such as the LHC, cannot even reach energies close to
those of some cosmic rays. These ultra-high-energy cosmic rays (UHECR) have
energies beyond 1018 eV. It is assumed that these UHECR have extragalactic
origins, such as pulsars, gamma ray bursts and active galactic nuclei. Their
precise origin still proves to be a mystery, though. Finding the sources of these
highly energetic particles will give insight into what processes in the universe
are able to accelerate particles to extreme energies, which could even point to
beyond standard model physics [1]

Cosmic ray physics, specifically involving UHECR, thus proves to be very
interesting. Unfortunately, measuring cosmic rays is hindered by several fac-
tors. Firstly, cosmic rays are deflected by cosmic magnetic fields. The cosmic
rays we measure will thus rarely point straight back to their source. They can
also lose energy when travelling through the universe, for example due to influ-
ence of extragalactic magnetic fields or collisions with other particles. Lastly,
UHECR above a certain energy will also interact with photons of the Cosmic
Microwave Background (CMB). This last difficulty actually gives us an opportu-
nity: researching cosmic rays with neutrinos. The reactions of cosmic rays with
CMB photons is known as the Greisen-Zatsepin-Kuzmin (GZK) cutoff or pro-
cess. This interaction will produce pions that will decay and eventually produce
neutrinos, so called GZK neutrinos or cosmogenic neutrinos. This cutoff has
indeed been experimentally observed.1 If this is indeed the GZK cutoff, a flux
of cosmogenic neutrinos is guaranteed to exist. Figure 1 shows that cosmogenic
neutrinos are one of the ways we can measure cosmic rays on Earth. Neutrinos
are known to be quite difficult to detect. So why choose to detect cosmic rays
using cosmogenic neutrinos?

The same thing that makes neutrinos difficult to measure, makes them ex-
cellent candidates to research cosmic rays. Neutrinos are weakly interacting as
they are electrically neutral and have a small mass. This means they are not
deflected by magnetic fields and can point back at the source of the cosmic ray.
They also rarely lose energy when transversing the universe. The promising
nature of neutrino astrophysics is widely recognized, with experiments such as
IceCube and KM3NeT already trying to measure these neutrinos. New am-
bitious research is also presented, such as IceCube-Gen2 and the Giant Radio

1The exact cause of this cutoff has not been determined yet. The GZK effect could be an
explanation, but it could also be possible that cosmic sources cannot accelerate particles to
higher energies than approximately 1020 eV.
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Figure 1: The propagation modes of UHECR when travelling towards earth.
The GZK reactions can be seen in the circles. The π+ is of main interest here,
as this mode produces cosmogenic neutrinos. [2]

Array for Neutrino Detection, GRAND. [2, 3] These increasingly large installa-
tions all try to measure these cosmogenic neutrinos. These cosmogenic neutrinos
can help us to identify the sources of cosmic rays, but they can also contribute
to research on new physics such as possible neutrino decays, dark matter, hid-
den reactions of neutrinos with cosmic backgrounds and reactions with matter
on earth.[4]

A potential method to increase the ease of detecting cosmogenic neutrinos,
is the use of the Glashow resonance (GR). This is the resonant creation of a W
boson by an electron and electron antineutrino. The crossection of this reaction
has a strong peak at EGR = 6.3 PeV. The combination of the GZK process and
the Glashow resonance should provide us with a peak in measured neutrinos at
that energy, but this has not been measured yet. This brings us to the core
research subject of this bachelor thesis: probing the feasability of measuring
cosmogenic neutrinos using the Glashow resonance.

The goal is to determine how many GR candidates are produced by the
GZK reaction. We will research this by performing a Monte Carlo simulation
of the GZK process. This simulation allows us to assess the energy spectrum
of cosmogenic neutrinos, which in turn can be used to determine the amount of
neutrinos that are produced with energies that are relevant for GR. Before that,
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the theory behind the GZK cutoff and Glashow resonance will be elaborated on
in Sections 2 and 3. We will then introduce the formulas describing two-body
and three-body phase space in Section 4. This information will later on be used
to perform two different simulations of the GZK process. The method used to
simulate the GZK process is explained in Section 5. This section will define
how both descriptions of phase space are used in the simulation and cover the
boosts used in the simulation. Finally, this section will give the criteria used to
select a GR candidate. The results of the simulations can be found in Section 6.
The thesis will end with Section 7, which serves as a conclusion of the research
combined with a discussion on the current status of research.

2 The Greisen-Zatsepin-Kuzmin Limit

In 1966 two different papers indepently proposed a cutoff for cosmic rays with
energies above 5 ·1019 eV.[5, 6] This limit was theoretically derived by Ken-
neth Greisen, Georgiy Zatsepin and Vadim Kuzmin, hence the name Greisen-
Zatsepin-Kuzmin limit, or GZK limit. The argument is based on the presence
on the cosmic microwave background. The CMB consists of radiation which is
a remnant of the very early universe. This guarantees that there is a ubiquitous
presence of low energy photons. When a UHECR above a certain energy thresh-
old travels through the universe, it will ultimately encounter one of these CMB
photons. If a UHECR above this energy limit travels a distance of more than
200 Mpc (≈ 640 Mlj), it will almost always have reacted with a CMB photon.
We can show this using a short calculation. First we determine the mean free
path. We use n = 400 photons cm−3 for the CMB photon number density. For
the cross section, we use σ = 200 µb = 2·10−28 cm−3 for the pion creation by
a CMB photon and UHE proton.[5]. This gives a mean free path λ:

λ =
1

nσ
(1)

λ = 12.5 · 1025 cm = 4 Mpc (2)

We can use this to calculate the fraction of protons that survives after a given
distance x for an initial density I0.

I(x) = I0e
−x/λ (3)

In this calculation, we set the initial intensity to I0 = 1 so we can determine the
fraction of the initial UHECR that remain after a certain distance. Almost all
UHECR with an energy above the cutoff should lie within the so called GZK
horizon, we can see that this is true for x = 200 Mpc:

I(x = 200Mpc) = e−200/4 (4)

I(x = 200Mpc) = e−50 (5)

This is a very small number, which indicates that there exists a GZK hori-
zon: almost all UHECR with an energy above 5 ·1019 will have a source that
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lies within a radius of 200 Mpc.

