Education and Examination Regulation 2019-2020

Master Physics and Astronomy
TABLE OF CONTENTS

PART I General provisions

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Applicability of these regulations</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Definition of terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Part II General part

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Admission and admission requirements</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Language requirements</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Final examination, degree and distinctions</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>General learning outcomes</td>
<td>7</td>
</tr>
<tr>
<td>3.3</td>
<td>Curriculum</td>
<td>7</td>
</tr>
<tr>
<td>3.4</td>
<td>Type of interim examination</td>
<td>8</td>
</tr>
<tr>
<td>3.5</td>
<td>Exemptions</td>
<td>9</td>
</tr>
<tr>
<td>3.6</td>
<td>Term of validity of successfully completed interim examinations</td>
<td>9</td>
</tr>
<tr>
<td>3.7</td>
<td>Elective programme</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency of interim examinations</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Registration for course examinations</td>
<td>10</td>
</tr>
<tr>
<td>4.3</td>
<td>Confirmation of examination results</td>
<td>10</td>
</tr>
<tr>
<td>4.4</td>
<td>Publication of results</td>
<td>11</td>
</tr>
<tr>
<td>4.5</td>
<td>Right of inspection and explanation</td>
<td>11</td>
</tr>
<tr>
<td>4.6</td>
<td>Confirmation of the result of the final examination</td>
<td>12</td>
</tr>
<tr>
<td>4.7</td>
<td>Awarding distinctions</td>
<td>12</td>
</tr>
</tbody>
</table>

Part III Programme-specific part

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Admission requirements</td>
<td>14</td>
</tr>
</tbody>
</table>

Translation of the leading Dutch OER text. No rights can be derived from this translation

EER of the Master’s programme in Physics and Astronomy 2019-2020

Page 1 of 21

Radboud Universiteit
Article 7.1 Programme-specific learning outcomes... 14
Article 7.2 Composition of the programme... 17
Article 7.2a Research specialisations... 17
Article 7.2b Societal specialisations.. 18
Article 7.3 Deviating programme... 21
Section 8. Transitional provisions ... 21
PART I GENERAL PROVISIONS

Section 1. General provisions

Article 1.1 Applicability of these regulations

1. These Education and Examination Regulations (EER) apply to the Master’s programmes (the degree programme in which the student is enrolled is hereinafter referred to as “the programme”), including all their components, of the Faculty of Science. These EER outline the applicable procedures, rights and obligations concerning teaching, interim examinations and final examinations.

2. The present regulations apply to all students enrolled in the programme in the academic year 2019-2020. Students who started the degree programme before 1 September 2016 and have been continuously enrolled in this programme may appeal to the EER which was valid at the time of their initial enrolment in the programme.

3. Course components provided by a different faculty or institution that are followed as part of the degree programme are subject to the rules applicable at that faculty or institution. Components offered by the Faculty of Science are at all times subject to the regulations described in at least one of the EERs of the Faculty of Science.

4. The faculty offers the following 120-EC Master’s programmes:
 a. Biology;
 b. Chemistry;
 c. Computing Science;
 d. Mathematics;
 e. Medical Biology;
 f. Molecular Life Sciences;
 g. Physics and Astronomy;
 h. Science.

5. The faculty offers the following 60-EC Master’s programmes:
 a. Information Sciences.

6. All degree programmes are offered exclusively as full-time programmes.

7. The programmes are taught in English. The Science and Education specialisation is taught in Dutch.

Article 1.2 Definition of terms

1. The terms used in these EER, which are also used in the Higher Education and Research Act (Wet op het hoger onderwijs en wetenschappelijk onderzoek, hereinafter, “the Act”) will have the same meaning as in the Act.
2. Apart from the terms referred to in clause 1, the terms below will be understood to have the following meaning:

