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Editorials

From the Editors-in-Chief

Dear reader,

We proudly present to you 14.2 of  the CNS journal. This marks the last CNS Journal issue that will be 
published with us as Editors-in-Chief  and is thus quite special to us.

Time is a strange thing. A week can feel like an eternity if  you are awaiting something eagerly. Then again, 
two years can feel like an eyeblink. That’s what it is like for us when thinking about our time as CNS students. 
Even though the time was filled with so many events, it does feel like it just flew by. Recapping our time in 
the CNS master program, we think about some stress and frustration (mostly about non-running codes), 
but primarily we think about the fun that investigating the human brain brings us (yup, nerd talk), about the 
excitement when that darn code finally did run and about all the great people we got to meet and work with 
along the way.

The latter of  course includes our amazing journal team without whom we would have never been able to 
put together the journal issues in such short periods of  time. Studying is a full-time job that demands a great 
deal of  you. Our team members were willing, however, to sacrifice parts of  their sparse free time to the CNS 
journal. We want to thank them for their commitment, hard work and for really trying to meet the deadlines. 
;-)

We enjoyed our time as CNS students and as Editors-in-Chief  but it’s now time to move on. We are sure that 
Ilaria and Anne will do an amazing job taking over all Editor-in-Chief  duties as of  now. 
Enjoy reading our latest issue.

Nijmegen, May 2019

Antonia & Katharina

Editors-in-Chief
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Editorials

Dear readers,

We all know what it feels like to be curious about something. We are curious when we are reading a book 
and cannot wait to find out how the story will end. We are curious when we are catching up with friends 
and want to know what they did last weekend. And perhaps you are curious to find out about the work that 
is presented in this journal. The work of  many curious CNS master students, who worked very hard to 
complete their theses and to start the rest of  their lives.

After I graduated from the CNS master’s programme back in 2015, I started a PhD on the topic of  curiosity 
at the Donders Institute. On the first day of  my PhD, I googled “curiosity” to see what the World Wide Web 
could tell me about it. The first thing that popped up was a famous quote by Albert Einstein saying: “I have 
no special talent. I am only passionately curious.” For some reason this quote always stuck with me. How 
could one of  the greatest scientists ever alive, of  who we all believe that he had MANY extraordinary talents, 
say this about himself ? 

At the same time, I realized that I also felt like I had approximately zero special talents. I was just one of  the 
many students that graduated that year. One thing I was very good at, however, was telling you exactly in 
what aspects every single fellow student was more skilled or talented than I was. This made me worry quite 
a bit about whether I would be able to do everything that needed to be done to complete a PhD. How the 
hell was I supposed to do this?

Over the years, I talked to many colleagues about these worries. I was amazed when I found out that many 
of  them, even the ones who I really admired for their skills and talents, told me that they have had that exact 
same feeling at some point during their careers. Apparently, it is very easy to focus on what other people excel 
at, while only seeing your own failures. 

At some point, I realized that something had to change - I had to stop worrying and start focusing on the 
aspects of  my work I really wanted to know more about. I decided to take more courses that I was interested 
in, I tried to learn news skills and I focused as much as I could on the aspects of  my work that sparked my 
curiosity. In doing so, I came up with new research questions that I really wanted to know the answer to and 
also the curiosity of  my supervisors and others around me became more and more contagious. 

Of  course it was not always easy to let go and I have to admit that I still sometimes miserably fail in not 
worrying about failure. However, I realize every day that following my curiosity helps me to be happy and 
to enjoy the pretty cool life I’m living right now. What else could I have wished for when I started my PhD 
at the Donders Institute? 

I’m not sure about this, but if  Albert Einstein meant that focusing on your curiosity will help you to find 
pleasure in whatever it is you want to do next, I could not agree more. Therefore, my piece of  advice to all 
of  you would be: “Stop worrying and embrace your curiosity!” 

Best wishes,
Lieke van Lieshout
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WHITE MATTER CHANGES IN THE PERFORANT PATH IN ALS

White Matter Changes in the Perforant Path in ALS: 
Providing Evidence for ALS as a Multisystem Disease

M. Hiemstra1, J. Mollink1,2, M. Pallabage-Gamarallage3, I.N. Huszar2, K.L. Miller2, M. Jenkinson2, O. 
Ansorge3, A.M. van Cappellen van Walsum1

1 Department of  Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, 
Netherlands. 

2 FMRIB, Wellcome Centre for Integrative NeuroImaging, Oxford, United Kingdom. 
3 Department of  Neuropathology, John Radcliffe Hospital, Oxford, United Kingdom.

Amyotrophic lateral sclerosis (ALS) is a severe, progressive and incurable motor disease. Roughly 20% of  the 
ALS patients are affected by a level of  cognitive decline that meets the criteria for behavioural frontotemporal 
lobe dementia (bvFTD). ALS and bvFTD share some clinical and pathological features, for example, the 
deposition of  TAR DNA binding protein 43(pTDP-43) in several brain regions that are part of  the circuit 
of  Papez. Previous literature suggests involvement of  the perforant path, a white matter tract in the 
hippocampus that is part of  the circuit of  Papez, in patients with both ALS and bvFTD.  We hypothesize that 
white matter degeneration in the perforant pathway is a key feature of  ALS, providing a neuronal correlate 
for ALS as a multisystem disorder. To verify our hypothesis we studied white matter changes in ex-vivo 
hippocampal blocks from patients with known ALS (n=13) and controls (n=5) using diffusion MRI. The 
dMRI results were evaluated using polarised light imaging (PLI), a microscopy technique sensitive to density 
and orientation of  myelinated axons. From the same hippocampal blocks, sections were cut and stained for 
myelin, pTDP-43, neurofilaments and activated microglia. The dMRI results show a significant decrease 
in fractional anisotropy (p=0.018) and an increase in mean diffusivity (p=0.0017), axial diffusivity (p=0.023) 
and radial diffusivity (p=0.028) in the perforant path in ALS patients compared to controls, likely indicating 
a loss of  fibres. The PLI retardance values within the perforant path were lower in ALS cases compared to 
controls, however, not significantly (p=0.16). The retardance correlates with the fractional anisotropy (p=0.04). 
Furthermore, an increase in dispersion was observed in ALS specimens (p=0.04), implying a less organised 
axonal structure. Histology data showed a non-significant increase in myelin (PLP) (p=0.11) and an increase 
in neurofilaments (SMI-312) (p=0.03) in ALS cases compared to controls. No differences were found in the 
amount of  inflammation and two out of  the 13 ALS cases exhibited pTDP-43 pathology in the hippocampus. 
These results demonstrate degradation of  the perforant path in ALS patients, providing a potential neuronal 
correlate for the cognitive symptoms observed in ALS and substantiating the hypothesis that ALS and bvFTD 
are part of  the same spectrum of  diseases. Future research should focus on correlating the degree of  clinically 
observed cognitive decline to the amount of  white matter atrophy in the perforant path.

Keywords: Amyotrophic Lateral Sclerosis, Frontotemporal Lobe Dementia, Perforant Pathway, Polarised Light Imaging, diffusion 
Magnetic Resonance Imaging

Corresponding author: Marlies Hiemstra; E-mail: marlieshiemstra@hotmail.com 
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List of abbreviations

AD  Axial diffusion
ALS  Amyotrophic lateral sclerosis
bvFTD  Behavioral Frontotemporal lobe dementia
CD68  Cluster of differentiation 68
DG  Dentate gyrus
dMRI  Diffusion magnetic resonance imaging
EC  Entorhinal cortex
FA  Fractional anisotropy
FOM-HS  Fibre orientation map hue saturation value
FOV  Field of view
LGN  Lateral geniculate nucleus
MD  Mean diffusivity
PBS  Phosphate buffered saline
PLI  Polarized light imaging
PLP  Proteolipid protein
pTDP-43  Phosphorylated TAR DNA binding protein
RD  Radial diffusion
Sub  Subicular cortices, pre-subiculum and subiculum
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Introduction

Amyotrophic lateral sclerosis (ALS) is a severe, 
progressive and incurable motor disease that 
is characterized by death of  motor neurons in 
the brain and spinal cord, resulting in a loss of  
voluntary movement. It is the most common 
form of  adult onset motor neuron degeneration 
and has an incidence of  1-2 per 100,000 per year 
in the world population and about 6-7 per 100,000 
in the European population (Bonafede & Mariotti, 
2017; Ferrari, Kopogiannis, Huey & Momeni, 2011; 
Logroscino et al., 2010; Tan, Ke, Ittner & Halliday, 
2017). ALS can occur both sporadically (90%) and 
familially (10%) and has a median survival of  three 
years after disease onset (Tan et al., 2017). ALS has 
mainly been described as a neurological disorder 
that affects the motor system, but more and more 
evidence is suggesting ALS to be a multisystem 
neurodegenerative disease because other areas 
besides motor areas of  the brain also undergo 
degeneration. One of  the most prominent bodies 
of  evidence of  ALS being a multisystem disorder is 
that 50% of  the ALS patients suffer from a form of  
cognitive impairment and 15% of  the ALS patients 
are affected by a level of  cognitive decline that 
meets the criteria for behavioural frontotemporal 
lobe dementia (bvFTD) (Cykowski et al., 2017). We 
examined the whole brains and spinal cords of  57 
patients (35 men; 22 women; mean age 63.3 years; 
15 patients with c9orf72-associated ALS [c9ALS]; 
Phukan et al., 2012; Tan et al., 2017) the population-
based frequency, clinical characteristics and natural 
history of  cognitive impairment in amyotrophic 
lateral sclerosis (ALS). However, a clear neural 
correlate of  these cognitive symptoms has been 
lacking to date. Looking into the resemblance 
between bvFTD and ALS provides information 
about the neural substrate of  the cognitive problems 
observed in ALS.

Frontotemporal dementia (FTD) is a 
heterogeneous form of  dementia that is characterized 
by progressive neurodegeneration in the temporal 
and frontal lobes. Different symptoms can prevail in 
FTD, resulting in three different subtypes: bvFTD, 
semantic FTD and  progressive non-fluent FTD 
(Gao, Almeida, 2017; Ghosh & Lippa, 2015; Warren 
et al., 2013).

ALS and bvFTD share neuropathological, 
genetic and clinical features providing lending 
to the hypothesis that bvFTD and ALS are part 
of  the same spectrum of  diseases and providing 
further evidence for ALS being a multisystem 

disorder (Ferrari et al., 2011). The strongest 
neuropathological resemblance between ALS and 
bvFTD pathology is the deposition of  ubiquitinated 
and hyperphosphorylated TAR DNA binding 
protein 43 (pTDP-43)  in select neurons and glial 
cells of  the central nervous system (Ferrari et al., 
2011; Scotter, Chen & Shaw 2015). Normal TAR 
DNA binding protein 43(TDP-43) is mainly located 
in the cell-nucleus where it plays a role in inhibition 
of  splicing and in exon skipping. In ALS and FTD 
pTDP-43 is mainly located in the cytoplasm where 
it forms potentially neurotoxic aggregations (Hu & 
Grossman, 2009; Mackenzie & Rademakers, 2008). 
In ALS, pTDP-43 pathology is present in different 
brain regions and develops over time via a specific 
pattern. Lesions spread from the motor neurons 
in the brainstem and spinal cord and also from the 
frontal neocortex to the parietal and temporal neo- 
and sub-cortical regions (Brettschneider et al., 2014; 
Brettschneider et al., 2013).