It is important to note that the original derivation of the GZK cutoff was
based on theoretical arguments, but nowadays this limit has experimentally been
measured, for example by the HiRes experiment.[7] The cosmic ray spectrum
and this cutoff can be seen in Figure 2. At energies above the GZK limit, a
steep dropoff has been observed. All particles that have energies above the GZK
limit are expected to originate from relatively close sources.[8]

Figure 2: The measured energy spectrum of cosmic rays. The flux is plotted
against the energies of the cosmic rays. After the so called ‘ankle’, a steep cutoff
can be seen. [8]

2.1 Derivation of the GZK Limit

The GZK limit can be derived using relativistic kinematics. It is important to
note that the main assumption of the derivation is that all cosmic rays consist of
individual protons. This is not without issue, though. Observations of IceCube
exclude pure-proton models for CR in favour of models including heavy-nuclei
CR.[9] For UHECR, Auger also does not agree with this assumption, stating
that the mean mass of the cosmic rays increases above enegies of about 2.5
EeV.[10] The measurements of the Telescope Array do agree with pure proton
models for UHECR above the GZK limit.
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In this derivation, the incoming protonic cosmic rays interact with the CMB
photons through a ∆+ resonance. This produces either a π+ or a π0.2 This
gives the succeeding two options:

γcmb + p � ∆+ �

{
n+ π+

p+ π0
(6)

In this derivation, we set c=1 and use the on-shell condition:

p · p = m2 (7)

E2 − |−→p |2 = m2 (8)

To calculate the threshold energy for the incoming proton, we want the outgoing
Delta baryon to be created in it’s rest system. In this derivation, the process
of the photon and proton producing a Delta baryon will be used. The proton
and CMB photon are assumed to be in the lab frame. We let the proton and
photon collide head-on to maximise the energy made available by the collision.
Both particles are set to move along the z-axis.
The momenta in the z-direction are determined using (7). Assuming that Ep �
mp, thus Ep ≈ pp, and using mγ = 0 gives the following four-momenta:

pµ∆+ =


m∆+

0
0
0

 pµp =


Ep
0
0
Ep

 pµγ =


Eγ
0
0
−Eγ

 (9)

We can now calculate Ep by using relativistic kinematics:

m2
∆+ =

(
pµp + pµγ

)2
(10)

m2
∆+ = pp · pp + pγ · pγ + 2pγ · pp (11)

m2
∆+ = m2

p + 0 + 2(EpEγ − (−EpEγ)) (12)

m2
∆+ = m2

p + 4EpEγ (13)

Rewriting to find the proton energy gives:

EGZK =
m2

∆+ −m2
p

4Eγ,CMB
(14)

2π− can be produced, but this is usually suppressed.[11] Thus this will be left out here.
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To compute this energy, we need the subsequent quantities and formulae:

m∆+ = 1232 MeV/c2

mp = 938.27 MeV/c2

TCMB = 2.726 K

λmax =
b

T

b = 2.898 ∗ 10−3 m K

h = 4.136 · 10−15 eV s

ECMB =
hc

λ
=
hcT

b
= 1.167 · 10−3 eV

This gives the GZK energy threshold for the proton:

EGZK = 1.36 · 1020 eV (15)

This a higher value than the actual limit of EGZK = 5 · 1019 eV. The actual
CMB photons are Planck distributed in energy. The CMB photons with higher
energies, in the tail of the distributions, are actually the ones that are relevant
for the cutoff energy. These slightly more energetic CMB photons will interact
with protons with lower energies than calculated here, explaining the difference.

2.2 GZK neutrinos

In the previous section, the energy threshold for cosmic rays protons to react
with the CMB photons was calculated. This interaction creates pions which can
decay into new particles. In idealised interactions, 1/3 of the cases will result
in a π+ and a neutron.[12] The pion will decay and produce neutrinos:

π+ � µ+ + νµ (16)

µ+ � νµ + e+ + νe (17)

These neutrinos are named ‘cosmogenic neutrinos’ or ‘GZK neutrinos’. The
pion decay produces neutrinos in a flavour compositon ratio (νe : νµ : ντ ) of
(1:2:0). After propagating through vacuum on cosmic scales, this distribution
will change to an equal mixing of neutrino flavours because of neutrino os-
cillations. Thus (νe : νµ : ντ ) will be (1:1:1) when arriving at Earth.[13] The
produced neutrons can also decay further to produce neutrinos, but this pro-
cess is usually suppressed and much less relevant than the pion decay.[14] GZK
neutrinos are of great interest in current cosmic ray experiments, as mentioned
in the introduction. The observation of the cutoff of the cosmic ray spectrum is
a strong indication that there exists a cosmogenic neutrino flux.

Observations of neutrinos in the PeV and TeV range have been made by
IceCube and a first possible astrophysical source of the measured neutrino has
been identified.[15] Ultra-high-energy neutrinos with energies above 1017 have
not been measured yet. These UHE neutrinos are the ones primarily associated
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Figure 3: The Glashow resonance peak for the crossection of νe + e− � W− �
hadrons compared to the crossection of νe +N � e− + hadrons.[20]

with the GZK limit. The current absence provides an upper boundary on the
flux of cosmogenic neutrinos.[16, 17] Still, the search for GZK neutrinos contin-
ues. For example with the proposed Giant Radio Array for Neutrino Detection,
GRAND. This experiment aims to measure neutrinos with energies above 5
·1017 eV using an array of thousands of radio antennas.[18]
In my research, I shall focus on the antineutrino produced by the decay of the
muon. The next section will explain how these antineutrinos can be used to
possibly measure cosmogenic neutrinos.

3 Glashow Resonance

The Glashow resonance was proposed by Sheldon Glashow in 1960. He describes
the resonant creation of a W-boson due to the following interaction:

νe + e− � W− � anything (18)

This reaction occurs at an energy of EGR ≈
m2

W+

2me
≈ 6.3 PeV for the incoming

neutrino.[19] The crossection of the reaction of νe with an electron experiences a
sharp peak at 6.3 PeV, as can be seen in Figure 3. The Glashow resonance (GR)
is especially interesting due to the fact that neutrinos are notoriously difficult
to measure. The resonant creation of the W-boson at the Glashow resonance
energy should theoretically give an excess in the measured νe flux relative to
other neutrinos.
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To measure the Glashow resonance, one needs to have a source that can
provide a flux of neutrinos with energies in the PeV range. Cosmogenic neutrinos
could be good candidates to measure the GR. [21] Thus, the secondary neutrinos
originating from the reaction of ultra-high-energy cosmic rays with the CMB
photons might be observed by means of GR. This links the GZK limit to the
Glashow resonance.