a. Degree programme: the Master’s degree programme referred to in Article 7.3a, clause 1 of the Act;
b. Component: an educational unit as referred to in Article 7.3, clauses 2 and 3 of the Act;
c. Student: anyone enrolled at Radboud University for participation in a degree programme or in the partial examinations or final examinations of a programme;
d. Academic year: the period from 1 September in a given year until 31 August of the following year;
e. Practical: a practical exercise as referred to in Article 7.13 clause 2 under D of the Act;
f. Interim examination: an examination testing the knowledge, understanding or skills of the student in relation to a certain unit of study, as well as the assessment of the results of this examination, which is administered by at least one examiner designated by the Examining Board. For the purpose of these regulations, a partial examination or a resit is also considered an interim examination;
g. Partial examination: an examination of the knowledge, insight and skills of the student, as well as the assessment of the results of the examination, which in conjunction with one or more other partial examinations constitute the interim examination as referred to under clause f. In these regulations, when the term examination is used this can also be read as partial examination, unless explicitly indicated otherwise;
h. Resit: a new opportunity to take a particular examination as referred to in Article 7.10 clause 1 of the Higher Education and Research Act (WHW). In these regulations, when the term examination is used this can also be read as resit, unless explicitly indicated otherwise;
i. Final examination: an assessment, on the basis of which the Examining Board determines whether all the components pertaining to the Master’s programme have been completed successfully. The Examining Board may decide that the final examination also includes an investigation by the Examining Board into the knowledge, insight and skills of the candidate, as well as the assessment of the outcomes of that investigation (in accordance with Article 7.10 WHW);
j. Fraud: any deliberate act or omission by a student that makes forming an accurate opinion of his or her knowledge, understanding, and skills partially or entirely impossible. The Regulations on Fraud during Interim Examinations and Examinations are included as an appendix to these EER;
k. Examining Board: the examining board of a degree programme, established in accordance with Article 7.12 of the Act. Also see the Radboud University Structural Regulations;
l. Examiner: the person designated by the Examining Board to administer the interim examinations, in accordance with Article 7.12 of the Act;
m. EC: European Credits, i.e. the study load unit in accordance with the European Credit Transfer System;

n. Specialisation: a coherent programme within the Master’s programme that has been approved as such by the faculty board;

o. Work day: Mondays to Fridays, with the exception of official holidays and any other days designated by Radboud University as collective holidays;

p. Awarding of the degree certificate: the formal confirmation that all the examination requirements have been met;

q. Study guide: the guide for a particular degree programme of the Faculty of Science, containing specific information regarding the Master’s degree programme;

r. The university: Radboud University;

s. The faculty: The Faculty of Science;

t. Free elective: a freely-selected, academic, assessable component;

u. Rules and regulations: the rules in which the Examining Board explain how it works in accordance with the Education and Examination Regulations.
PART II GENERAL PART

Section 2. Admission to the degree programme and education

Article 2.1 Admission and admission requirements
1. Decisions regarding admission are made by the education institute on behalf of the Dean.
2. The programme-specific part of these EER lists the admission requirements the student must meet
to be admitted to the degree programme.

Article 2.2 Language requirements
1. A sufficient command of the English language is required to participate in the programme and to
sit for examinations in English. This requirement is met if the student:
 a. comes from one of the following countries: Australia, Canada (with the exception of Quebec),
 Ireland, New Zealand, Singapore, the United Kingdom, the United States and South Africa; or
 b. is in possession of a pre-university education (VWO) diploma; or
 c. is in possession of a pre-university education diploma obtained at an English-language
 institution in the Netherlands or elsewhere; or
 d. has a pre-university education diploma obtained at a German secondary education institution,
 with English as Grundkurs; or
 e. has a Bachelor’s diploma from a university of applied sciences (HBO); or
 f. has a Bachelor’s diploma from a Dutch university; or
 g. in the opinion of the programme meets the requirements; or
 h. has achieved a sufficient score on one of the following English language tests:
 i. the TOEFL with a score of 575 or higher for the paper version;
 ii. the TOEFL with a score of 90 or higher for the Internet version with none of the sub-scores
 below 18;
 iii. the IELTS with a score of 6.5 or higher, where none of the sub-scores are below 6.0;
 iv. the Cambridge CAE or CPE with a score of C or higher.
2. A sufficient command of Dutch is required to participate in the programme and to sit for
examinations in Dutch. Non-Dutch students have met the language requirement for sufficient
proficiency in Dutch if they have passed the state examination of Dutch as a second language, level
2.
 In certain cases, the education institute may assess whether a student is sufficiently proficient in
Dutch.

Section 3. Structure and design
Article 3.1 Final examination, degree and distinctions

1. The degree programme is concluded by the Master’s final examination.
2. A student who has passed the final examination of the Master’s degree programme will be awarded the Master of Science (MSc) degree.
3. The degree referred to in the second clause is exclusively awarded if the student has earned at least half of the EC for his/her degree programme at this university.
4. The Examining Board can award a distinction to a student who has successfully passed the degree programme examination. The rules for awarding a distinction can be found in Article 4.7 of these EER.