In bvFTD sequential patterns of  spreading of  the 
pTDP-43 inclusions are also observed. In bvFTD, 
the inclusions spread from the orbitofrontal cortex 
and amygdala towards the frontal and temporal 
cortices before progressing to the visual cortex, 
motor system and cerebellum (Brettschneider et al., 
2014; Tan et al., 2015).

Even though pTDP-43 is associated with 
both ALS and FTD, genetic screening has 
been controversial, leaving the question open 
whether mutations in TDP-43 are causal to the 
neuropathology of  ALS/FTD. Most of  the genetic 
variability that is related to TDP-43, like mutations in 
the TARDBP gene that encodes for TDP-43, seems 
to be related to ALS cases (Sreedharan et al., 2008). 
To date there is hardly any evidence of  mutations 
in TDP-43 associated with either FTD or ALS.  
Nevertheless, some genetic overlap between FTD 
and ALS can be found in other genes. For example, 
in both diseases mutations in the C9ORF2 gene and 
mutations in progranuline gene (PGRN) seem to 
play a role (Gao, Almeida, 2017; Ferrari et al., 2011).

Another resemblance between ALS and bvFTD 
was found in the previously mentioned areas 
affected by pTDP-43. Several of these cortical 
regions relate to each other via the Papez circuitry. 
The Papez circuit is a major loop of the limbic 
system and its main functions are the cortical 
control of emotion and the consolidation and 
retrieval of memory (Pessoa & Hof, 2015; Musio, 
1997). The circuit is comprised of the hippocampal 
formation, mammillary bodies, fornix, anterior 
thalamic nucleus and the anterior cingulate (Fig. 
1) (Shah, Jhawar & Goeal, 2012).



Nijmegen CNS | VOL 14 | ISSUE 24

Marlies Hiemstra

Figure 1. Schematic representation of the Papez 
circuit consisting of the entorhinal cortex, which 
projects to the subiculum via the perforant and 
alvear pathway. The subiculum has a projection to 
the mammillary nuclei via the fornix. From here 
the circuit continues to the cingulate gyrus via the 
anterior thalamic nucleus and the internal capsule. 
From the cingulate gyrus there is a projection to 
the parahippocampal gyrus via the cingulum 
(“figure Papez circuit,” n.d.).

In vivo and post mortem MRI volumetric analyses 
demonstrate distinct regional grey and white matter 
atrophy of  the Papez circuit in bvFTD (Hornberger 
et al., 2012; Irish et al., 2013). The main symptoms 
of   bvFTD are functionally related to the Papez 
circuit since the main characteristics are progressive 
change in emotional regulation and changes in 
personality (Bott, Radke, Stephens & Kramer, 2014). 
Recent evidence also recognises episodic memory 
deficits in bvFTD, with the amount of  atrophy in 
the Papez circuit determining the degree of  episodic 
memory problems (Hornberger and Piguet, 2012; 
Hornberger et al., 2012).

Little is known about the involvement of  the 
Papez circuitry in ALS. However, it was shown 
that the amount of  TDP-43 pathology in ALS 
patients correlates with cognitive decline (Montreal 
Cognitive Assessment test scores), but not with the 
duration of  the disease or its rate of  progression 
(Brettschneider et al., 2013) brainstem motor nuclei 
of  cranial nerves V, VII, and X-XII, and spinal cord 
α-motoneurons (stage 1; Cykowski et al., 2017). We 
examined the whole brains and spinal cords of  57 
patients (35 men; 22 women; mean age 63.3 years; 
15 patients with c9orf72-associated ALS [c9ALS]).

Most studies on neurodegeneration in ALS 
have focused on white matter areas related to 
motor function like the motor cortex, the corpus 
callosum and the corticospinal tract (Cirillo et al., 

2012; Filippini et al., 2010; Horsfield & Jones, 2002; 
Lillo et al., 2012). To our knowledge, there are only 
three studies that investigated sub-cortical changes 
(Barbagallo et al., 2014; Thivard et al., 2007; Takeda, 
Uchihara, Mochizuki, Mizutani & Iwata, 2007). Two 
of  these studies focused on grey matter integrity. 
An increase in mean diffusivity (MD) was found in 
ALS patients compared to controls in the amygdala, 
hippocampus and thalamus, which are part of  the 
circuit of  Papez (Barbagallo et al., 2014; Thivard et 
al., 2007).

The third study linked ALS to one of  the 
projections of  the circuit of  Papez: the perforant 
path (Takeda, Uchihara, Mochizuki, Mizutani & 
Iwata, 2007). This path runs from the neurons in 
layer II and III of  the entorhinal cortex (EC), 
through the pyramidal layer of  the subiculum (Sub) 
to the molecular layer of  the Sub, dentate gyrus 
(DG) and the CA3 region of  the hippocampus 
(Fig. 2). The path is known to have an important 
function in memory and degeneration of  this path 
is linked to the severe memory impairments in 
Alzheimer’s disease (Hyman, Van Hoesen, Kromer 
& Damasio, 1986; Thal et al., 2000). The third ALS-
related study however did not directly investigate 
the white matter of  the perforant path, but rather 
evaluated the regions belonging to the path with a 
haematoxylin/eosin stain. Semi-quantitative analysis 
showed entorhinal cortex degeneration, subicular 
degeneration and laminar spongiosis of  the DG 
in ALS patients. This damage, potentially caused 
by pTDP-43 inclusions, correlated with the degree 
of  episodic memory deficits (Takeda, Uchihara, 
Mochizuki, Mizutani & Iwata, 2007). The previously 
mentioned white matter atrophy of  the circuit of  
Papez in bvFTD also begins in the hippocampal area 
(Hornberger et al., 2012; Irish et al., 2013).

Since the perforant path seems to be affected 
in both ALS and dementia, we hypothesize that 
degeneration of  the perforant path is one of  the 
key projections to be affected in ALS, providing 
further evidence for ALS as a multisystem disease 
and providing a neural correlated for the cognitive 
impairments in ALS.

To verify our hypothesis, several imaging 
techniques were used to visualise the white matter 
tracts within and surrounding the hippocampus on 
post mortem brains of  controls and of  patients with 
ALS. First, diffusion magnetic resonance imaging 
(dMRI), a technique that provides 3D information 
about white matter tracts based on the diffusion of  
water within tissue (Bastiani & Roebroeck, 2015), 
was performed. By measuring the orientation 
dependence of  water diffusion, an estimation of  
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the microstructure of  the brain tissue was made 
(Jbabdi, Sotiropoulos, Haber, Van Essen & Behrens, 
2015). dMRI has a resolution on the millimetre scale 
and because it is a non-invasive technique, it can be 
used for in vivo diagnostics and research (Bastiani & 
Roebroeck, 2015).

Second, polarised light imaging (PLI), a 
microscopy technique that quantifies the orientation 
of  myelinated axons based on birefringence of  
myelin sheath in thin brain slices, was used. PLI is a 
relatively new technique and has, to our knowledge, 
never been used to compare properties of  myelinated 
tracts between cases and controls. We correlated the 
results of  PLI with the different dMRI metrics. To 
correlate differences in white matter with potential 
protein pathologies and to further complement 
the PLI and dMRI data, (immuno)histochemical 
stainings were carried out to visualise myelin, 
microglial activation, neurofilaments and pTDP-43 
inclusions.

The aim of  the research is to identify the 
potential changes in grey and white matter within 
the hippocampus in patients with ALS to further 

contribute to the hypothesis that ALS is a multisystem 
disorder and to get insight in the potential neural 
substrates of  the cognitive deficits observed in 
ALS. Furthermore, our research elaborates on the 
hypothesis that ALS and bvFTD are part of  the 
same spectrum of  diseases.

Methods

Tissue

For this study, 13 post-mortem ALS human 
brains were acquired with permission from the 
Oxford Brain Bank at the John Radcliffe Hospital 
in Headington, United Kingdom. Five age matched 
post-mortem human control brains were acquired 
via the body donor program at the Department of  
Anatomy of  the Radboud University Medical Centre, 
Nijmegen, The Netherlands. The human brains were 
removed from the skull and fixed in 2-4% formalin. 
Details on the history of  each specimen are listed in 
Table 1. All brains were cut in coronal slabs of  5 mm 
thickness and the hippocampus was sampled in a slab 
comprising the lateral geniculate nucleus (LGN) as a 
key anatomical landmark. The hippocampal regions 
representing the perforant path were sampled for 
ALS cases (n=13, Oxford Brain Bank) and controls 
(n=5, Department of  Anatomy, Nijmegen).

ALS classification was based on the 
neuropathological assessment of  pTDP-43 
proteinopathy in key gatekeeper regions previously 
defined by Tan and colleagues (Tan et al., 2015)
encoded by TARDBP. pTDP-43 protein pathology 
was visually rated on a scale of  0 to 4 based on the 
rating scale of  Tan and colleagues, with 0 indicating 
no protein pathology and 4 indicating severe 
pathology (Fig. 3).

Representative blocks of  13 other brain regions 
were sampled and stained following standard brain 
banking protocol for diagnostic purposes (Table 2) 
(Montine et al., 2012).

Magnetic resonance imaging acquisition 

The imaging pipeline for all hippocampus blocks 
is shown in Figure 4. Out of  the 18 blocks, 17 blocks 
were analysed with dMRI (Control n=5, ALS n=12). 
Prior to scanning all specimens were placed in 
phosphate buffered saline (PBS 0.1M pH=7.4) for at 
least 24 hours to reverse the decrease in T2-relaxation 
introduced by formalin (Shepherd, Thelwall, Stanisz 
& Blackcand, 2009) time-intensive MRI acquisitions 
without motion artifacts, such as those required 

Figure 2. A schematic representation of the 
perforant path (blue) and the alvear path (yellow). 
The perforant path starts in the entorhinal cortex 
and projects through the subiculum via the 
molecular layer of the hippocampus to the dentate 
gyrus and the CA3 region of the hippocampus 
(circled-cross indicates out of screen – i.e. anterior-
posterior – orientation). The alvear path projects 
via the CA1 region into the hippocampus. CA, 
cornu ammonis; DG, dentate gyrus; EC, entorhinal 
cortex; PaS, parasubiculum; PreS, presubiculum; 
Sub, subiculum.
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Figure 3. Visual rating scale for pTDP-43 pathology developed by Tan et al. The anterior cingulate was 
stained for pTDP-43 and counterstained with haematoxylin. Pathology was rated on a scale from 0-4, 
with a 0 indicating no pathology, 1 indicating sparse pathology, 2 indicating mild pathology, 3 indicating 
moderate pathology and a 4 indicating severe pathology. Solid arrowheads indicate neuronal inclusions. 
Open arrowheads show examples of neurites and glia (Tan et al., 2015).