The Glashow resonance is interesting for neutrino astronomy for two reasons.
Firstly, as mentioned before, the increased crossection of νe + e− � W− gives
an enhanced measurability of cosmogenic neutrinos at EGR = 6.3 PeV. The
W-boson will then decay either into hadrons or leptons:

νe + e− � W− �


hadrons 68%

νe + e− 11%

νµ + µ− 11%

ντ + τ− 11%

(19)

These cases should provide peaks in the measurements at different energies.
The hadronic decay mode accounts for 68% of the cases, which is a firm majority.
This decay mode corresponds to showers with the Glashow energy of 6.3 PeV.
Each lepton decay mode accounts for approximately 11% and these modes can
be identified using other signals. The decay mode W− � νe+e− is accompanied
by a peak in the energy spectrum at 3.2 PeV due to the fact that the created
neutrino carries of a part of the energy.[22] The decay mode W− � νµ + µ−

can be identified by a so-called ‘pure muon’ track. The name ‘pure’ originates
from the fact that the only thing this mode creates inside a detector, is a muon
track. The final mode W− � ντ + τ− is the ‘contained lollipop’. The energy
deposit is determined by the decay τ− � e−νeντ , which creates a peak at an
energy of 1.6 PeV. Part of the energy is carried away by neutrinos, causing the
lower energy peak. This is a lower energy than the νe + e− decay mode, due to
the fact that this is a three particle decay. The leptonic modes are small in the
amount of events they generate, but due to their distinct signatures they could
still be of importance for GR measurements.[23]

Secondly, the Glashow resonance has an important role in distinguishing
how ultra-high-energy neutrinos are created. Astrophysical neutrinos can be
created by either the GZK process or reactions of cosmic rays with other pro-
tons in interstellar gasses. These are also named respectively the pγ and pp
processes. The pp reaction produces higher antineutrino fluxes than the pγ
reaction. If more highly energetic antineutrinos are detected, pp reactions are
favoured. Knowledge about the flux of high energy antineutrinos thus con-
tributes to understanding the dominant process. The Glashow resonance is
especially important here because current detectors cannot distinguish antineu-
trinos from neutrinos at energies above 100 TeV.[24] GR is the only process
that is unique for antineutrinos and thus an important factor in measuring the
neutrino to antineutrino ratio. Models where pp reactions dominate relative to
pγ reactions are associated with more GR events.[25, 26] Observing this in de-
tectors at Earth might be difficult and could require a long measurement time,
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though.[12, 27] Hence, the (non-)measurement of GR can be an important probe
to research the origins of astrophysical neutrinos.

Currently there has not been a conclusive measurement of a GR event. Ice-
Cube has measured some PeV neutrinos, but it is unlikely that these are GR
events.[20, 28–30] The only possible candidate is a recent measurement of a
cascade event with an energy of approximate 6 PeV at IceCube, which is cur-
renty being analyzed.[15] The absence of GR events needs explanation, because
a ‘missing GR problem’ constrains the possible models of astrophysical neutrino
creation.[22] Potential options that can account for the lack of GR measurements
will be discussed further on.
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4 Phase-space

The objective of this bachelor thesis is to generate the energy spectrum of the
neutrinos that originate from the GZK reaction to determine GR candidates.
A simulation can help to describe these decay processes as we can use it to
determine the four-momenta of the decay products. We can use this four-
momentum to find the corresponding energy spectrum of the neutrinos. The
energy spectrum can then in turn be analysed to check what fraction of particles
will have an energy relevant for Glashow resonance.

Before this simulation can be done, some preliminary steps have to be made.
In this section we will derive the formulas that describe two and three-body
phase space. For three-particle phase space, we will derive the formulas for
zero-mass particles. This is not the general description of three-body phase
space, but the zero-mass case will suffice for the research done in this bache-
lor thesis. In particle phenomenology phase space is used to describe the final
four-momenta of particles. In this case specifically, this final state will describe
the four-momenta of the decay products of π+ we want to simulate. Later the
equations for two- and three-body phase space will be used to obtain two dif-
ferent simulations for the decays. Both simulations should describe the same
physics, so both simulations will be compared to ascertain that they adhere to
this principle.

4.1 Two-body phase space

First, we will discuss two-body phase space, which describes the production of
two particles. An example is a decay of one particle in two new particles.

Figure 4: A sketch of the four-momenta involved in the derivation of two-body
phase space. P denotes the four-momentum of the incoming particle and p1 and
p2 denote the four-momenta of the decay products. The arrows show that P
represents the ingoing particle and p1 and p2 represent the outgoing particles.

For a description of two-body phase space, both the integration elements over
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the final four-momenta and constraints on the final four-momenta are needed.
A schematic overview of the situation can be seen in Figure 4. These give the
following constraints on the particles:

(p0
1)2 − |−→p1|2 = m2

1 (20)

(p0
2)2 − |−→p2|2 = m2

2 (21)

Pµ = pµ1 + pµ2 (22)
−→
P = −→p1 +−→p2 (23)

Here P is the total four-momentum of the initial state, which is the decaying
particle. p1 and p2 denote the four-momenta of the final states of the two
particles, or the decay products in this case. (20) and (21) are the constraints
imposed by the on-shell condition of the final-state particles. We recognize
these formulas from Section 2.1. (22) describes the constraint on the total four-
momentum due to the initial value of P , with (23) being the spatial part of the
four-momentum. These constraints are combined to describe two body phase
space, the delta functions refer to the restraints above:

dV2(P ; p1, p2) = d4p1δ(p1
2 −m2

1)d4p2δ(p2
2 −m2

2)δ4(P − p1 − p2) (24)

These constraints denote the following delta functions in the phase space
equation:

dV2(P ; p1, p2) = d4p1 δ(p1
2 −m2

1)︸ ︷︷ ︸
(20)

d4p2 δ(p2
2 −m2

2)︸ ︷︷ ︸
(21)

δ4(P − p1 − p2)︸ ︷︷ ︸
(22)

(25)

(24) can be simplified by applying the constraints and rewriting the formula
using the delta functions. This will in turn reduce the degrees of freedom and
cast the phase space formula into a version that is suitable to use in a simu-
lation: reducing the degrees of freedom increases the ease of computation. To
achieve this goal, a useful convention is to choose the rest system of the incoming
particle:

Pµ =
(√

s,
−→
0
)

(26)

√
s denotes the invariant energy. This definition is used to impose a con-

straint on the final state energy, as seen below in (28). We can also cast (23)
into a simpler form, which is (27):

−→p1 +−→p2 = 0 (27)

p0
1 + p0

2 =
√
s (28)
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The following step is to rewrite the delta functions, using the constraints.
Two relations for delta functions are especially important here:

δ(αx) =
1

α
δ(x) (29)∫ ∞

−∞
f(x)δ(x− a)dx = f(a) (30)

(30) will often be applied without explicitly writing the integral.