Article 3.2 General learning outcomes

The degree programme has the following learning outcomes for students:
 a. Acquire knowledge, skills and insights in the relevant field of study;
 b. Develop academic competences;
 c. Prepare for further study or future career;
 d. Strengthen qualifications in the area of independent academic research.

Article 3.3 Curriculum

1. The programme comprises the total of the components as described in the programme-specific part of these regulations and is aimed at the realisation of well-defined objectives regarding the knowledge, understanding and skills that students are expected to possess upon successful completion.
2. The programme has research specialisations and societal specialisations. The specialisations are described in the programme-specific part.
3. Each degree programme includes a component that is philosophical in nature with a minimum study load of 3 EC, free elective space of 6 EC and a component to aid reflection on study performance, study planning, and professional orientation with a study load of 0 or 1 EC.
4. The elective courses cannot have a substantial overlap in content with courses from the mandatory or elective components of the programme. It is not possible to receive an exemption for the elective component based on a Bachelor’s course.
5. The composition of the Master’s programme compiled by the student must be presented for approval to the Examining Board no later than six months before the expected examination date. The Examining Board will decide whether to grant approval within a month of receiving the submitted programme.
6. A student can only participate in components provided by the Radboud Teachers Academy of
Education after the disciplinary internship has been completed. A student can only participate in the Science, Management and Innovation final research project after the student has passed the thematic components and NWI-FMT019 Methods in Societal Research: Science, Management & Innovation. A student can only participate in the Science in Society research project after 12 EC has been obtained from the SiS curriculum.

7. A student is permitted to add components to the examination programme. These components are considered extra-curricular and do not count towards the determination of the distinction.

8. If a student can choose between components within the curriculum and the student has passed more than one of these components, then the student can decide which components will count towards their distinction.

Article 3.4 Type of interim examination

1. Each component of the degree programme will be concluded by an interim examination. Interim examinations may comprise more than one modular partial examination and may consist of the following assessment forms:
 a. Written test (paper or digital);
 b. Oral test;
 c. Presentation;
 d. Skill test;
 e. The creation of a discipline-specific product and/or assignment.

2. Prior to the commencement of the academic year, information will be provided in the study guide for each individual component regarding the way in which the interim examinations will be administered. At the request of the student or the examiner, the Examining Board may allow an interim examination to be administered in a form other than stated above, if this is not to the detriment of the student.

3. In cases where an interim examination has admission requirements, the admission requirements will be published in the study guide before the start of the academic year. This requires the permission of the programme coordinator. Notwithstanding the above provisions, the admission requirements for the courses completed in the fourth period may still be changed up until the start of the second period, with the permission of the programme coordinator.

4. Students with disabilities are given the opportunity to take interim examinations in a manner appropriately suited to their disability. The Examining Board, if necessary, shall seek expert advice and counsel prior to reaching its decision. If the students in question requires certain facilities for their interim examinations or resits, they must request these from the Education and Examination Administration of the faculty no later than two weeks before the interim examination or resit.
5. For oral examinations, no more than one person is tested simultaneously, unless decided otherwise by the Examining Board.
6. An oral interim examination is not public, unless the Examining Board has deemed otherwise in exceptional cases.
7. An audio recording is made of oral examinations. As an alternative to an audio recording, a second examiner or a designated observer may be present.

Article 3.5 Exemptions
1. The Examining Board, at the request of a student and having heard the examiner involved, may exempt the student, either partially or fully, from sitting an interim examination if the student:
 a. Has completed a course in a relevant subject at a university or institute of higher vocational education (HBO);
 b. Demonstrates that he/she has adequate knowledge and skills regarding the component in question as a result of relevant work experience or professional experience.
2. If the degree programme allows group exemptions, then these are included in the programme-specific part of these regulations.
3. Only one grade for each course may be registered for a single degree programme. If a course is also part of another examination programme, this course will be listed on the diploma as an exemption.
4. Students who were first enrolled on or after 1 September 2017 can never have more exemptions, as stated in clause 1, than a quarter of the total study load of the programme expressed in EC.
5. All results for a degree programme achieved before the date of the first enrolment are stated as exemptions on the degree programme’s diploma. These exemptions do not count towards the ECs as stated in clause 4 if the courses are only included in a one examination programme.
6. Exemptions as referred to in clauses 1 and 2 cannot be granted for final examination assignments.