# PMI 
(days)

FT
(months)

Sex COD Age 

1 0.5 12 M Heart failure 67
2 0.5 14 M Lungcancer 61
3 0.5 8 F Old 82
4 0.5 8.5 M Leukemia 73
5 1 15 F Fluid in the lungs 71
6 4 47 F Unknown 61
7 Unknown Unknown F Unknown 77
8 3 42 M Unknown 82
9 5 42 F Unknown 53
10 4 39 M Unknown 76
11 2 36 M Unknown 78
12 1 36 F Unknown 81
13 2 35 F Unknown 81
14 2 26 F Unknown 80
15 2 15 F Infection (?), pneumonia. Difficulty 

with breathing.
67

16 2 14 F Respiratory failure 74
17 4 14 M Shortness of breath 55
18 2 13 F Unknown 53

Table 1. 
Post mortem specimen details from control (1-5) and ALS/ALS-FTD brains(6-18). Abbreviations: Post-
mortem interval (PMI), fixation time (FT), cause of death (COD).
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for brain atlas projects, but the aldehyde fixatives 
used may significantly alter tissue MRI properties. 
To test this hypothesis, this study characterized 
the impact of  common aldehyde fixatives on the 
MRI properties of  a rat brain slice model. Rat 
cortical slices immersion-fixed in 4% formaldehyde 
demonstrated 21% and 81% reductions in tissue T1. 
For scanning, specimens were transferred to a 100 
ml syringe filled with fluorinert® (Solvay Solexis 
Inc), a proton-free solution which is susceptibility 
matched to the tissue. If  necessary, additional gauzes 
were place in the syringe to immobilize the tissue.

All scans were performed at room temperature 
on a 11.7T Bruker BioSpec Avance III preclinical 
MR system (Bruker BioSpin, Ettlingen, Germany) 
using a birdcage coil (Bruker Biospin). T1- and T2-
weighted high-resolution structural images were 
obtained for anatomical reference. 

T1-weighted structural images were acquired 
with a fast low angle shot gradient echo (FLASH) 
sequence at a resolution of  0.1x0.1x0.1 mm (TR=25 
ms, TE= 3.4 ms, flip angle=10◦). T2-weighted images 
were acquired with a multi-gradient echo sequence 
at a resolution of  0.1x0.1x0.1mm ((TR=35.813 ms, 
TE= 15 ms, flip angle=30◦).

Diffusion weighted images were obtained 
using a spin-echo sequence with an EPI readout 
(TR=13.75s, TE= 30.066 ms, Δ= 12.5 ms, δ= 4.0). 
Two shells were acquired (b=2000,4000 s/mm2), 
each employed at 64 gradient directions (128 in total) 
in addition to six images with negligible diffusion 
weighting (b=14s/mm2). The specimens were 

covered in the coronal plane of  the scanner with a 
field-of-view of  28.8 x 28.8 mm that was sampled 
with a 72 x 72 matrix. Together with a slice thickness 
of  0.4 mm this created isotropic voxels. The number 
of  slices varied between 80 and 100 depending on 
the dimension of  each specimen.  

Probabilistic tractography 

Processing of  all MR images was performed with 
FSL (Woolrich et al., 2009) noisy images of  the brain. 
This might be the inference of  percent changes in 
blood flow in perfusion fMRI data, segmentation 
of  subcortical structures from structural MRI, 
or inference of  the probability of  an anatomical 
connection between an area of  cortex and a 
subthalamic nucleus using diffusion MRI. In this 
article we will describe how Bayesian techniques have 
made a significant impact in tackling problems such 
as these, particularly in regards to the analysis tools 
in the FMRIB Software Library (FSL). A diffusion 
tensor was estimated at each voxel in the dMRI data. 
Four different tensor metrics were derived from 
this diffusion tensor: the fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD) and 
the radial diffusivity (RD). The FA value is a metric 
describing the diffusion directionality of  water 
ranging from 0 to 1, with a value of  0 indicating fully 
isotropic diffusion and 1 indicating fully anisotropic 
diffusion (Fig. 5). A reduction in FA may indicate 
white matter damage. The MD value is a measure 
for the total amount of  diffusion, where an increase 

HE 4G8 Alpha-synuclein AT8 TDP-43 P62 
Basal Ganglia x x x
Anterior hippo x x x
Amygdala x x x x x
Ant cingulate x x
Mid front gyrus x x x x x
Temp gyrus x x x x x
Inferior parietal lobule x x x x
Occipital gyus x x x x
Midbrain x x x
Pons x x
medulla x x x
Cerebellum x x x
M1/S1 x x

Table 2. 
Stainings performed on 13 brain regions sampled for diagnostics, following standard brain banking 
protocol. Staining were performed for Alzheimer’s disease (4G8 and AT8), Parkinson’s disease (alpha-
synuclein), ALS (TDP-43) and other general neuropathology (p62).  
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in MD may also be possible marker for white matter 
damage. The AD is a direct indicator of  the amount 
of  the diffusion along the main diffusion axis, while 
the RD gives information about the diffusion along 
the axes parallel to the main diffusion direction. An 
increase in RD was previously shown to correlate 
with a reduction in myelin (Aung, Mar & Benzinger, 
2013).

In order to extract the FA, MD, RD and AD 
metrics within the perforant path, probabilistic 
tractography was performed. To delineate the 
perforant path in the hippocampus specimen, 

tractography was run on the dMRI data. First, we 
estimated the fibre configuration in each voxel 
using the Bedpostx algorithm (Behrens et al., 2003) 
which was modified to handle multi-shell diffusion 
data (Jbabdi, Sotiropoulos, Savio, Graña & Behrens, 
2012). We fitted up to three fibre orientations within 
each voxel depending on the level of  support by 
the diffusion signal. Probabilistic tractography was 
then performed using the probtrackx2 algorithm 
(Behrens, Berg, Jbadbu, Rushworth & Woolrich, 
2007). The (pre-)subiculum and the DG were 
manually segmented and served as seed and 
waypoints masks, respectively (Fig. 6). For each 
seedvoxel, we generated 5000 streamlines per voxel, 
only keeping those that terminate in the DG. The 
curvature threshold was set to 0.2 (corresponding 
to approximately 80◦), with a step length of  0.2 
and a minimal fibre volume threshold of  0.01. A 
loop check was performed such that pathways that 
looped back to themselves were excluded. After 
probabilistic tractography, a connection probability 
threshold was empirically determined and only 
the streamlines that followed the approximate 
course of  the performant path were retained using 
exclusion masks that were determined for each slice 
individually. From all perforant path voxels, FA, MD, 
RD and AD values were extracted and averaged for 
each specimen separately. 

Figure 4. Processing and analysis pipeline of the specimens. All hippocampal blocks were scanned with 
diffusion MRI. After scanning, the blocks were bisected into two parts, one part was used for histological 
staining and the other part for polarized light imaging). In the end, the polarized light imaging data was 
co-registered with the diffusion MRI data.

Figure 5.  Isotropic diffusion (left) is associated 
with an FA value of 0. The more anisotropic (right) 
the diffusion, the higher FA value.
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Polarized light imaging 

PLI is a microscopy technique that is able to 
quantify the fibre orientation of  myelinated axons 
using the birefringent property of  myelin. When 
passing polarized light through brain tissue, the 
interaction of  the light with the birefringent myelin 
results in a transmitted light intensity that depends 
on the angle between the myelin sheet and the 
polarizing filter on the microscope. The PLI raw 
signal consists of  the transmitted light intensity at 
a single pixel over various polarizer orientations 
from which an in-plane fibre orientation can be 
estimated (Axer et al., 2011; Larsen, Griffin, Gräßel, 
Witte & Axer, 2007) the structural basis of  the 
human connectome. In contrast to animal brains, 
where a multitude of  tract tracing methods can be 
used, magnetic resonance (MR). After dMRI, all 18 
hippocampal blocks were bisected along the coronal 
plane into two approximately equal parts. One part 
was embedded in paraffin for histology and the other 
part was frozen for PLI (Fig. 3). Frozen sections are 
preferred for PLI as the lipids in the myelin sheath 
remain preserved. After cryoprotection with 30% 
sucrose in PBS, all tissue blocks were sectioned at 50 
µm thickness on a freezing microtome (Microm HM 
440E Microtome). The sections representing the 
perforant path were mounted on glass slides coated 
with 0.5% gelatin and 0.05% potassium chrome(III) 
sulfatelycerin and were coverslipped with PVP, a 
water-soluble mounting medium.

PLI images were acquired on a Zeiss Axio 
Imager A2 microscope upgraded with a stationary 
polarizer, a quarter wave plate and a rotating 
polarizer. Light first passes through the stationary 
polarizer and a quarter wave plate positioned at a 
45◦ angle relative to the stationary polarizer to create 

circularly polarized light. Once polarized, the light 
encounters the birefringent myelin that induces a 
phase shift. To capture the angular extent of  this 
phase shift, images were acquired at 9 equiangular 
orientations of  the rotating polarizer from 0° to 
160° with a CCD camera. Together with a 1.25x 
magnifying objective, this yielded a spatial resolution 
of  approximately 4 μm/pixel. Only the green 
channel was used for further processing as the 
quarter wave plate is designed for this wavelength. 
A set of  background images was acquired for 
every rotation angle to correct for inhomogeneous 
background illumination. Background correction of  
the images was performed as described by Dammers 
and colleagues (2010). Three different parameters 
were derived from the raw PLI data by fitting the 
light intensity at each pixel to a sinusoid. The phase 
of  the sinusoid gave the in-plane orientation, the 
phase shift induced to the light wave provided the 
retardance and the transmittance was calculated 
as the average amount of  light passing through 
the tissue. The retardance and in-plane orientation 
maps were combined in the fibre orientation map, 
allowing for which visualization of  the direction 
of  myelinated fibres within the tissue (Axer et al., 
2011b).

As the hippocampus sections were larger than 
the microscope’s field-of-view (FOV), multiple 
FOVs were acquired to cover an entire specimen. 
We ensured that there was at least 10% overlap 
between neighbouring FOVs, such that these could 
be stitched together automatically. Landmarks in 
each FOV were described using Speed Up Robust 
Features (SURF) and matched together using custom 
written software in MATLAB (MATLAB and 
Statistics Toolbox Release 2017a, The MathWorks, 
Inc., Natick, Massachusetts, United States). A rigid 
transformation between the neighbouring FOVs 

Figure 6. Examples of masks that were used for tractography to delineate the perforant path in the 
hippocampus. Left: The seed mask (start of tractography) for the presubiculum and subiculum. Right: 
The waypoint mask (end of tractography) for the dentate gyrus.



Nijmegen CNS | VOL 14 | ISSUE 210

Marlies Hiemstra

was then computed based on the distance between 
the matched features. After all transformations 
were estimated, the individual FOVs were stitched 
together to reconstruct the entire specimen.

Co-registration of PLI and MRI data 

In order to make an anatomically correctly 
match between the dMRI and PLI data, non-linear 
registration of  PLI-derived parametric images with 
corresponding MRI volumes was performed. The 
PLI and MRI images were registered in 2 dimensions 
after manually selecting a slice from the MRI volume 
that maximised the visual correspondence of  
observed anatomical contours between PLI and MRI 
images. The segmentation mask was subsequently 
applied to all parametric PLI images pertaining to 
the same specimen. Bi-directional non-linear image 
registration was carried out between segmented 
transmittance images and segmented 2D MR images 
so that aligned PLI-MRI image pairs were obtained at 
both at the resolution of  MRI and that of  PLI. The 

obtained registration parameters were subsequently 
used to register other parametric PLI images with 
the MRI volume (Fig. 7). The registration algorithm 
was implemented in Python 3.6 by Istvan N. Huszar, 
based on the Tensor Image Registration Library 
(Huszar, Miller, Pallebage-Gamarallage, Ansgore, & 
Mirfin, 2018).