Now we can write p2 in terms of P and p1, so we can eliminate the integration
element dp2. The last delta function of (24) is eliminating by using (30). This
allows us to define p2 as pµ2 = Pµ − pµ1 , which in turn also eliminates the
integration element dp2 as p2 is no longer a variable. This can be plugged into
the delta function δ(p2

2 −m2
2):

dV2(P ; p1)
(22)
= d4p1δ(p1

2 −m2
1) δ((P − p1)2 −m2

2)︸ ︷︷ ︸
(22)

dV2(P ; p1)
(20)
= d4p1δ(p1

2 −m2
1)δ(s+m2

1 −m2
2 − 2p0

1

√
s)

dV2(P ; p1)
(29)
=

d4p1δ(p1
2 −m2

1)δ(p0
1 −

s+m2
1−m

2
2

2
√
s

)

2
√
s

In the final part of this derivation, we will recast the integral over p1 into a
simpler form:

d4p1δ(p1
2 −m2

1)
(20)
= d4p1δ((p

0
1)2 − |−→p1|2 −m2

1)

(29)
=

d4p1δ(p
0
1 −

√
|−→p1|2 −m2

1)

p0
1 +

√
|−→p1|2 −m2

1)

=
dp0

1d
3p1δ(p

0
1 −

√
|−→p1|2 −m2

1)

p0
1 +

√
|−→p1|2 −m2

1)

(30)
=

d3p1

2p0
1

=
|−→p1|2d cos(θ)dφd|−→p1|

2p0
1

=
|−→p1|d cos(θ)dφdp0

1

2

In the last step we used p0
1dp

0
1 = |−→p1|d|−→p1|, which is a consequence of (20).This
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result is plugged into the phase space formula, giving:

dV2(P ; p1) =
|−→p1|d cos(θ)dφdp0

1δ(p
0
1 −

s+m2
1−m

2
2

2
√
s

)

4
√
s

(31)

(30)
=
|−→p1|d cos(θ)dφ

4
√
s

(32)

Due to (20), |−→p1| is fixed by |−→p1| =
√
p0

1 −m2
1. The delta term in (31) fixes

the energy of particle one with p0
1 =

s+m2
1−m

2
2

2
√
s

. This indicates one can reduce

the two-body phase space to the following proportionality:

dV2(P ; p1) ∝ d cos(θ)dφ (33)

Section 5 will elaborate on how this result is used in the simulation.

4.2 Three-body phase space

The process of one particle decaying into three new particles can be described
using three-particle phase space. The objective is the same: determining the
four-momenta of the outgoing particles. Describing this three-body case is more
complicated than the two-body case, as will be seen further on. The starting
point is the three particle phase space defined as following:

dV3(P ; p1, p2, p3) = d4p1δ(p1
2 −m2

1)d4p2δ(p2
2 −m2

2)d4p3

· δ(p3
2 −m2

3)δ4(P − p1 − p2 − p3) (34)

This formula is similar to (24), with the addition of the delta function that
characterizes the constraints on the third particle. The delta functions describe
similar constraints on the particles:

m2
i = (p0

i )
2 − |−→pi |2 i = 1, 2, 3 (35)

Pµ = pµ1 + pµ2 + pµ3 (36)
−→
P = −→p1 +−→p2 +−→p3 (37)

The on-shell condition holds in the three-body case as well. The total four-
momentum is denoted by P , this constrains the sum of the four-momenta of the
outgoing particles. The four-momenta of the outgoing particles are denoted by
p1, p2 and p3. These constraints can be linked to the phase space equation as
given by (34):

dV3(P ; p1, p2, p3) = d4p1 δ(p1
2 −m2

1)︸ ︷︷ ︸
(35), i =1

d4p2 δ(p2
2 −m2

2)︸ ︷︷ ︸
(35), i = 2

d4p3 δ(p3
2 −m2

3)︸ ︷︷ ︸
(35), i = 3

δ4(P − p1 − p2 − p3)︸ ︷︷ ︸
(36)

(38)
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Figure 5: A two-dimensional sketch of the polar angle θ12 of particle 2 relative
to particle 1. The polar angle of particle 1, θ1, is defined relative to an arbitrary
axis in this sketch.

Reducing the degrees of freedom of the three-body phase space is necessary
to vastly increase the ease of computation when simulating the four-momenta.
Thus the approach as given in section 4.1 will be used to decrease the degrees of
freedom of this three-body phase space. We combine this approach with a new
definition of the angles that describe the spatial components of particle 2. We
name these angles φ12 and θ12, which is the rotation of particle 2 with respect
to particle 1. A sketch of the situation can be seen in Figure 5. Further details
are explained in 4.2.1.

First, we will repeat the approach of 4.1 for the three-body phase space.
We use the convention of using the rest frame of the incoming particle for the
four-momentum P as given by (26). This recasts the constraint of (36) and
(37):

−→p1 +−→p2 +−→p3 = 0 (39)

p0
1 + p0

2 + p0
3 =
√
s (40)

The constraint given by (36) can be rewritten using p3 = P − p1 − p2 .
We can use this to eliminate the last delta function of (34) and the integration
element dp3. This can be combined with the result derived in 4.1:

d4p1 =
|−→p1|dΩ1dp

0
1

2
(41)

d4p2 =
|−→p2|dΩ12dp

0
2

2
(42)

We used the definition for the solid angle: Ω. = d cos(θ)dφ. These above results
are inserted into (34). The variables dΩ12, θ12 and φ12 are introduced, which
refer to the rotation of particle 2 relative to the rotation of particle 1. In the final
step, we set the masses of all three outgoing particles to 0. This gives p0

i=|
−→pi | as
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per (35). We can set the masses to zero, because this is also applicable in the
simulation.3

dV3(P ; p1, p2, p3) =
1

4
p0

1p
0
2dp

0
1dp

0
2dΩ1dΩ2δ((P − p1 − p2)2 −m2

3) (43)

(35)
=

1

4
p0

1p
0
2dp

0
1dp

0
2dφ1d cos(θ1)dφ12d cos(θ12) (44)

· δ(s− 2
√
s(p0

1 + p0
2) +m2

1 +m2
2 + 2p0

1p
0
2

− 2|−→p1||−→p2| cos(θ12)−m2
3)

(29)
=

1

8
dp0

1dp
0
2dφ1d cos(θ1)dφ12d cos(θ12) (45)

δ

(
cos(θ12)− s− 2

√
s(p0

1 + p0
2) + 2p0

1p
0
2

2p0
1p

0
2

)
The last result indicates that cos(θ12) is set by the delta function, whereas the
values for p0

1, p
0
2, φ12, cos(θ1) and φ1 are the remaining degrees of freedom. We

cannot express these variables in terms of other variables. In the next two
subsections, the generation of the energies p0

1, p
0
2 and the angles φ12, cos(θ1) and

φ1 will be discussed.