Article 3.6 Term of validity of successfully completed interim examinations
1. The term of validity of successfully completed interim examinations is unlimited.
2. Results obtained for interim examinations are valid at least until the end of the academic year. The lecturer can decide to extend the term of the validity of the result obtained for a partial examination.

Article 3.7 Elective programme
The programme’s Examining Board determines whether to grant permission for a student to take an elective programme as meant in Article 7.3d of the Act. The Examining Board will verify whether the
programme fits within the domain of the degree programme under the authority of the Examining Board, whether it is sufficiently coherent, and whether the level is adequate in the context of the programme’s exit qualifications.

Section 4. Testing

Article 4.1 Frequency of interim examinations
1. Students are given the opportunity to take the examinations at least twice per academic year.
2. Notwithstanding the provisions of clause 1, a degree programme coordinator may decide to only offer one opportunity for an interim examination or partial examination. If only one opportunity is given to take an interim examination or partial examination, this is stated in the programme study guide before the start of the academic year.
3. Contrary to the stipulation in the first clause, there will be at least one opportunity in the following year to take an interim examination for a course that was taught for the final time in a particular academic year.
4. If a certain component is not given in a particular academic year, the opportunity to take the corresponding examination will be offered once in that academic year, as long as the interim examination is administered in written or oral form.

Article 4.2 Registration for course examinations
1. Students who register through OSIRIS for courses are also automatically registered for the first interim examination opportunity in the relevant academic year. This does not apply to students whose enrolment has not yet been completed.
2. The student must register for an interim examination in accordance with the applicable guidelines and instructions, no later than five days before the interim examination or resit date.
3. A successfully passed examination may be taken again.

Article 4.3 Confirmation of examination results
1. The result of an interim examination is determined by an examiner in the form of a grade on a scale from 1 to 10 (with 10 as the highest possible grade), consisting exclusively of whole numbers or half numbers. However, a grade of 5.5 is never given. When rounding off between 5 and 6, the rule applies that a grade lower than a 5.5 is rounded down to a five (5) which is an insufficient grade, meaning the educational component has not been successfully completed; while a 5.5 and higher is rounded up to a six (6), meaning that this educational component has been successfully
completed. In addition to results in the form of a grade, the assessments “completed”, “not completed”, “satisfactory”, “not satisfactory” and “good” may also be awarded.

2. Notwithstanding the provisions of clause 1, partial examinations may also be graded with one decimal point on a 10-point scale. Rounding off of grades takes place exclusively for the final grade of the component.

3. If a student re-sits an interim examination, the most recent result will determine the final result.

Article 4.4 Publication of results

1. The examiner shall determine the result of a Master’s thesis within 15 working days after its submission via http://thesissubmission.science.ru.nl.

2. The examiner shall determine the result of an oral examination within 2 working days of the date that it was administered.

3. The examiner shall determine the result of a written interim examination within 15 working days of the date it was administered. Here the precondition applies that there must be at least 10 working days between the date of the publication of the result in Osiris and the date of the resit.

4. Contrary to the provisions in clause 2, the examiner shall determine the result of a written interim examination in the fourth period no later than 9 days before the scheduled date of the corresponding resit. The examiner shall determine the result of a written resit examination in the fourth period within 5 working days of the date it was administered.

5. In special cases, the Examining Board may extend the term in which the result must be determined as referred to in clause 3 by a maximum of 10 working days. This is not possible for interim examinations in the fourth period.

6. In this statement of the result of an interim examination, the student is also informed of his/her right of inspection, referred to in Article 4.5 as well as the right to appeal to the Examination Appeals Board.

7. A student may submit an appeal of a decision by the Examining Board to the Examination Appeals Board within six weeks.

Article 4.5 Right of inspection and explanation

1. Within at least 30 working days following publication of a written interim examination result, the student may request access to review and inspect all graded work. For the results of interim examinations with “open” questions, at the student’s request he/she shall be granted a copy of their graded work at cost.
2. During the period referred to in clause 1 of this Article, any student who has taken an interim examination may review the questions and assignments of the interim examination in question, as well as the standards on which the result was based.