The course of  image registration comprised 
of  three steps: resizing the input image, linear 
registration, and non-linear registration. The input 
image was resampled using bilinear interpolation 
to match the resolution of  the target image. The 
isotropic scaling factor was inferred from the 
parameters of  an initial rigid-body registration 
between the PLI-transmittance and the MR images 
using the linear registration model of  the second 
step. The linear registration step utilised a 2D affine 
transformation model to maximise the normalised 
mutual information of  the images using Powell’s 
optimisation method. In the non-linear registration 
step, the images were re-represented using the 
Modality-Independent Neighbourhood Descriptor 

Figure 7. Example of co-registration of PLI with dMRI. On the top row, the transmittance map (left) and 
dMRI T1-weighted image (right) are depicted. A selection of the anatomical regions representing the 
perforant path was made to improve the co-registration result and the PLI selection was co-registered 
with the dMRI selection (middle row). The transformation that was applied to the transmittance map 
was also applied to the fibre orientation map, in-plane fibre orientation map and retardance map (bottom 
row).



Nijmegen CNS | VOL 14 | ISSUE 2 11

WHITE MATTER CHANGES IN THE PERFORANT PATH IN ALS

(MIND) (Heinrich et al., 2012). This representation 
was used to calculate a cost function that was less 
sensitive to the differences in image contrast across 
the two modalities. The cost function was defined 
as the cumulative Euclidean distance between the 
image’s MIND vectors, and it was minimised using 
Gauss-Newton optimisation for fast convergence 
(Heinrich et al., 2012). During the minimisation 
process, the input image was transformed voxel-
wise, using a diffusion-regularised deformation field 
to ensure the smoothness of  image deformation. 
A multi-resolution approach was adopted in both 
stages of  the registration to avoid misalignment due 
to local minima in the cost functions. The image 
registration approach used in this study is a re-
implemented and modified version of  the algorithm 
that had been used previously by our research group 
to align histological images with MRI (Mollink et al., 
2017). The modifications were necessary to obtain 
accurate spatial alignment between PLI and MRI.

Analysis of PLI data 

 Retardance. 
In addition to fibre orientation, the retardance 

was derived from the PLI raw images. The retardance 
informs about how much the phase of  the light 
wave is shifted due to interaction with myelin and 
is therefore used to evaluate the amount of  myelin 
within a section. For one section per subject, the 
retardance values over the perforant path found with 
dMRI tractography were calculated by co-registering 
the PLI data with the dMRI data (Fig. 7). However, 
in between 8-12 PLI sections per subject were 
sectioned and processed. Due to time constraints, it 
was not possible to co-register all sections. Therefore, 
the other 7-11 sections were analysed by manually 
delineating the perforant path observed in diffusion 
MRI in the PLI transmittance map (supplementary 
Fig. 2). The retardance values under the dMRI path 
were extracted and averaged for all slices for each 
specimen to look for case-control differences.

 Dispersion. 
Another parameter that was extracted from 

the raw PLI data was the in-plane direction. The 
in-plane map describes the in-section direction 
of  each fibre ranging from 0 to π. This map was 
used to estimate fibre dispersion. A higher degree 
of  dispersion is associated with the beaded and 
fragmented fibre geometries that are associated with 
Wallerian axonal degeneration (Kerschensteiner, 
Schwab, Lichtman & Misgeld, 2005; Waller, 1850). 

Following a similar method to quantify the amount 
of  dispersion from PLI fibre orientations as Mollink 
and colleagues (2017), a Von Mises distribution was 
fitted to fibre orientations in a local neighbourhood 
of  50x50 pixels. The Von Mises distribution is a 
circular normal distribution whose concentration 
is described by κ (supplementary Fig. 3). When all 
samples are oriented isotropic, κ = 0 and κ increases 
when the distribution becomes more centred around 
one angle. Dispersion is therefore calculated as:

 The region of  interest, namely the perforant 
path, was manually delineated in all polarized light 
imaging sections based on the tractography data for 
each subject separately and the dispersion values 
within the region of  interest were calculated. 

Immunohistochemistry 

To investigate the pTDP-43 protein pathology, 
microglial activation, myelination and the amount 
of  neurofilaments, antibodies against pTDP-43, 
cluster of  differentiation 68 (CD68), proteolipid 
protein (PLP) and SMI-312 were used for 
immunohistochemistry, respectively.  All tissue 
blocks were embedded in paraffin and cut in 6 
µm thin sections for staining for CD68, PLP and 
SMI312. Sections for pTDP-43 had a thickness of  10 
µm. For every specimen 5 sections were stained, one 
for each protein. The sections were then mounted 
on Superfrost Plus slides (ThermoFisher, Art. No. 
J1800BMNZ). The sections were deparaffinised in 
xylene and rehydrated through a series of  100%, 
100%, 90% and 70% ethanol. The endogenous 
peroxidase was blocked by incubating the sections 
3% H2O2 in PBS for 30 minutes. Subsequently, 
antigen binding sides for pTDP-43 and CD68 
were retrieved by autoclaving in citrate buffer 
(pH6). Antigen retrieval for PLP and SMI-312 was 
achieved through heating the sections submerged in 
citrate buffer (pH=6) in a microwave. After antigen 
retrieval, the sections were washed with PBS. After 
washing, the primary antibody was added. All primary 
antibodies were diluted in TBS/T (pH=7.6). The 
primary antibodies against PLP (mouse-anti- PLP, 
1:1000, Bio-Rad, MCA839G), CD68 (mouse-anti-
CD68, 1:200, Dako Denmark, M0876) and SMI-312 
(Mouse-anti-SMI-312, 1:2000, BioLegend, 837901) 
were incubated for one hour at room temperature. 
The primary antibody against pTDP-43 (Mouse-
anti-pTDP-43, 1:40 000, CosmoBio, PS409/410) 
was incubated over night at 4 °C.  After washing, the 
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secondary antibody containing HRP Rabbit/Mouse 
Serum (EnVision Detection Systems, Peroxidase/
DAB, Rabbit/Mouse) was added and incubated 
for 1 hour. After washing, a DAB substrate buffer 
solution was added (EnVision Detection Systems, 
Peroxidase/DAB, Rabbit/Mouse) and incubated for 
5 minutes. Sections were washed with PBS to stop 
the reaction. Finally, a counterstain for haematoxylin 
was performed to visualise the nuclei. After the 
counterstain sections were dehydrated and mounted 
with DPX. 

Histological image analysis

Sections were scanned on the Aperio ScanScope 
AT Turbo device at a 20x magnification. All images 
were automatically segmented making use of  great 
colour contrast between the DAB stain and the 
haematoxylin counterstain. A specific colour cluster 
for each structure of  interest was empirically defined 
in HSV colour-space using MATLAB’s interactive 
colour thresholder application (MATLAB and 
Statistics Toolbox Release 2017a, The MathWorks, 
Inc., Natick, Massachusetts, United States). The 
saturation and value thresholds were also optimised 
per stain so that the segmentations would represent 
the DAB-staining without much contribution of  
background staining. Pixels that fell within the 
colour segmentation were considered to be positive.  

To quantify the amount of  staining, a stained 
area fraction was calculated as the relative number 
of  positive pixels within a local neighbourhood of  
100x100 pixels. These area fraction maps were used 
to get an estimate of  the histological structures, 
for example, myelin density, in a certain region of  
interest. The region of  interest, namely, the perforant 
path, was manually drawn in all histological sections 
based on the tractography data, for each subject and 
stain separately (Fig. 12A). 

Statistics 

All statistical analyses were performed with IBM 
SPSS statistics for Windows, version 22 Armonk, 
NY: IBM Corp. 

Diffusion MRI. 
A students t-test was used to evaluate the 

differences in MD, FA, AD and RD values between 
groups. We tested one-sided since we expect the 
MD, AD and RD values to be higher and the FA 
values to be lower in ALS cases. Between the groups, 
there was a significant difference in fixation time 

(p=0.003). Since it is known that fixation time can 
cause a reduction in FA, MD and AD and an increase 
in RD (D’Arceuil & de Crespigny, 2007; Schmierer 
et al., 2008, 2007; Sun, Liang, Xie, Oyoyo & Lee, 
2009) a chronic demyelinating disease. Conventional 
T2-weighted MRI (cMRI, a normalization step 
was performed before calculating the t-statistics. 
The normalisation was done by dividing the found 
FA, MD, AD and RD values in the perforant path 
by a reference values for each of  these metrics 
in a control region within the same sample. The 
entorhinal cortex was used as a control region. 

Polarized light imaging
 A students T-test was used to evaluate the 

differences in retardance values within the perforant 
path between ALS cases and controls. We tested 
one-sided because we expected the retardance values 
to be lower in ALS cases compared to controls.

The relationship between the retardance and 
the normalised dMRI diffusion tensor metrics was 
assessed by calculating the Pearson correlation 
coefficient. The correlation was tested one sided, 
because we expected a negative correlation between 
the MD and retardance and a positive correlation 
between the FA and the retardance. 

Histology
A students T-test was used to evaluate the 

differences in PLP, SMI-312, CD68 and pTDP-43 
stained area fractions. Tissue fixation is known to 
reduce the availability of  antigen binding sites and 
can therefore cause a decrease in the amount of  
staining (Werner, Chott, Fabiano & Battifora, 2000). 
Therefore, a normalisation was performed before 
calculating the T-test statistics. This normalization 
was only performed for the PLP and SMI-312 stain. 
The CD68 and TDP-43 stain were not normalised 
because inflammation and pTDP-43 pathology are 
expected to be widespread within the slice even if  
white matter degeneration is localised.

The normalisation was accomplished by dividing 
the stained area fraction in the perforant path by the 
stained area fraction in a control region within the 
same specimen. The EC was used as a control region. 
A Pearson correlation analysis was performed on 
the normalised dMRI and histology values.

Results

Magnetic Resonance Imaging 

We aimed to identify the perforant path in all 
specimens using probabilistic tractography. After 



Nijmegen CNS | VOL 14 | ISSUE 2 13

WHITE MATTER CHANGES IN THE PERFORANT PATH IN ALS

running tractography analysis the identified tracts 
were inspected and exclusion masks were drawn 
in such a way that only the tracts representing the 
anatomical course of  the perforant path were 
maintained for analysis (Fig. 8A). 

To get an impression of  white matter degeneration 
in the perforant path, the diffusion tensor metrics 
were compared between ALS cases and controls. 
Within the perforant path the FA values were 
significantly lower in ALS specimens compared to 
controls (p = 0.014), T-test one-sided). A reduced 
FA indicates that water diffuses more isotropically 
and could indicate myelin degeneration. This 
hypothesis is further strengthened by the increase 
that was found in MD in ALS specimens compared 
to controls (p = 0.011, T-test one-sided) (Fig. 8B and 
C). In addition, both RD (p = 0.028) and AD (p = 
0.023) values were significantly higher in ALS cases 
compared to controls. An increase in RD value is 
caused by an increasing amount of  diffusion along 
the radial diffusion direction, further implying loss 
of  fibres. 

Polarized light imaging

To get a detailed insight in the directionality 
and myelination of  fibres within the tissue, PLI 
was performed. From the raw PLI data, the fibre 

orientation, transmittance, retardance and in-
plane map were extracted. The transmittance map 
reflects the amount of  light passing through the 
tissue. Grey matter lets through more light than 
white matter and therefore appears brighter in the 
transmittance map (Fig. 9A). The retardance map 
shows the degree to which the phase of  the light 
is shifted due to interaction with the myelin and is 
therefore an indirect measure of  myelin (Fig. 9B). 
The in-plane map gives the in-plane direction of  the 
fibres with values ranging from 0 to π (Fig. 9C). The 
fibre orientation map is formed by combining the 
retardance and in-plane maps. It shows the direction 
of  the myelinated fibres within the tissue, allowing 
for tracing the perforant path within each slice (Fig. 
9D).  