4.2.1 Generating φ12, cos(θ1) and φ1

As seen above, the value of cos(θ12) is set by a delta function:

cos(θ12) =
s− 2

√
s(p0

1 + p0
2)

2p0
1p

0
2

+ 1 (46)

The other relevant angles are variables, thus they are generated using a random
number generator in a simulation. The random numbers are denoted by ρ ∈
[0, 1]:

φ12 = 2πρ1 (47)

cos(θ1) = −1 + 2ρ2 (48)

φ1 = 2πρ3 (49)

As noted before, φ12 is the azimuthal angle with respect to the rotation of
particle 1. Thus when generating the spatial elements of the four-momentum of
particle 2, we need to rotate these elements with respect to particle 1.4. First,
we define the spatial components of particle 2:

px2 = |−→p2| sin(θ12) cos(φ12) (50)

py2 = |−→p2| sin(θ12) sin(φ12) (51)

pz2 = |−→p2| cos(θ12) (52)

3Three-body phase space is relevant for the decay of the muon: µ+ � νµ + e+ + νe. Due
to the fact that mµ � me,mν , it is appropriate to approximate that the masses of the decay
products are zero.

4about this: insert picture or smth
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Using the generated angles of particle 1, we rotate the spatial elements of
the four-momentum of particle 2 using the following matrix multiplication:

cos(φ1) − sin(φ1) 0
sin(φ1) cos(φ1) 0

0 0 1

 cos(θ1) 0 sin(θ1)
0 1 0

− sin(θ1) 0 cos(θ1)

px2py2
pz2

 (53)

The rotation determines the overall spatial components of particle 2, which
is compensated for the fact that the angles φ12 and θ12 are relative to particle
1. The spatial elements of particle 3 can then be calculated using (37).

4.2.2 Generating energies in three-body phase space

As seen above, we can write:

dV3(P ; p1, p2, p3) =
1

8
dp0

1dp
0
2dφ1d cos(θ1)dφ12d cos(θ12)

· δ
(

cos(θ12)− s− 2
√
s(p0

1 + p0
2) + 2p0

1p
0
2

2p0
1p

0
2

)
(54)

The delta function in this formula gives a constraint on the value of cos(θ12),
but we can also rewrite it to obtain a constraint on the values of the energies of
the outgoing particles, p0

1 and p0
2, by using the fact that cos(θ12) ≤ 1.

s− 2
√
s(p0

1 + p0
2) + 2p0

1p
0
2

2p0
1p

0
2

≤ 1

s− 2
√
s(p0

1 + p0
2) + 2p0

1p
0
2 ≤ 2p0

1p
0
2

s− 2
√
s(p0

1 + p0
2) ≤ 0

√
s

2
− (p0

1 + p0
2) ≤ 0

p0
1 + p0

2 ≥
√
s

2

The last condition allows us to determine a distribution for p0
1 and p0

2. The

condition p0
1 + p0

2 ≥
√
s

2 describes the upper right triangle of a plot where the
x-axis is p0

1 and the y-axis is p0
2. This is a so called Dalitz plot, which can be

seen in Figure 6.
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Figure 6: A schematic version of the Dalitz plot for a three particle decay where
all decay products have mass zero. The x and y axes respectively correspond
to p0

1 and p0
1. All values for x and y that fall within the blue shaded region are

accepted, others are rejected.

This information can be used when generating the energies of outgoing par-
ticles 1 and 2: we can randomly generate the energies by assigning a value

between 0 and
√
s

2 and then test wether it complies with the constraint given
above. If it does not, the coordinates can be transformed so the energies do
comply with the constraint. Here ρ also denotes a random value with ρ ∈ [0, 1]

p0
1 =

√
s

2
ρ1 (55)

p0
2 =

√
s

2
ρ2 (56)

p0
3 =
√
s− p0

1 − p0
2 (57)

If the demand p0
1 +p0

2 ≥
√
s

2 does not hold, we can transform this coordinate
to make it comply with the demand:

p0
1 =

√
s

2
(1− ρ1) (58)

p0
2 =

√
s

2
(1− ρ2) (59)

(60)

We have now derived the relevant formulas that describe three-body phase space.
In the next section, we will discuss how these results are used to analyse the π+

decay with a Monte Carlo simulation, which in turn allows us to find Glashow
resonance candidates.
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5 Monte Carlo Simulation of GZK Neutrinos

In this section, the method used to simulate the GZK decay process will be
explained. As mentioned before, we want to simulate the energy spectrum of
the νµ that is created due to the GZK process. Some of these νµ will oscillate to
νe. These νe could participate in Glashow resonance. Simulating the spectrum
thus allows us to determine how many GZK neutrinos are Glashow resonance
candidates.

We use a Monte Carlo simulation to achieve this goal, which is widely ap-
plied in particle physics. Monte Carlo simulation is a method which can be
implemented to evaluate numerical calculations using random variables. The
basis of this method is random sampling. A process is iterated many times,
every time with a random input. Combining a very large amount of iterations
with random numbers will give a numerical description of the simulated process.
In this case, the random number generated four-momenta can be plotted into a
histogram. This allows us to understand the energy spectrum of the νµ created
by the GZK reaction.

The following chain of decays is simulated:

∆+ � π+ + n (61)

π+ � µ+ + νµ (62)

µ+ � νµ + e+ + νe (63)

The last decay is simulated using two different methods as a means to compare
and check the final results. It is analyzed using either two-body or three-body
phase spaced, as outlined in Section 4. Firstly, the decay process is simulated
using only two-particle phase space formulas. The decay of the µ+ is thus
simulated as if the virtual W-boson created by the decaying muon is a new
decaying particle. So, the W-boson is seen as an intermediate particle in the
decay of the muon:

µ+ � νµ +W+

W+ � e+ + νe (64)

The other simulation uses the formulas of three-particle phase space to simulate
the muon decay as stated in (63). It is thus the four-momentum of the νµ that
is simulated in two different ways.
In this section the general procedure used in the simulation will firstly be dis-
cussed. This is followed by a description of the simulation which only uses
two-particle phase spaces to describe the µ+ decay using (64). Next, the simu-
lation which applies three-particle phase space will be discussed. We will finally
discuss how the Glashow candidates are determined.