3. The Examining Board may determine that the inspection or review shall take place at a particular location and provide at least two different time periods. If the student demonstrates that he/she is unable to attend the inspection or review as a result of force majeure, then another option shall be offered, if possible, within the period stated in clause 1 of this Article.

4. In all cases, provided this has been requested by the student in a timely fashion, the inspection must take place a minimum of five working days before the resit of an interim examination. For examinations in the fourth period, the student may view his/her work until one working day before the resit.

5. The examiner shall retain all written interim examinations and related papers (assignments or otherwise) that count towards the final result for a period of two years following the date when the examination was administered. Master’s programme reports and theses must remain available for visitations, accreditations and inspections and shall be kept for seven years.

Article 4.6 Confirmation of the result of the final examination

1. The student is given the opportunity to take the final examination after he/she has provided sufficient proof that he/she has passed the components leading up to the final examination.

2. Examinations are scheduled each month.

3. The Examining Board will determine the result of the final examination, as well as the rules in relation to the manner in which the result of the examination is determined. The result of the examination is determined by the Examining Board within five weeks following the student’s request. If the examination took place in July, the results will be determined no later than 31 August. In relation to entry requirements for a subsequent programme or the acceptance of a job, if required, a statement can be provided within 5 days indicating that the student has met the requirements of the examination. This is only possible if the student has met the criteria specified in clause 1.

4. Prior to determining the result of the final examination, the Examining Board may evaluate and assess the student’s knowledge with respect to one or more components or aspects of the programme, if and to the degree to which the results of the related interim examinations justify this.

Article 4.7 Awarding distinctions

1. With due observance of the provisions set out in this Article, the Examining Board is responsible for the decision of whether a distinction shall be awarded and if so, which distinction.
2. The distinctions:
 a. “cum laude” shall be awarded if the weighted average result of the assessments of all components with less than 20 EC is at least equal to an 8.0 and the weighted average result of the assessments of all components with 20 EC or more is at least equal to an 8.0.
 b. “summa cum laude” shall be awarded if the weighted average result of assessments of all components with less than 20 EC is equal to an 9.0 and the weighted average result of the assessments of all components with 20 EC or more is at least equal to an 9.0.

3. The distinction shall be calculated on the basis of all components of the examination programme for which a mark has been awarded on a scale from 1 to 10, with the exception of extra-curricular components.

4. The number of EC of the component referred to in clause 3 shall serve as the weighting factor for the calculation of the weighted average result, unless stipulated otherwise in the programme-specific part of these regulations.

5. The distinction shall not be awarded if more than 10 percent of the total study load of the examinations for the degree programme (being one or more components) has been re-sat or if interim examinations have been re-sat more than once, unless the Examining Board decides otherwise, stating the reasons for this decision.

Section 5. Study performance, guidance, and evaluation of education

Article 5.1 Study performance and support

1. The faculty dean is responsible for recording student results in such a way that, upon request, the Examining Board can respond by providing the student with an overview of the progress of the study programme within a reasonable timeframe.

2. The dean is responsible for providing adequate student counselling.

Article 5.2 Method of evaluation of education

In compliance with the quality assurance system of the university as described in the Handboek Kwaliteitszorg Onderwijs Radboud Universiteit (Radboud University quality assurance manual), the dean shall ensure that the education of the degree programmes is systematically evaluated.
PART III PROGRAMME-SPECIFIC PART

Section 6. Admission to the degree programme and education

Article 6.1 Admission requirements

Admission requirements for the programme:

a. Students who have successfully completed the final examination of the Bachelor’s programme in Physics and Astronomy at Radboud University.

b. Students who have successfully completed the final examination of the Bachelor’s programme in (Technical) Physics and/or Astronomy at Radboud University or another Dutch university.

c. Students who are in possession of a degree certificate that is at least equivalent to the degrees referred to in Article 6.1 under b and c.

d. Students who have demonstrated suitability for participation in the degree programme, in the opinion of the Examining Board.

e. Students must provide proof of sufficient proficiency in English, as described in Article 2.2.