 Retardance
To further investigate the amount of  white matter 

in the perforant path in ALS, patients compared to 
controls and the PLI retardance maps were analysed. 
As previously mentioned, retardance measures 
how much a polarized light wave is shifted due to 
interaction with regularly arranged myelin sheets. 
The PLI retardance values within the perforant path 
were calculated and it was shown that the retardance 
values in ALS cases were lower, implicating a loss of  
myelin. However, the decrease was not significant (p 

Figure 8. Examples of the tracts representing the perforant pathway running from the subiculum to the 
dentate gyrus for controls (A) and (B) for ALS cases. These tracts were used for computing the MD, RD, 
AD and FA values within the perforant path. (C) The FA value in the part of the perforant path that runs 
from the subiculum to the dentate gyrus is lower in ALS cases compared to controls (p = 0.014, T-test, 
one-sided). The MD value is significantly higher in the perforant path in the ALS specimen compared 
to controls (p = 0.011, T-test, one-sided) as well as the AD (p = 0.023, T-test, one-sided) and the RD (p = 
0.028, T-test, one-sided) value.
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= 0.16, one-sided; Fig. 10A).
Since PLI is a relatively new technique and to our 

knowledge not applied to pathological specimens 
before, we aimed to gain insight in the relationship 
between the dMRI metrics and the PLI retardance 
values. The PLI values were therefore correlated 
with the FA and MD. As expected, there was a 
positive correlation between the retardance and the 
FA (p = 0.038, one-sided). No correlation was found 
between the retardance and the MD (p = 0.48, one-
sided; Fig. 10C). We, however, expected a negative 
correlation between the MD and retardance because 

an increase in MD is thought to reflect a decrease in 
white matter structure. 

 Dispersion
As a result of  fibre degeneration, orientation 

dispersion may be a marker for the disturbed 
coherence of  fibres. Indeed, the fibre dispersion 
was elevated in ALS cases compared to controls (p 
= 0.044), demonstrating an increase in the fanning 
of  fibres within the perforant path (Fig. 11C). These 
results further implicate damage of  the perforant 
path. 

Figure 9. Example of the polarised light imaging data from a control case. (A) The transmittance map 
reflecting the amount of light passing through the tissue. (B) The retardance map showing the degree 
to which the light is shifted due to interaction with the myelin. (C) The in-plane map giving the in-
plane direction of the fibres with values ranging from 0 to π. (D) The fibre orientation map showing the 
directionality of the myelinated fibres indicated with the colour wheel. This map is formed by combining 
the retardance and in-plane map. The anatomical regions within the hippocampus are delineated and 
the approximate direction of the perforant path is indicated with the yellow arrows.
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Immunohistochemistry

While dMRI and PLI provide valuable 
information regarding white matter architecture in 
our specimens, protein pathological information 
within the tissue is lacking from these techniques. 
To gain more insight in the protein pathology, we 
performed immunohistochemical stains for pTDP-
43, microglial activation (CD68), myelin (PLP) and 
neurofilaments (SMI-312).

The stained area fraction was calculated using an 
automatic segmentation for all stains. An example 
of  each of  these segmentations is shown in Figure 
12. The segmentation for PLP and CD68 performed
well, meaning that it picked up the true DAB-
staining without including the background signal. 
For SMI-312, the segmentation proved to be more 
challenging due to a relatively low contrast between 
the background and true stain. To make sure it would 

not pick up any background signal, the segmentation 
settings were set to be more conservative. For this 
reason, the algorithm sometimes missed out on 
some of  the true staining. To develop an automatic 
segmentation that correctly identified the pTDP-43 
inclusions, it was necessary to set a minimum cluster 
size threshold of  15 pixels.  After setting the size 
threshold, the amount of  pTDP-43 inclusions was in 
general correctly quantified. However, the algorithm 
still picked up some degree of  non-specific staining 
of  pigments within the nucleus as can be observed 
in supplementary Figure 3, resulting in some false 
positive signal.

After determining the segmentation settings, the 
stained area fraction was computed for each stain in 
both cases and controls. A higher amount of  myelin 
(PLP) was found in ALS cases compared to controls. 
However, this difference was not significant (p = 
0.11). Furthermore, an increase in the amount of  
neurofilaments (SMI-312) was detected in ALS cases 

Figure 10. (A) The retardance value within the perforant path was found to be lower in ALS cases 
compared to controls, but was not significant (p = 0.16 one-sided). (B) Two examples of retardance maps 
from an ALS case (left) and control (right). The yellow arrows indicate the approximate location of the 
perforant path. (C) Correlation between the MD and FA values from the dMRI and retardance values 
from PLI for cases and controls combined. There was a significant correlation between the FA and the 
retardance (p = 0.038 one-sided), but not between the MD and the retardance (p = 0.48, one-sided).
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(p = 0.03). These results contradict our previous 
findings with dMRI and PLI since they suggested 
a decrease in myelination and axonal integrity in 
ALS cases compared to controls. No changes were 
observed in the amount of  CD68, indicating similar 
levels of  inflammation in both groups. Finally, it was 
shown that two out of  the 13 ALS cases exhibited 
pTDP-43 pathology within the hippocampus (Fig. 
13B).

To investigate the relationships between PLI and 
SMI312 staining and the dMRI metrics, correlation 
analyses were performed. As expected, a positive 
correlation was present between the amount of  
myelin and the amount of  neurofilaments (p = 
0.025, R2 = 0.499). An increase in MD and RD has 
previously been associated with demyelination. A 
negative correlation was therefore expected between 

PLP and MD/RD. However, contradictory to our 
hypothesis, a positive correlation was found between 
PLP and MD (p = 0.037, R2 = 0.458), PLP and RD 
(p = 0.023, R2 = 0.506) and PLP and AD (p = 0.021, 
R2 = 0.514). The amount of  SMI-312 stain did not 
correlate with any of  the diffusion measures.

Discussion

Since ALS is mostly known as a motor disease, 
multiple studies investigating white matter 
alterations in ALS have focused on changes in the 
cortico-spinal tract and the corpus callosum (Cirillo 
et al., 2012; Filippini et al., 2010; Horsfield & Jones, 
2002; Lillo et al., 2012). The clinical involvement of  
both compartments is characteristically variable and 
the site of  onset debated. We sought to establish 

Figure 11. (A) A polar plot illustrating the raw PLI fibre orientation distribution (blue) from an exemplar 
neighbourhood of 50x50 pixels fitted with a von Mises distribution (red). (B) An example of the log(1/
κ)-map. Κ is a measure for the broadness of the Von-Mises distribution, the higher the K value, the 
narrower the Von-Mises distribution. A narrow Von Mises distribution is associated with a low level of 
dispersion. Therefore, 1/κ is a measure for the amount of dispersion. Log (1/κ) was shown to increase 
visibility of the dispersion values. It can be observed that dispersion is lower in highly aligned white 
matter regions. (C) The amount of dispersion is higher in ALS cases compared to controls within the 
perforant path (p = 0.044).
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whether there is a consistent signature of  cerebral 
white matter abnormalities in heterogeneous ALS 
cases. In this observational study, diffusion tensor 
imaging was applied in a whole-brain analysis of  24 
heterogeneous patients with ALS and well-matched 
healthy controls. Tract-based spatial statistics were 
used, with optimized voxel-based morphometry of  
T1 images to determine any associated gray matter 
involvement. A consistent reduction in fractional 
anisotropy was demonstrated in the corpus 
callosum of  the ALS group, extending rostrally 
and bilaterally to the region of  the primary motor 
cortices, independent of  the degree of  clinical 
upper motor neuron involvement. Matched regional 
radial diffusivity increase supported the concept 
of  anterograde degeneration of  callosal fibers 
observed pathologically. Gray matter reductions 
were observed bilaterally in primary motor and 

supplementary motor regions, and also in the 
anterior cingulate and temporal lobe regions. A 
post hoc group comparison model incorporating 
significant values for fractional anisotropy, radial 
diffusivity, and gray matter was 92% sensitive, 88% 
specific, with an accuracy of  90%. Conclusion: 
Callosal involvement is a consistent feature of  
ALS, independent of  clinical upper motor neuron 
involvement, and may reflect independent bilateral 
cortical involvement or interhemispheric spread of  
pathology. The predominantly rostral corticospinal 
tract involvement further supports the concept of  
independent cortical degeneration even in those 
patients with ALS with predominantly lower motor 
neuron involvement clinically. Over the past years, 
ALS has become more and more recognized as a 
multisystem neurodegenerative disease because areas 
of  the brain outside the motor-areas also undergo 

Figure 12. Overview of the histological data and analysis. The left column shows a snapshot of the 
original staining for myelin, TDP-43, activated microglia and neurofilaments. The middle column 
depicts the automatic segmentation of this snapshot where white indicates a pixel that is considered to be 
stained and black indicates a pixel that is considered to be background. After segmentation, the stained 
area fraction was calculated per 100 pixels resulting in a down-sampled image reflecting the amount of 
staining over the slice (yellow square). The right column gives an overview of the segmentation across 
the entire slice.
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degeneration. Furthermore, around 50% of  the 
ALS patients exhibit cognitive problems with 10-
20% of  the people meeting the criteria for bvFTD. 
Despite the relationship between ALS and memory 
deficits, detailed investigation of  white matter tracts 
related to memory has been lacking to date. Here, we 
used dMRI, PLI and histology to investigate white 
matter changes in the perforant path, a projection 
of  the circuit of  Papez that has been implicated to 
be affected in ALS and bvFTD and was previously 
linked to cognitive deficits in Alzheimer’s disease 
(Hyman et al., 1986; Thal et al., 2000).

Using dMRI, we demonstrated a reduction in the 
FA and an increase in the MD, AD and RD in the 
perforant path in ALS cases compared to controls 
(Fig. 8B and C), suggesting white matter damage. 
PLI retardance values were also lower in ALS 
specimens, however, a significant difference was not 
detected (Fig. 10A). The retardance did correlate 
with the FA, but not with the value MD within the 
perforant path (Fig. 10C). The amount of  dispersion 
was significantly higher in ALS specimens, further 
indicating damaged axonal structure (Fig. 11C).  

Histochemical analysis showed no differences in the 
amount of  microglial activation. However, they did 
show a (non-significant) increase in myelin and a 
significant increase in the amount of  neurofilaments. 
There was a positive correlation between PLP 
and MD and RD and AD dMRI values. pTDP-43 
pathology was found in two out of  the 14 ALS cases 
within the hippocampus (Fig. 13B).

In order to extract the FA, MD, AD and RD values 
from dMRI within the perforant path, probabilistic 
tractography was performed. At first, tractography 
was performed by using the EC as a seed, keeping 
all paths terminating in the DG. With these settings 
we were unable to track the perforant pathway. Next, 
we tried to extract the perforant path by using the 
EC as a seed and the Sub as waypoint, again only 
maintaining the paths terminating at the DG. With 
these settings, it was also not possible to extract a path 
representing the anatomical course of  the perforant 
path (Supplementary Fig. 1). This is in concordance 
with Augustinack and colleagues (2010), who also 
reported to be unable to track the whole perforant 
pathway from the EC to DG using tractography. 