5.1 Generating the four-momentum of π+ and µ+

Earlier on the framework for two-particle phase space was explained. This allows
one to show that we can simulate a decay of one particle into two particles by
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generating random values for the angles, φ and θ, of the final particles. We
use spherical coordinates, where φ denotes the azimuthal angle and θ the polar
angle. This approach is used to generate the four-momenta of π+ and µ+. These
are used later on to generate Lorentz boosts. We will outline this for arbitrary
particles X,Y,Z. For a general decay X � Y + Z in the restframe of X we can
define the following four-momenta:

pµX =


mX

0
0
0

 pµY =


p0
Y

p1 sin(φ) cos(θ)
p1 sin(φ) sin(θ)
p1 cos(φ)

 pµZ =


p0
Z

−p1 sin(φ) cos(θ)
−p1 sin(φ) sin(θ)
−p1 cos(φ)

 (65)

We can then define the energies of the outgoing particle and the length of the
vector as following, using the derivation of two-body phase spaces as described
in Section 4.1:

p0
Y =

m2
X +m2

Y −m2
Z

2mX
(66)

p0
Z =

m2
Y +m2

Z −m2
X

2mX
(67)

p1 =
√

(p0
Y )2 −m2

Y (68)

The above parameters can be calculated using known data on the masses of the
relevant particles. There are two degrees of freedom left, φ and θ, which are
randomly generated:

cos θ = −1 + ρ1 (69)

φ = 2πρ2 (70)

ρ1 and ρ2 are two different values in the interval [0,1], generated using a uni-
formly distributed random number generator. Now the two different methods
of generating the four-momentum of the νµ will be discussed.

5.2 Generating the four-momentum of νµ

5.2.1 Using two-particle phase-space

When using two-body phase spaces to simulate the GZK process, the decay of
the µ+ is separated into two decays, as can be seen in (64). The generation of
the four-momenta follows the procedure of Section 5.1, with one addition: the
generation of a non-constant mW. We do not use a set mass for the W-boson
here, as the mass of the W-boson is larger than the mass of the µ+: mW =
80.4·103 MeV. This would cause the simulation to be physically incorrect, as
a particle cannot decay into a particle with a higher mass. Thus the W-boson
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decaying from a µ+ can take on a mass between 0 and mµ. The mass of the W-

boson is generated using the contraint δ
(
m2
µ−x

2mµ
− p0

W

)
. The variable x denotes

the variable mass as used in the simulation: x = m̃2
W, where the tilde denotes

that this is the generated mass, not the W-boson mass as defined above. We can
rewrite this to δ

(
[m2

µ − x]− y
)
, with y = 2mµp

0
W This gives a linear distribution

for x: y = m2
µ − x. This can be simulated as stated below:

x = m2
µρ1 (71)

y = m2
µρ2 (72)

y ≤ m2
µ − x (73)

m̃W =
√
x (74)

The three-body decay has one degree of freedom more than the two-body de-
cay. By implementing this variable W-boson mass, we introduce a new degree of
freedom in the two-body decay. This variable W-boson mass restores the degree
of freedom that we missed in the two-body decay simulation, giving both simu-
lations the same amount of degrees of freedom. After generating m̃W =

√
x and

setting mν = 0, the four-momentum of νµ can we calculated using the procedure
of Section 5.1.

5.2.2 Using three-particle phase space

In the case where we simulate the µ+ decay as given by (63), we need to use the
contraints given by three-pbody phase space. The fact that mµ � mνµ ,mνe ,me

can be used to approximate that all masses of the decay products are zero. This
was also used in the derivation of the formulas describing three-body phase
space in Section 4.2. This allows us to use Section 4.2 for the simulation.

Referring back to Section 4.2, we can describe the energies of the particles
in the three body decay by using a Dalitz plot. The Dalitz plot corresponding
to this situation is an upper right triangle with

√
s = mµ, as seen in Figure

6. Only two random variables are needed, as the energy of the third particle
is constrained by conservation of energy. In this case, with all decay products
being massless, this gives the following distribution:

p0
νe =

1

2
mµρ1 (75)

p0
νµ =

1

2
mµρ2 (76)

p0
νe + p0

νµ ≥
1

2
mµ (77)

p0
e = mµ − p0

νe − p
0
νµ (78)
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The four-momentum for νµ can then be determined:

pµνµ =


p0
νµ

p sin(φ) cos(θ)
p sin(φ) sin(θ)
p cos(φ)

 (79)

p =
√

(p0
νµ)2 −m2

νµ (80)

The angles are generated as described in Section 5.1. The main difference for
the four-momentum of νµ in the three-body decay case, with respect to the
two-body decay case, is that p0

νµ is not set by constraints, but also randomly
generated.

It is important to note that the simulation of the four-momenta of νe and
e+ deviate from this procedure. The rotation of the second decay product, νe,
is dependent of the rotation of the first particle, νµ. The four-momentum of
e+ is then defined using (36). The details can be read in Section 4.2 and will
not be repeated here. It is important to generate all three four momenta of
the decay products, though, to perform relevant checks to guarantee that the
simulation is physically correct after each boost. These boosts will be discussed
in the following section.

5.3 Boosting νµ

After generating the four-momentum of νµ in both approaches, we need to boost
the νµ from the rest system of the µ+ to the system of ∆+ moving in space,
as created by the GZK process. We need three boosts to attain this. The first
two boosts use the generated four-momenta of π+ and µ+. First, the νµ is
boosted from the rest system of the µ+ to the generated four-momentum of
the of the µ+. Then, the νµ is boosted from the rest system of the π+ to the
generated four-momentum of the of the π+. The formula used to boost the
four-momentum in these cases is:

p0
Y
′ =

1

mX

(
p0
Y p

0
X + p1

Y p
1
X + p2

Y p
2
X + p3

Y p
3
X

)
−→pY ′ = −→pY +−→pX

p0
Y
′ + p0

Y

p0
X +mX

(81)

In this case the particle denoted by Y refers to the decay product particle.
Particle Y is boosted from the rest frame of the mother particle X to the moving
frame of particle X, which is generated using the procedure of Section 5.1. In
this simulation it is the generated four-momentum of νµ which is boosted. νµ
thus fulfills the role of the general particle Y in (81) .