Section 7 Structure and design

Article 7.1 Programme-specific learning outcomes

In addition to the general learning outcomes described in the general part of these regulations, the Master’s programme in Physics and Astronomy has the following objectives:

1. General cognitive skills

 a. Graduates will have acquired a way of thinking that will enable them to penetrate and solve problems, while maintaining a critical stance towards established scientific insights.

 b. Graduates will be able to formulate and analyse scientific problems at an abstract level by dividing them into testable sub-problems, differentiating between major and minor aspects.

 c. Graduates will be able to synthesize solutions to sub-problems within a scientific framework and thus contribute to the formulation of general theories.

 d. Graduates will possess mathematical knowledge to the extent that this is relevant in physics and astronomy at the Master’s level.

 e. Graduates will possess sufficient skills in the fields of computing and computer science, which will enable them to design and implement computer programs and use current application programs.

2. Skills based on knowledge and insights pertaining to the fields of physics and astronomy

 a. Graduates will have gained adequate knowledge and insights pertaining to the basic sub-areas of physics and astronomy. The scope of this basic knowledge will be sufficient to allow them to do practical training in one of the research groups.

 b. Graduates will possess sufficient skills in at least one sub-specialisation of physics and astronomy to conduct scientific research under supervision.
c. Graduates will be able to understand scientific articles on the chosen specialisation. Furthermore, they will be able to follow the developments in the chosen specialisation (level: Physical Review).

d. Graduates will be able to assimilate newly acquired knowledge of physics and astronomy and to integrate this knowledge with the knowledge they already possess. In addition, they will be able to orient themselves at the specialist level in a sub-area of physics and astronomy that lies outside their chosen specialisation.

3. Research methods in physics and astronomy
 a. Graduates will be able to find relevant scientific sources relating to physical or astronomical problems that need to be solved.
 b. Graduates will be able to formulate new questions and hypotheses in the fields of physics and astronomy, and to select the appropriate pathways and research methods for solving these questions, taking into account the services and means available.
 c. Graduates will be able to set up and perform experimental or theoretical scientific research, to systematically process and critically interpret the research results, and to formulate conclusions.

4. General communication skills
 a. Graduates will be able to communicate with colleagues in the same discipline about scientific knowledge, both at basic and specialist levels. They will be able to report orally and in writing, and to discuss a scientific topic, in Dutch as well as in English.
 b. Graduates will be able to hold an oral presentation and to write a lucid article on the research conducted and modern concepts in physics and astronomy for a general, non-specialist public.

5. Reflection on society, societal problems and professional career
 a. Graduates will have gained sufficient knowledge of and insights into the role of physics and astronomy in society in order to function adequately in their future professions and reflect on societal problems.
 b. Graduates will have gained knowledge and acquired skills to compete for professional opportunities after graduation.

6. Specific skills to be acquired in the specialisations
 6.1 Research specialisations: Particle and Astrophysics, Physics of Molecules and Materials, and Neurophysics
 a. Graduates will have a broad and in-depth overview of the topic of the Master’s specialisation and profound knowledge of capita selecta in connection to the subject of the Master’s thesis.
 6.2 Societal specialisation in Science, Management and Innovation
 a. Graduates are capable of bridging the gap between their own scientific discipline and other disciplines, based on a profound understanding of the chosen core theme and how this relates to the societal, political, economic, and environmental requirements of today’s world;
 b. Graduates are familiar with and capable of analysing specific problems within their theme and are able to apply a range of approaches to address these, argue for, select, and implement feasible options, taking into account the full width of technological, societal, political and economic perspectives;
 c. Graduates are proficient in using research methods and techniques, including basic finance and economics, to verify, justify and substantiate strategies and plans, and are capable of effectively using a wide variety of information and communication channels;
d. Graduates are capable of balancing perspectives and interests in specific contexts within a company or (non-)governmental organisation in order to formulate appropriate strategies and plans in regard to the implementation of the Sustainable Development Goals (SDGs);

e. Graduates are capable of communicating insights, views and analyses of complex issues to others in a clear, concise and understandable manner, both in writing and orally;

f. Graduates are capable of working in multidisciplinary and multicultural high-performance teams based on sound division of tasks, knowledge, competencies, and responsibilities, while respecting diverging views and opinions.

6.3 Societal specialisation in Science in Society

a. Graduates are capable of analysing the role of scientific expertise in societal and political decision-making with regard to socio-scientific issues;

b. Graduates are capable of designing and conducting independent and methodologically sound social research at the interface of science and society and are capable of contributing to academic research;

c. Graduates are capable of understanding and designing public and stakeholder participation processes in research and innovation;

d. Graduate are capable of analysing, improving and evaluating interdisciplinary collaborations with multiple stakeholders and integrating different perceptions, interests and types of knowledge (experiential, professional and scientific);

e. Graduates are capable of substantiating and communicating the relevance of one's scientific discipline in society.