Figure 13. (A) Example of manual delineation of the perforant path (right) based on the dMRI tractography 
results (left). (B) The amount of PLP within the perforant path is higher in ALS cases compared to 
controls, but not significantly (p=0.11). Furthermore, an increase in the amount of neurofilaments is 
observed in ALS cases (p = 0.03). The amount of inflammation (CD68) is similar in both groups and two 
out of the 18 cases exhibit pTDP-43 pathology within the perforant path.
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Third, we decided to divide the perforant path into 
two parts: One part from the EC to the Sub and the 
other part from the Sub to the DG. However, in the 
area from the EC to the Sub, two other fibre bundles, 
the alvear path and the collateral white matter, are 
crossing the perforant path (Supplementary Fig. 5). 
This makes it difficult to solely extract the perforant 
path for analysis in this region. Furthermore, the 
perforant path is originating from across the entire 
entorhinal cortex forming a coherent bundle only 
from the subiculum on. Since we are only interested 
in the dMRI, PLI and histology metrics within the 
perforant path, we decided to solely focus on the 
part of  the path running from the Sub to the DG.   

Part of  the changes that were found in the 
dMRI metrics in ALS patients compared to controls 
have been linked to a loss of  white matter integrity. 
Namely, a reduction in FA and an increased MD and 
RD values were repeatedly associated with white 
matter degeneration (Bozzali et al., 2002; Soares, 
Marques, Alves & Sousa, 2013). Interpretation of  
the increase in AD is less arbitrary as some studies 
found no changes in AD due to demyelination 
(Klawiter et al., 2011; Song et al., 2002), while other 
studies either find an increase in AD (Metwalli et al., 
2010) or a decrease in AD due to white matter loss 
(Harsan et al., 2006; Tyszka et al., 2006). Possibly, 
an increase in AD is observed due to enlargement 
of  the extracellular space as a result of  axonal 
degeneration. 

While the dMRI results suggest that white matter 
in the perforant path is damaged in ALS cases, 
changes in the dMRI metrics can also be driven 
by several other factors.  Since dMRI metrics are 
calculated based on the diffusion of  water, assuming 
that water diffuses along the line of  an axon, they are 
indirect measures of  the white matter geometry. For 
example, two kissing or crossing fibres could yield 
an FA value of  0 implying fully isotropic diffusion 
and no axons being present, not reflecting the actual 
white matter structure within that voxel (Jbabdi & 
Johansen-Berg, 2011). However, large differences 
between cases and controls in the amount of  crossing 
fibres are not expected since we are investigating the 
same pathway in a similar area in both groups

Besides a change in white matter geometry, the 
diffusion metrics can also be affected by the way 
tissue is preserved after death. Several of  the ALS 
cases had post–mortem intervals (PMI) of  up to five 
days. Previous research has shown that long PMI 
can cause a reduction in FA and an increase in MD 
values ( D’Arceuil & de Crespigny, 2007; Miller et al., 
2011) and as a link between in vivo diffusion studies 
and \”gold standard\” histology/dissection. While 

there is a relatively mature literature on post mortem 
diffusion imaging of  animals, human brains have 
proven more challenging due to their incompatibility 
with high-performance scanners. This study presents 
a method for post mortem diffusion imaging of  
whole, human brains using a clinical 3-Tesla scanner 
with a 3D segmented EPI spin-echo sequence. 
Results in eleven brains at 0.94. 0.94. 0.94. mm 
resolution are presented, and in a single brain at 
0.73. 0.73. 0.73. mm resolution. Region-of-interest 
analysis of  diffusion tensor parameters indicate 
that these properties are altered compared to in 
vivo (reduced diffusivity and anisotropy) but there 
are relatively few studies in human brains. While 
animal tissues are generally fixed pre-mortem or 
directly post-mortem, this is not possible for human 
tissue, therefore there is always some delay between 
death and tissue fixation. The elapsed time between 
death and tissue fixation, the post-mortem interval 
(PMI). In our data, a significant negative correlation 
between the PMI and the MD values (p = 0.009) 
was observed. No significant correlation was found 
between the FA (p = 0.242) or retardance (p = 0.647) 
and the PMI. Another factor that can influence the 
dMRI values is the fixation time. It has previously 
been shown that fixation causes a reduction in 
diffusivity within the tissue, leading to a drop in FA, 
MD, AD and RD (D’Arceuil & de Crespigny, 2007; 
Sun et al., 2009, 2005) but relatively few studies in 
human brains. While animal tissues are generally 
fixed pre-mortem or directly post-mortem, this is 
not possible for human tissue, therefore there is 
always some delay between death and tissue fixation. 
The elapsed time between death and tissue fixation, 
the post-mortem interval (PMI. Because the fixation 
time between groups differs significantly (p = 0.003), 
it is important to correct for these effects. Based 
on the assumption that any effects of  PMI and 
fixation time are present in the whole hippocampal 
tissue block, an internal control region was used to 
normalise the FA, MD, AD and RD values within 
the perforant path. 

First, the collateral white matter was chosen 
as a control region as this white matter region 
was present in all sampled hippocampal blocks. 
However, an (non-significant) increase in the MD 
value was observed within the collateral white matter 
(p = 0.15), while the expected effect of  fixation 
time was in the opposite direction. In addition, the 
perforant path was partially crossing through the 
collateral white matter area (Supplementary Fig. 5), 
making the collateral white matter an unsuitable 
control region. Unfortunately, there was no other 
white matter region that was present in all sampled 
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hippocampal blocks and that was not part of  the 
circuit of  Papez. Therefore, the EC was used as a 
control region. The perforant path originates here 
but very few fibres of  perforant path run through 
this area. After normalisation, a significant decrease 
in the FA value (p = 0.014) and a significant increase 
in the MD value (p = 0.011), AD value (p = 0.021) 
and RD value (p = 0.028) was found in ALS cases 
compared to controls (Fig. 8C). For future research, 
specimens have to be matched on fixation time, PMI, 
age, gender and region to ensure that any observed 
differences are driven by case-control differences.

The dMRI results implicate white matter loss 
in the perforant path in ALS but can, as previously 
mentioned, also be caused by a difference in fibre 
configuration between the groups. We performed 
PLI and histology to gain further insight in the 
nature of  the changes found with dMRI.

The PLI retardance maps were used to compare 
the degree of  myelination between patients and 
controls. This is, to our knowledge, the first time that 
PLI was used to make a case-control comparison. 
A decrease in the retardance was observed in ALS 
cases compared to controls within the perforant 
path. This decrease was, however, not significant (p 
= 0.16, one-sided, Fig. 10A).

In addition to the birefringent properties of  
myelinated axons, the retardance is also dependent 
on the inclination angle of  fibres. A reduction in 
retardance is for example observed when equally 
myelinated fibres are propagating less radial to the 
imaging plane (Axer et al., 2011)the structural basis 
of  the human connectome. In contrast to animal 
brains, where a multitude of  tract tracing methods 
can be used, magnetic resonance (MR). A small tilt 
in the plane could have been induced during cutting 
the sections or during sampling of  the hippocampal 
blocks from the brains, leading to a variation in the 
retardance values.

We were unable to perform a fixation time 
correction on the retardance values because the exact 
effects of  fixation time on retardance are unknown. 
Retardance measures the birefringence induced by 
the regular arrangement of  myelin proteins and 
lipids. During formalin fixation, proteins are cross-
linked keeping protein structures relatively intact 
(Thavarajah, Mudumbaimannar, Rao, Ranganathan 
& Elizabeth, 2012). It has been shown that there is 
a loss of  lipids in the central nervous system during 
fixation, possibly resulting in lower retardance 
values when fixation time is increasing (Hopwood, 
1969). However, no significant negative correlation 
between fixation time and retardance values was 
found (R2 = 0.306, p = 0.109, one-sided). Another 

inadequacy is that the effect of  aggregations of  
proteins like pTDP-43 on the retardance signal have 
never been investigated.

To gain further insight in the relationship 
between retardance and dMRI metrics, a Pearson 
correlation analyses was performed. There was a 
positive correlation between the FA and retardance, 
meaning that a higher retardance value was associated 
with a more isotropic water diffusion direction and 
supposedly a more intact white matter architecture. 
Surprisingly, no negative correlation between the 
MD and retardance was observed. It was expected 
that when the MD value rises due to loss of  axonal 
integrity, the retardance values would go down. 
Potentially, the decrease in MD value is more a 
result of  loss of  coherence in fibre structure than 
of  demyelination and severe degeneration of  axons.

To further investigate the degree of  myelination 
within the perforant path, immunohistochemical 
stainings for proteolipid protein (PLP) were 
performed. Myelin consists of  a high proportion of  
lipids (75-80%) and consequently a lower portion 
of  proteins (15-30%). PLP and myelin basis protein 
(MBP) together make up about 60-80% of  the 
proteins present in myelin (Brady & Siegel, 2012). 
Since PLP is one of  the main components of  
myelin, a reduction in PLP is expected when myelin 
is degrading (Garbern et al., 2002). Instead, our 
results indicate a (non-significant) increase in PLP 
in the subiculum in ALS cases compared to controls 
(p = 0.11, one-sided). This result is contradicting 
the previously discussed dMRI and PLI results 
suggesting a reduction in white matter. Possibly, 
the change in white matter structure is driven by a 
reduction in MBP or lipids, unrelated to the amount 
of  PLP. Another reason for the discrepancy between 
the dMRI and PLI and the PLP stain could be that 
axonal degeneration is occurring in the absence of  
demyelination (Garbern et al., 2002). As a result, 
axons would proceed to disentangle, increasing the 
amount of  myelin-stained surface. The spreading 
of  axonal fibres is known to be the begin stage of  
Wallarian degeneration (Waller, 1850). The significant 
increase in the spreading of  fibres (dispersion, p 
= 0.044) and the positive correlation between the 
MD, RD and AD values and the PLP stain further 
substantiates this hypothesis.

An increase in the amount of  SMI-312 stain was 
observed, again contradicting our hypothesis and the 
dMRI and PLI results. However, several previous 
papers report that during axonal degeneration in 
ALS swollen axon segments occur that are rich 
of  the neurofilament proteins that SMI-312 stains 
for (Delisle & Carpenter, 1984; Lingor et al., 
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2012) inflammatory and degenerative neurological 
diseases. Increasing evidence suggests that axonal 
degeneration occurs early in the course of  these 
diseases and therefore represents a promising target 
for future therapeutic strategies. We review the 
evidence for axonal destruction from pathological 
findings and animal models with particular emphasis 
on neurodegenerative and neurotraumatic disorders. 
We discuss the basic morphological and temporal 
modalities of  axonal degeneration (acute, chronic 
and focal axonal degeneration and Wallerian 
degeneration. The increase in SMI-312 stain could 
thus be caused by accumulation of  neurofilaments 
in these axonal swellings. Another possible rationale 
behind the increase in neurofilaments is that 
accumulation of  phosphorylated neurofilaments is 
often observed in the amyloid beta plaques associated 
with aging and Alzheimer’s disease (Dale & Garcia, 
2012; Dickson, King, McCormack & Vickers, 1999). 
The degree of  amyloid beta like pathology should be 
taken into account as soon as the diagnostic stains 
are fully evaluated.

pTDP-43 pathology was detected in only two out 
of  the 13 ALS cases within the hippocampal area. In 
one case, mild pathology was observed; in the other 
case, the pathology was classified as frequent (Fig. 
3).  Tan and colleagues (2015) developed a staging 
system for pTDP-43 pathology in ALS and FTD and 
it is shown that the hippocampal area is one of  the 
last areas to be affected by pTDP-43 pathology in 
ALS. It is thus not surprising that not all specimens 
exhibit hippocampal pathology. In bvFTD however, 
the hippocampus is one of  the first areas to be 
enforced by pTDP-43.