The last boost consists of taking the rest frame vector of ∆+ over to it’s
four-momentum when travelling through space. The four-momentum of the ∆+

is not generated using the method of Section 5.1. The derivation can be seen in
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Appendix A. The rest frame vector pµ∆+ is taken over into pµ′∆+ :

pµ′∆+ =


√
p2
p +m2

∆+

0
0
pp

 (82)

pp =
m2

∆+ +m2
p

4ECMB
(83)

This is the third and last boost applied on the four-momentum of the νµ.

5.4 Checks

To check that every substep of the simulation is compliant with the laws of
physics, we verify that the on-shell condition and conservation of four-momentum
hold. These conditions have been mentioned before, but are stated again below
in the notation of this section, again with : X � Y + Z:

p0
X = p0

Y + p0
Z (84)

piX = piY + piZ i = 1, 2, 3 (85)

m2 = (p0)2 − (−→p · −→p ) (86)

The on-shell relation is written using the inner product notation, to emphasize
the method used to perform this check in the algorithm. These checks hold for
all steps when using a precision of fifty decimals.

5.5 Selecting Glashow Resonance Candidates

After generating the four-momenta of νµ and performing the neccesarry checks,
the possible Glashow resonance candidates are selected. The first component of
the four-momentum, p0

νµ , denotes the energy. The following energy ranges are
used:

6.0 PeV < p0
νµ < 6.6 PeV (87)

4.0 PeV < p0
νµ < 10 PeV (88)

The first range, of (87), corresponds to and energy range of 6.3 PeV ±∆E, with
∆E = 2ΓWEGR

MW
= 0.3 PeV.[12] ΓW = 2.1 GeV designates the full width at half

maximum for the Glashow resonance peak of the crossection. The second range,
of (88), corresponds to the energy range where the crossection of the Glashow
resonance is larger than the non-resonant crossection, see also Figure 3. This
resonance range is used in e.g. [28]. The number of GR candidates are then
compared for both ranges.
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6 Results

In this section, the results will be discussed for a simulation of 100,000 particles.
The procedure of Section 5 is followed, this gives us the the energy distribution
for a νµ that originates from a GZK reaction and the amount of Glashow candi-
dates per 100,000 that follow from this distribution. Images can be found on the
next pages. Other results of the simulation, including intermediate results of
the boost and spatial distributions of the neutrino four-momenta, can be found
in the appendix.

The energy spectrum of the νµ can be seen in Figure 7. In both the two-
body and three-body decay simulation, the energy distribution ranges from
about 1010 MeV to approximately 5 · 1013 MeV. The energy spectrum of the
neutrinos peaks around 1013 MeV = 104 PeV. This peak lies multiple orders of
magnitude above the Glashow resonance energy of 6.3 PeV.

The number of Glashow candidates, selected according to Section 5.5, can
be seen in Figures 8 and 9. The GR candidate histograms are the result of
100 simulations of 100,000 particles. In Figure 8, it can be seen that there are
approximately 2-15 GR candidates out of 100,000 simulated particles for the
range 6.0 PeV < p0

νµ < 6.6 PeV. In Figure 9, the GR candidates for the

energy range 4.0 PeV < p0
νµ < 10 PeV are given, resulting in about 60-100 GR

candidates per 100,000 simulated particles.
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(a) Energy distribution generated in a two-body decay simulation.

(b) Energy distribution generated in a three-body decay simulation

Figure 7: Histogram of the energy distribution of a GZK νµ in a simulation of
100,000 particles

27



(a) Two-body decay simulation.

(b) Three-body decay simulation

Figure 8: Histogram of the number of νµ Glashow candidates for the energy
range 6.0 PeV < p0

νµ < 6.6 PeV in a simulation of 100,000 particles.
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(a) Two-body decay simulation.

(b) Three-body decay simulation

Figure 9: Histogram of the number of νµ Glashow candidates for the energy
range 4.0 PeV < p0

νµ < 10 PeV in a simulation of 100,000 particles.
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7 Conclusion and Discussion

The conclusions we can draw from the results, as discussed above, are twofold.
Firstly, one of the goals of the Monte Carlo simulation of the GZK process was
to show that the two-body and three-body decay simulation would give the
same results. This is logical, as both simulations describe the same physics.
In Figure 7 we can indeed see that both simulations lead to the same energy
spectrum for the νµ. This in turn also gives similar results for the amount of
GR candidates, as can be seen in Figures 8 and 9. Whereas the energy spectra
of both simulation are approximately identical, the GR candidate histograms
have some visible differences. This is probably not caused by a difference in the
simulation, rather it is caused by the fact that random variables are used. As
mentioned before, the GR candidate histograms are the result of 100 simula-
tions of 100,000 particles. If we were to increase the number of simulations to a
much higher amount, these histograms would very likely also become nearly in-
distinguishable. Unfortunately, this is not possible at the current moment, due
to time constraints. To sum up, we can conclude that the two-body and three-
body decay simulations give the same results, within the accuracy reached, as
expected.

Secondly, we can conclude that the GZK process for pure proton UHECR
could theoretically produce between 2 to 100 Glashow resonance candidates per
100,000 νµ, depending on the energy range we choose. It is important to note
that these candidates are muon neutrinos, not electron neutrinos. As discussed
in Section 2.2, neutrino propagation through vacuum will lead to equal mixing
of the flavour states. This assumption combined with the simulation shows us
that there will be about 1-30 νe that fall into the energy range relevant for
Glashow resonance.

This is not a high amount, but it certainly is not negligible. Some remarks
have to be made regarding this result. The first is the fact that we did not focus
on the flux of these GZK neutrinos on Earth. A very low flux or a very high
flux makes a large difference when talking about the experimental feasability of
measuring GZK neutrinos using the Glashow resonance. Another note concerns
the shape of the energy spectrum of the neutrinos. As seen in Figure 7, the
main part of the peak lies above 1010 MeV. This energy is already about an
order of magnitude above the Glashow resonance energy of 6.3 PeV = 6.3 ·109

MeV. The GR candidates are almost invisible in the histogram of the energy
spectrum. This leads to the question: are these GR candidates a legitimate out-
come of the simulation or are they statistical outliers due to the use of random
variables? And if the GR candidates would be statistical outliers, what impli-
cations would this have for the possibility of measuring GZK neutrinos using
the Glashow resonance? Statistical outliers need not necessarily be unphysical,
so this requires further research.