6.4 Specialisation in Science and Education:

a. Graduates have knowledge of and insight into the theoretical principles of discipline-specific thinking, educational design, and the methods and techniques of applying didactic research in the discipline;

b. Graduates are able to design, implement and systematically evaluate an educational design and a scientific study, drawing a link between didactic and professional practice concepts, discipline-specific thinking of the students at different levels and problems from teaching practice;

c. Graduates devote attention to discipline-specific learning of individual and unique students, focusing on developing inspiring education;

d. Graduates are able to apply thorough scientific knowledge of general didactic concepts about the learning of individual students, and of methods to improve both the social climate in the classroom and to answer the individual learning needs of the students;

e. Graduates are able to differentiate themselves and improve the social climate for collaboration and, in doing so, to set independent priorities and respond appropriately to development and behavioural problems, after consultation with relevant third parties;

f. Graduates focus on collaboration and responsible behaviour based on clear communication with individual students and colleagues, on the basis of a personal vision;

g. Graduates develop a personal professional knowledge base to justify their own actions and understand the actions of colleagues and supervisors;

h. Graduates use their professional knowledge base and contextual feedback (students, colleagues, and supervisors) to evaluate and guide their own professional development;

i. Graduates develop a personal identity in the context of their own actions, external frameworks and ethical dilemmas.
Article 7.2 Composition of the programme

1. Subject to the provisions in Part II of these regulations, the student chooses one of the following specialisations of the degree programme:
 a. Particle and Astrophysics
 b. Physics of Molecules and Materials
 c. Neurophysics
 d. Science, Management and Innovation (SMI)
 e. Science in Society (SiS)
 f. Science and Education

 The programme for the research specialisations (a, b, and c) is described under Article 7.2a. The programme for the societal specialisations (d, e, and f) is described under Article 7.2b.

2. Students must select their specialisation through Osiris within two months of the start of the Master’s programme.

Article 7.2a Research specialisations

The Physics and Astronomy Master’s programme with a research specialisation consists of the following components:

1. **Compulsory components (7 EC)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-NM001B</td>
<td>Electrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FFIL211B</td>
<td>Transformative Role of Physics</td>
<td>3</td>
</tr>
<tr>
<td>NWI-NM019B</td>
<td>Professional Preparation</td>
<td>1</td>
</tr>
</tbody>
</table>

2. **Physics and Astronomy components (24 EC)**

 The student must follow 24 EC of Physics and Astronomy at the Master’s level, preferably matching the Master’s specialisation. This must be presented to the Examining Board for approval.

3. **Free electives (14 EC)**

4. **Specialisation (75 EC)**

 Consisting of courses in the area of the specialisation and a thesis.

 a. **Education specialisation (15 EC)**

 Choice of:

 Particle and Astrophysics

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-NM108</td>
<td>Gravity and the Cosmos</td>
<td>6</td>
</tr>
</tbody>
</table>
b. **Master’s Thesis (60 EC):**

The degree programme publishes a list of approved internship departments every year in the study guide. In order to complete an internship at a department that is not on this list, permission must be requested from the Examining Board prior to the start of the internship.

Article 7.2b Societal specialisations

The Physics and Astronomy Master’s programme with a societal specialisation consists of the following components:

1. **Compulsory components (4 EC)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FFIL211B</td>
<td>Transformative Role of Physics</td>
<td>3</td>
</tr>
<tr>
<td>NWI-NM019B</td>
<td>Professional Preparation</td>
<td>1</td>
</tr>
</tbody>
</table>

2. **Physics and Astronomy components (23 EC for SMI and SiS, 20 EC for Science and Education)**

 The student must follow 20 EC or 23 EC of Physics and Astronomy at Master’s level. This must be presented to the Examining Board for approval. Master’s level courses taught by the educational institute WiNST at the faculty are always approved.
3. **Master’s Thesis (30 EC)**

The degree programme publishes a list of approved internship departments every year in the study guide. In order to complete an internship at a department that is not on this list, permission must be requested from the Examining Board prior to the start of the internship.