The histology data showed no differences in 
the amount of  activated microglia, a measure for 
inflammation, in ALS cases compared to controls. 
This contradicts earlier findings of  enhanced 
microglial activation in white matter lesions in ALS 
in the corpus callosum and the spinal cord (Henkel 
et al., 2004; Sugiyama et al., 2013). However, the 
average age of  the control specimens was 70.8 years. 
It is known that the amount of  activated microglia 
increases upon aging, potentially making it harder to 
detect significant differences in microglial activation 
between groups (Sparkman & Johnson, 2008).  In our 
data, we did not find a correlation between activated 
microglia and age. Until now, only one section per 
subject was stained and analysed. Increasing sample 
size could result in a significant difference in CD68 
staining between the groups.

The fact that only one section per subject was 
stained for each histochemical stain also resulted 
in a regional difference between the control and 

ALS cases. On average, the control sections were 
more representative of  the posterior part of  the 
hippocampus while the ALS sections represented 
a more anterior part (supplementary Fig. 3). 
Unfortunately, these regional differences were not 
only present in the single histology slices but also in 
the sampled hippocampal blocks. The control blocks 
were sampled in Nijmegen, The Netherlands, while 
the ALS blocks were sampled in Oxford, United 
Kingdom. Despite the fact that both groups used the 
LGN as an anatomical reference point for sampling 
the blocks, the control blocks were sampled more 
posterior than the ALS blocks. It could thus be that 
the observed dMRI, PLI and histology differences 
were driven by regional differences rather than by 
case-control variation. It is, however, hard to correct 
for this.

To allow further research of  white matter 
changes in the entire circuit of  Papez, other regions 
of  the circuit were also sampled from all specimens. 
Unfortunately, we were not able to use ALS/FTD or 
pure bvFTD specimens for this research. It would 
be interesting to see whether the observed white 
matter changes correlate with clinically observed 
cognitive decline. Since the magnitude of  all dMRI 
metrics is going down as a result of  fixation, it is also 
interesting to perform in vivo dMRI of  the perforant 
path in controls, ALS/ALS-FTD and bvFTD 
patients. This is challenging because the perforant 
path is small and therefore hard to detect with 
tractography analysis. Because we used post-mortem 
tissue, we were able to work with long scanning times 
(3-4 hours) and an ultra-high field MRI scanner 
(11.7T) resulting in very high resolution dMRI. 
Routine clinical MRI scanners have a field strength 
of  1.5-3T and scanning time would be maximally an 
hour, drastically reducing the achievable resolution. 
Another interesting target of  future research is the 
effect of  fixation time and protein aggregation on 
retardance measures. Since PLI is a new technique, 
this remains largely unknown so far.

Our current results linked the perforant path, 
a memory related white matter tract, to ALS. This 
research therefore contributes to the hypothesis of  
ALS being a multisystem neurodegenerative disease. 
Till now, the main focus in ALS research has been 
on motor neuron degeneration and degeneration 
of  motor related areas and pathways. Instead, our 
research has focussed on a potential neural substrate 
of  the cognitive problems that are observed in 50% 
of  the ALS patients. We aimed to shed more light 
on the cause of  these memory related problems and 
thereby hope to raise awareness about this under 
exposed aspect of  the disease.  Hopefully, our results 
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will contribute to faster recognition and alleviation 
of  cognitive disabilities in ALS patients in the clinic.

Furthermore, our research substantiates the 
hypothesis that ALS and bvFTD are a spectrum 
of  diseases rather than two separate disorders, by 
linking a pathway that is known to be involved in 
bvFTD to ALS.  Future studies should therefore 
focus on investigating the perforant path in bvFTD 
and ALS/bvFTD patients to see if  damage to the 
perforant path directly correlates with the degree of  
cognitive deficits in these diseases. 

Conclusion

This work investigated white matter changes in 
the perforant path in ALS patients using dMRI, PLI 
and histological analyses. A reduction in the FA and 
an increase in the MD, AD and RD observed in ALS 
cases relative to controls, implicating white matter 
degeneration of  the perforant path. This observation 
was supported by a (non-significant) decrease in 
the PLI retardance values and increased dispersion 
in the perforant path. However, histology results 
showed an increase in PLP and neurofilaments, 
potentially due to disentangling of  axonal fibres 
and neurofilamental aggregation in axonal swellings, 
respectively.

We conclude that the axonal integrity of  the 
perforant path is damaged in ALS cases compared to 
controls. Our worked hereby provides further proof  
of  ALS being a multisystem disease and therefore 
contributes to the understanding of  ALS. Since 
the perforant path is also implicated in bvFTD, we 
provide further evidence of  ALS and bvFTD being 
a spectrum of  diseases. Furthermore, we show 
that white matter degeneration of  the perforant 
path likely occurs even before clinical diagnosis of  
cognitive symptoms. Finally, our results provide the 
perforant path as a potential neural correlate of  the 
cognitive symptoms in ALS and further research 
should be done to substantiate this hypothesis.  
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Emotional information can be conveyed by deviations in action kinematics (Montepare et al., 1999; Pollick et 
al., 2001). By 11- to 12-months of  age, infants showed sensitivity to the emotional valence of  action kinematics 
(Addabbo et al., in preparation). Whilst the underlying mechanisms of  this sensitivity remain unclear, it is 
widely accepted that our motor system represents observed actions of  others. A recent study provided the 
first evidence that perceived emotional states of  others are dependent on our own movement kinematics 
(Edey et al., 2017). This suggests that infants might become sensitive to emotional information conveyed in 
kinematics once they have a sufficiently detailed motor representation allowing them to detect deviations in 
another person’s movement kinematics. 
This study aimed to understand how young infants become sensitive to emotional information conveyed in 
kinematics. Firstly, this study examined whether it could replicate the results of  Addabbo and colleagues (in 
preparation) in a large sample. Secondly, this study investigated whether infants who have a more detailed 
motor representation, indicated by less kinematic variability in their movement, were more sensitive to 
deviations in kinematics conveying emotional information. Action kinematics of  12- to 13-month-old infants 
were investigated in two transport tasks using motion capture. Infants’ sensitivity to kinematics of  angry and 
happy transport actions was investigated using facial electromyography (EMG), following Addabbo et al. (in 
preparation). Forty-six infants with sufficient EMG data were included in the analysis to examine whether 
infants were sensitive to emotional information conveyed in kinematics. Twenty-four infants with sufficient 
data for both tasks were included in the analysis to investigate whether infants with a more detailed motor 
representation were more sensitive to emotional information conveyed in kinematics. 
The EMG data did not provide evidence that infants this age are already sensitive to emotional information 
conveyed in action kinematics. The combined data of  both tasks indicated a significant correlation between 
the measurement of  motor representation and infants’ sensitivity to happy kinematics. However, in contrast 
to our predictions, infants with higher variability, hypothesized as a less detailed motor representation, showed 
more zygomaticus muscle activation in response to happy stimulus videos. 
This unexpected finding that more variable infants were more sensitive to emotional information (i.e., more 
zygomaticus compared to corrugator activation to happy stimuli) might be due to expressive infants that 
were more active and happy overall over both sessions, resulting in more variability in their movement and 
more zygomaticus activation in the EMG session. There was no evidence for a relationship between the 
measurement of  motor representation and the sensitivity to emotional information conveyed in kinematics. 
However, it might be that our motor task did not capture the detailedness of  the infants’ motor representations 
as assumed. Future research should design an age-appropriate task in order to measure the detailedness of  
motor representation. 

Keywords: Emotion Perception, Emotional Information in Kinematics, Action Kinematics, Motor Representation, Infants
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Emotion recognition

Developing the ability to recognize emotions 
in other persons is essential for infants and 
young children for successful social interaction 
(Harms, Martin, & Wallace, 2010). Research 
has shown that infants become sensitive to 
emotional expressions during the first year of  
life. At 3 months of  age, infants can already 
discriminate between facial expressions of  
surprise and happiness (Young-Browne, 
Rosenfeld, & Horowitz, 1977), as well as anger 
and happiness (Barrera & Maurer, 1981) and 
by 7 months of  age, infants can discriminate 
between facial expressions of  fear and happiness 
(Kotsoni, de Haan, & Johnson, 2001).

Importantly, facial expressions are not the 
only source of  information that can be used 
for recognizing how another person feels. 
Information about another person’s emotions 
can also be retrieved from vocal expressions, 
body posture and body motion patterns (Dael, 
Mortillaro, & Scherer, 2011; Heberlein & 
Atkinson, 2009). In particular, body motion 
patterns are an important source of  emotional 
information for adults. For example, adults were 
able to identify emotions in body movements 
and gestures in actors with blurred faces 
(Montepare, Koff, Zaitchik, & Albert, 1999). In 
addition, people were capable of  recognizing 
and identifying emotions from gait information 
(Montepare, Goldstein, & Clausen, 1987). 
Furthermore, adults could recognize emotions 
in point-light displays based on motion cues in 
arm movements (Pollick, Paterson, Bruderlin, & 
Sanford, 2001), walking movement (Nackaerts 
et al., 2012) and dance movement (Dittrich, 
Troscianko, Lea, & Morgan, 1996; Walk & 
Homan, 1984). Stern (2010) named these 
emotional actions vitality forms describing the 
‘how’ of  an action. In vitality forms, emotions 
can be detected on the basis of  movement 
dynamics, time profile, force, space or direction 
(Di Cesare et al., 2014). These emotional 
actions (e.g., Montepare et al., 1999; Pollick 
et al., 2001) appeared to deviate in terms of  
their kinematics compared to normal actions 
that do not convey emotional information. 
For example, participants rated angry body 

movements and gestures as jerkier than happy 
or sad body movements and gestures, while 
happy body movements and gestures were 
rated as smoother (Montepare et al., 1999). 
An analysis of  movement kinematics provided 
evidence that positive affect in movement 
kinematics is related to longer duration, slower 
velocity, slower acceleration and less jerk in arm 
movements performing drinking and knocking 
actions (Pollick et al., 2001). In sum, emotional 
information in action appears to be conveyed by 
deviations in kinematics.

To date, several researchers have stressed 
that emotional information in body movement 
and posture might be even a more important 
source for emotion recognition than facial 
expressions (Aviezer, Trope, & Todorov, 2012; 
de Gelder, 2006). When the emotional cues 
from the body and the face of  an image were 
mismatched, judgement of  the facial expression 
is limited and is biased into the direction of  
the emotion expressed by the body (Meeren, 
van Heijnsbergen, & de Gelder, 2005). This 
provides evidence that emotional cues from the 
body bias discrimination of  emotional facial 
expressions in favour of  body cues in adults 
(Aviezer et al., 2012; de Gelder, 2006; Meeren 
et al., 2005) and in infants (Rajhans, Jessen, 
Missana, & Grossman, 2016). 

However, to date, there has been little 
research done into how recognition of  emotional 
information in body movement develops in 
infancy. Using facial electromyography (EMG), 
a recent study provided the first evidence that 
infants of  11-to 12-month-old are already 
sensitive to emotional information conveyed in 
kinematics of  movements. Happy expressions 
in the kinematics of  an action induced a 
greater response in the zygomaticus major 
(‘smiling muscle’), while angry expressions in 
the kinematics induced a greater response in 
the corrugator supercilii (‘frowning muscle’), 
providing evidence that infants of  this age 
show sensitivity to the emotional valence of  
action kinematics (Addabbo, Meyer, Vacaru, & 
Hunnius, in preparation). 