The result of the energy spectrum of the observation can also be qualita-
tively compared with some other results. For pure protons producing secondary
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neutrinos, Kotera et al. and Aloiso et al. find similarly shaped energy spectra
for the flux of cosmogenic neutrinos, although their results show a wider en-
ergy distribution, peaking around slightly lower energies.[31, 32] It is important
to note that this is an informal qualitative comparison with the results stated
above: Kotera et al. and Aloiso et al. express their results in neutrino flux,
rather than bin counts, and Kotera et al. consider all neutrino flavours of the
secondary GZK neutrinos.

Finally, we want to consider the current state of research on GZK neutrinos.
As of this moment, UHE cosmogenic neutrinos have not been observed yet, but
research is ongoing.[3, 33] There also have not been any Glashow resonance
neutrinos observations at the moment.[20] Interestingly, there have been some
observations of neutrinos in the PeV range, though not at 6.3 PeV. The observed
PeV neutrinos are mainly in the 1-2 PeV range, which could point to a sub-
dominant decay mode, but there is no reason why this would be preferred over
the dominant hadronic decay mode. This could point to a ‘missing Glashow
resonance problem’.[22]5

The lack of Glashow resonance events leads to constraints on the origins of
cosmogenic neutrinos. The absence can for example be explained by a prefer-
ence for pγ (the GZK process) over pp interactions as the origin of cosmogenic
neutrinos. In the case that no GR neutrinos are observed, this could imply that
the muons lose energy before they decay, which inhibits their decay. [20, 22]
This is the so called ‘damped µ+ mode’. A lack of GR events could also point
towards a preference over pγ over Aγ interactions. [12] The current observations
could also imply constraints on the index of the neutrino energy spectrum.[12,
27, 30] Another possibility is that the cosmic rays with the highest energies are
not protons but heavier nuclei.[10] In this case, a lower cosmogenic neutrino flux
is expected.[36] This lower flux would imply there are less possible GR candi-
dates. Finally, it is possible that the contribution of the Glashow resonance is
not that significant, relative to other processes, when observing cosmogenic neu-
trinos.[14] In the future, observations of IceCube-Gen2 could make GR events
more accessible, possibly giving increased GR neutrino data.[3] Even with the
current lack of GR observations, there still is a large research interest in mea-
suring GR neutrinos. As mentioned before, one of the advantages of GR events
is that they are flavour specific: only νe are sensitive to the resonance. This in
turn makes Glashow resonance and interesting candidate to probe BSM physics,
such as neutrino decay.[4, 25]

Finally, we can conclude the hunt for the Glashow resonance neutrinos is far
from over. Large scale experiments such as GRAND and IceCube-Gen2 show
us that the field of cosmogenic neutrino observation is booming. Time will tell
what we can learn from these new neutrino measurements.

5Some papers mention that IceCube observed a GR neutrino. These results have been
presented at conferences.[34, 35] I leave them out of consideration here, as these IceCube
results have not been officially published yet.

31



Bibliography

[1] Luis A. Anchordoqui. “Ultra-high-energy cosmic rays”. In: Physics Re-
ports 801 (2019). Ultra-high-energy cosmic rays, pp. 1–93. issn: 0370-1573.
doi: https://doi.org/10.1016/j.physrep.2019.01.002. url: http:
//www.sciencedirect.com/science/article/pii/S037015731930002X.
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A Derivation of ∆+ boost

In Section 5.3 the boost that takes the rest frame vector pµ∆+ over into the pµ′∆+

is written below.

pµ∆+ =


m2

∆+

0
0
0

 pµ′∆+ =


√
p2
p +m2

∆+

0
0
pp


A derivation of pp is given here. A high energy proton, a cosmic ray, collides

head on with a CMB photon. We set the direction of the momentum to the
z-axis. This collision produces a ∆+ at rest. The four-momenta for the proton
and photon are:

pµp =


Ep
0
0
pp

 pµγ =


Eγ
0
0
−Eγ


Using the fact that the proton has a very high energy, thus Ep � mp, gives
Ep ≈ pp. The derivation is then analogous to the derivation of the GZK limit
energy, as seen in Section 2:

m2
∆+ =

(
pµp + pµγ

)2
m2

∆+ = pp · pp + pγ · pγ + 2pγ · pp
m2

∆+ = m2
p + 0 + 2(EpEγ − (−ppEγ))

m2
∆+

Ep ≈ pp
= m2

p + 4ppEγ

pp =
m2

∆+ −m2
p

4Eγ

B Additional Results

B.1 Two-body Decay Monte Carlo Simulation of νµ

In this section, all results of the simulation of the four-momentum of the νµ
are given for a two-body decay simulation, including all intermediate results
of the Lorentz boost. All simulations consider 100,000 particles. The images
show that the spatial part of the four-momentum is isotropic, as expected, for
all (boosted) four-momenta except for the last boost. This is due to the fact
that the for last boost we constrained the spatial boost to the z-axis. In this
simulation, the neutrino is a product of the decay µ+ � νµ + W+, where W+

has a variable mass.
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Figure 10: Simulation of four-momentum of νµ in the restsystem of the muon
for two-body decay.

Figure 11: Simulation of four-momentum of νµ in the restsystem of the pion for
two-body decay.
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Figure 12: Simulation of four-momentum of νµ in the restsystem of the ∆+ for
two-body decay.

Figure 13: Simulation of four-momentum of νµ in the boosted system of the ∆+

for two-body decay.
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B.2 Three-body Decay Monte Carlo Simulation of νµ

In this section, all results of the simulation of the four-momentum of the νµ
are given for a three-body decay simulation, including all intermediate results
of the Lorentz boost. All simulations consider 100,000 particles. The images
show that the spatial part of the four-momentum is isotropic, as expected, for
all (boosted) four-momenta except for the last boost. This is due to the fact
that the for last boost we constrained the spatial boost to the z-axis. In this
simulation, the neutrino is a product of the decay µ+ � νµ + e+ + νe.

Figure 14: Simulation of four-momentum of νµ in the restsystem of the muon
for three-body decay.
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Figure 15: Simulation of four-momentum of νµ in the restsystem of the pion for
three-body decay.

Figure 16: Simulation of four-momentum of νµ in the restsystem of the ∆+ for
three-body decay.
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Figure 17: Simulation of four-momentum of νµ in the boosted system of the ∆+

for three-body decay.
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B.3 Generated Mass of W-boson

Figure 18: The generated masses of the W-boson according to the distribution
given in Section 5.2.1
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