4. **Specialisation courses (57 EC if SMI and SiS, 60 EC if Science and Education)**

Choice of one of the packages: Science, Management and Innovation, Science in Society or Science and Education.

4.1. **Science, Management and Innovation (SMI)**

 a. **Compulsory courses (15 EC)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FMT003E</td>
<td>Innovation Management</td>
<td>6</td>
</tr>
<tr>
<td>NWI-FMT0234</td>
<td>Policy and Economics</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FMT006A</td>
<td>Entrepreneurship: Making a Business Plan</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FMT019</td>
<td>Methods in Societal Research: Science, Management & Innovation</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. **Theme courses (12 EC)**

Choice of one of the themes: Climate and Energy or Health.

 Climate and Energy

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FMT022</td>
<td>Energy and Climate</td>
<td>6</td>
</tr>
</tbody>
</table>

 Choice of 6 EC of the following courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FMT020</td>
<td>Bio-economy</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FMT026</td>
<td>Energy Modelling</td>
<td>3</td>
</tr>
<tr>
<td>NWI-MM020A</td>
<td>Environmental Life Cycle Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

 Health

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FMT023</td>
<td>The Future of Health</td>
<td>6</td>
</tr>
</tbody>
</table>

 Choice of 6 EC of the following courses:

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FMT025B</td>
<td>From Lab to Clinic</td>
<td>6</td>
</tr>
<tr>
<td>NWI-FMT029</td>
<td>Health Policy and Economics</td>
<td>6</td>
</tr>
</tbody>
</table>
c. **Science, Management and Innovation final research project (30 EC)**

The SMI research project may, in consultation with the coordinator or a lecturer from the SMI specialisation, be completed both internally (at the Faculty of Science) or externally (government, businesses, consulting firms, NGOs, etc.), in the Netherlands or abroad. In the first month, the student will write a research plan which must be approved by both the external supervisor and first assessor, as well as the second reader. The assessment of the thesis is based on the criteria described in the manual “Doing a research project: A guide for students of the Science, Management & Innovation Master’s specialisation”.

4.2. **Science in Society (SiS)**

a. **Compulsory courses (24 EC)**

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course name</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWI-FC002B</td>
<td>Science and Societal Interaction</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC003B</td>
<td>Research, Responsibility and Uncertainty</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC0010C</td>
<td>Framing Knowledge</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC0011C</td>
<td>Knowledge Society</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC0013C</td>
<td>Science and Media</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC0043B</td>
<td>Science and Public Policy</td>
<td>3</td>
</tr>
<tr>
<td>NWI-FC0044C</td>
<td>Methods of Societal Research: Science in Society</td>
<td>6</td>
</tr>
</tbody>
</table>

b. **Limited choice electives (3 EC)**

To be filled with components related to the topic of the thesis. These components must be presented for approval to the SiS coordinator.

c. **Science in Society research project (30 EC)**

In consultation with a SiS lecturer, the SiS graduation project can be completed both internally (at the ISIS department) or external (government, consulting firms, NGOs, etc.). In the first month, the student will write a research plan which must be approved by both the first supervisor as well as a second reader. The assessment of the thesis is based on the criteria described in the “Graduation project guidelines SiS”.

4.3. **Science and Education**

The Science and Education specialisation includes the following components with the accompanying study load:

a. Series of lectures (5 EC)

b. Self-evaluation 1 (10 EC)

c. Supervised internship (15 EC)

d. Design and research (10 EC)

e. Self-evaluation 2 (5 EC)
f. Independent internship (15 EC)
These components are provided by the Radboud Teachers Academy. If, due to the successful completion of the education minor during the Bachelor’s programme or for other reasons, a portion of the above-mentioned components need not be followed, the corresponding number of EC must be filled with programme-specific components.

5. Free space for electives (6 EC)

Article 7.3 Deviating programme
If a student does not choose a specialisation, he/she must submit a motivated request for permission to the Examining Board for an alternative specialisation selection before the start of the Master’s programme.

Section 8. Transitional provisions
- NWI-NM108 Gravity and the Cosmos (6 EC) and NWI-NM109 Particles and the Cosmos (6 EC) may be replaced by NWI-NM026D Cosmology (9 EC).
- Students who were enrolled before 1 September 2019 for the Physics and Astronomy Master’s programme may do so on the basis of the Neuroscience specialisation, as described in the EER 2018-2019.