Action experience

Whilst the underlying mechanisms of  this 
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sensitivity remain unclear, it is widely accepted 
that our motor system represents actions we 
observe in others (e.g., Fadiga, Fogassi, Pavesi, 
& Rizzolatti, 1995; Hari et al., 1998; Rizzolatti, 
Fadiga, Gallese, & Fogassi, 1996; Rizzolatti & 
Luppino, 2001). Such motor representations of  
actions become more detailed as experience with 
that certain action increases. Observed actions 
that are part of  our motor repertoire activated 
the observer’s motor system. However, actions 
that are outside of  our motor repertoire led to 
little activation in the motor areas (Buccino et al., 
2004). Expert dancers trained in either classical 
ballet or capoeira showed more motor activation 
when observing movements they had been 
trained to perform compared to movements 
they had not (Calvo-Merino, Glaser, Grèzes, 
Passingham, & Haggard, 2004; Calvo-Merino, 
Grèzes, Glaser, Passingham, & Haggard, 2006). 
This motor activation is thought to reflect an 
internal motor representation that is activated 
during action observation (Buccino et al., 2004; 
Calvo-Merino et al., 2004; Calvo-Merino et al., 
2006; Hunnius & Bekkering, 2014). Such internal 
motor representations become more detailed 
with experience, likewise in infancy. Infants 
who received motor training with an action with 
a sound effect showed more motor activation 
to the sound associated with the learned action 
compared to a familiar sound not associated 
with the movement that the infant produced 
(Gerson, Bekkering, & Hunnius, 2015).

Infants and adults use their own motor 
representation of  actions to predict and interpret 
actions of  others (e.g., Blakemore & Decety, 
2001; Gallese & Goldman, 1998; Hunnius & 
Bekkering, 2014; Sommerville & Woodward, 
2005; Southgate, Johnson, El Karoui, & Csibra, 
2010; Wilson & Knoblich, 2005). More motor 
experience with a certain action, and respectively 
an improved motor representation, enhanced 
predicting and interpreting of  actions in expert 
sport players (Abernethy, Zawi, & Jackson, 
2008; Aglioti, Cesari, Romani, & Urgesi, 2008; 
Brault, Bideau, Kulpa, Craig, 2012; Diersch, 
Cross, Stadler, Schütz-Bosbach, & Rieger, 2012; 
Jackson, Warren, & Abernethy, 2006; Sebanz & 
Shiffrar, 2009). For example, expert basketball 
players with high levels of  motor experience 

in a certain action showed an enhancement of  
perception in discriminating (Sebanz & Shiffrar, 
2009) and predicting that certain action (Aglioti 
et al., 2008).

Hunnius and Bekkering (2014) suggest that 
action experience is essential for the infants’ 
developing action understanding to form 
associations between motor representations 
and the sensory consequences of  these 
actions. For example, the extent of  an infant’s 
motor experience with crawling or walking, 
therefore the detailedness of  the infant’s motor 
representation, determined the accuracy of  the 
infant’s prediction of  another person’s crawling 
or walking action (Stapel, Hunnius, Meyer, & 
Bekkering, 2016). Movement experience of  an 
infant with a certain action, and therefore a more 
detailed motor representation of  that certain 
action, improved predicting and interpreting 
another person’s action (Cannon, Woodward, 
Gredebäck, von Hofsten, & Turek, 2012; Gerson 
& Woodward, 2014; Sommerville, Woodward, 
& Needham, 2005; Stapel et al., 2016).  
   Now, there is the first evidence that such 
motor representations play a role in deciphering 
emotions in another person’s actions (Edey, Yon, 
Cook, Dumontheil & Press, 2017). Edey and 
colleagues (2017) hypothesized that we use our 
own motor representations of  action kinematics 
to make judgments about the emotional states 
of  others. In their experiment, participants had 
to judge the emotion of  point-light-display 
walkers on a 10 point scale from not at all 
happy/angry/sad to very happy/angry/sad. A 
person who walks with high velocity is generally 
rated as angry, while a person who walks with 
low velocity is rated as sad. In addition, the 
own walking speed of  the participants was 
assessed. There was a relationship between 
the participants’ own walking speed and their 
judgments about the emotion of  the point-
light-display walker. Faster walkers rated high 
velocity point-light-display walkers as less 
intensely angry, while low velocity point-light-
display walkers were rated as more intensely 
sad. This evidence that perceived emotion in 
kinematics is dependent on participants’ own 
movement characteristics suggests that we use 
motor representations of  our own movement 
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kinematics to make judgements about emotional 
states of  others (Edey et al., 2017).

Current study

Our own motor experience is essential to improve 
the motor representation of  that specific action. In 
addition, there is the first evidence that we use the 
deviations from these motor representations as an 
indication of  emotional states of  others (Edey et al., 
2017). This would imply that infants become sensitive 
to emotional information conveyed by kinematics, 
once they have a sufficiently detailed motor 
representation that allows them to detect deviations 
in another person’s movement kinematics. Infants 
are still very variable in the movements they execute, 
but with practice, movements and their respective 
motor representations improve (Calvo-Merino et 
al., 2004; Calvo-Merino et al., 2006; Fetters & Todd, 
1987; Gerson et al., 2015; Hunnius & Bekkering, 
2014; Konczak, Borutta, Topka, & Dichgans, 1995; 
Mathew & Cook, 1990; von Hofsten, 1991). 

This study aimed to understand how young 
infants become sensitive to emotional information 
conveyed in kinematics. We hypothesized that infants 
need a detailed motor representation in order to 
become sensitive to emotional information conveyed 
in action kinematics. Developing a detailed motor 
representation in infancy is dependent on motor 
development. Here, we examined whether infants 
who have a better detailed motor representation 
of  their kinematics were indeed more sensitive 
to deviations in kinematics conveying emotional 
information. 

In a two-part study, we investigated whether 
infants’ motor representation plays a role in 
deciphering emotions in another person’s actions. In 
the first session, infant’s own motor representation 
was investigated with the infant moving an object 
measured by motion capture. Actions conveying 
emotional information seem to be different in terms 
of  their kinematics compared to normal actions 
(Montepare et al., 1999; Pollick et al., 2001). Therefore, 
we decided to measure variability (Cook, Blakemore 
& Press, 2013) over the infant’s own movement 
kinematics as a measurement of  detailedness of  
motor representation. We hypothesized that infants 
require a sufficiently detailed motor representation 
in terms of  their kinematics in order to identify 
deviations in kinematics in observed movement 
conveying emotional information. In the second 
session, infants’ sensitivity to kinematics of  angry 
and happy actions was investigated by measuring 

facial muscle activity in response to emotional videos 
with angry and happy action kinematics in transport 
movements using facial EMG. 

We hypothesized that infants would show 
activation in the zygomaticus muscle and 
deactivation in the corrugator muscle for actions 
with happy kinematics, while they would show 
activation in the corrugator muscle and deactivation 
in the zygomaticus muscle for actions with angry 
kinematics, replicating the findings of  Addabbo 
and colleagues (in preparation). Secondly, we 
hypothesized that infants with a more detailed 
motor representation of  their own kinematics 
would display a greater sensitivity to emotional 
information conveyed in kinematics of  observed 
actions, following the reasoning based on Edey and 
colleagues (2017). 

Methods

Participants

Total sample. A total of  eighty-three 12- to 
13- months-old infants were tested in this study 
(Table1). In Figure 1, a flowchart illustrates the 
participant inclusion and exclusion in the different 
analyses. Families were recruited from the Baby 
& Child Research Center database in Nijmegen, 
a medium sized city in the Netherlands, and its 
surroundings. Participation in the research was 
voluntary and parents of  the infants were called to 
see if  they wanted to participate with their infant. 
Parents were informed beforehand about the test 
procedure and all parents gave written informed 
consent. Families were given a thank-you gift for 
participation. All procedures were approved by the 
local ethics committee.  

Sample with sufficient EMG data. Forty-
six infants (Table 1) were included in the analysis 
to test whether infants were sensitive to emotional 
information conveyed in kinematics. From this 
sample, twenty-four infants (Table 1) had sufficient 
data for both tasks to test whether infants with a 
more detailed motor representation were more 
sensitive to emotional information conveyed in 
kinematics (see below). An additional thirty-seven 
infants (Table 1) were tested, but data was excluded 
from both analyses, because they did not want to 
wear the EMG electrodes (N = 9), were sick at the 
second session (N = 3), there was a technical error in 
recording the video during the emotional sensitivity 
task (N = 3), there was a technical error in recording 
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the EMG data (N = 5), they were too fussy (N = 6), 
they did not watch enough trials (N = 10) or were 
chewing during the experiment (N = 1). Similar 
drop-out rates have been reported before in facial 
EMG research with infants and children (Geangu, 
Quadrelli, Conte, Croci, & Turati, 2016; Isomura 
& Nakano, 2016; Vacaru, van Schaik, & Hunnius, 
under review).

Sample with sufficient data for both 
tasks. Twenty-two infants, who were included in 
the first analysis, were excluded from the analysis 
to investigate whether infants with a more detailed 
motor representation were more sensitive to 
emotional information conveyed in kinematics, 
because they had no trials for both motion tasks 
(N= 13), they had too little trials (less than 3) for the 
motion task (N = 7),  they did not want to wear the 
motion capture markers (N = 1), or they had no data 
for the hand marker (N = 1).  This left twenty-four 
infants to be included in the analysis.

Stimuli and procedure 

This study consisted of  two parts. Infants’ motor 
representation was measured in the first session 
using motion capture. In the second session, infants’ 
sensitivity to kinematics of  angry and happy actions 
was investigated by measuring facial muscle activity 
in response to emotional videos with angry and 
happy kinematics in transport movement using 
facial EMG. The movement session always occurred 
first, with the second session measuring emotional 
sensitivity following preferably within 1 to 10 days. 
This was done in order to avoid potential biases of  

the emotional video stimuli on the movement of  the 
infants.

Task on own movement kinematics. 
Each infant was seated at a table in a baby chair. 
The parent was seated next to the infant and the 
experimenter was seated in front of  the infant. In 
order to track the movement of  the infant’s hand, 
reflective markers were placed on the infant’s 
preferred hand and corresponding wrist. Parents 
were asked beforehand about the preferred hand of  
their infant. If  the parent was unable to indicate a 
preferred hand, the infant was assumed to be right-
handed. The experimenter used doubled-sided tape 
to place one marker on the knuckle of  the infant’s 
middle finger (3rd metacarpal) and one marker on the 

Table 1.

Sample size, age in days and months and the mean days between two sessions of the samples. 

Total sample Sample with suffi-
cient EMG data

Sample with suffi-
cient data for both 
tasks

Sample size 83 (46 females) 46 (26 females) 24 (9 females)
Age in days at the emo-
tional sensitivity task

389.76 (SD = 11.41; 
range: 370 - 419)

391.00 (SD = 10.71; 
range: 375 - 418)

391.50 (SD =11.46; 
range: 375 - 418)

Age in months at the emo-
tional sensitivity task

12.8 (SD = 0.38; 
range: 12.1 – 13.8)

12.8 (SD = 0.35; 
range: 12.3 – 13.7)

12.9 (SD = 0.38; 
range 12.3 – 13.7)

Mean days between ses-
sions 7.81 (SD = 5.05) 8.30 (SD = 5.90) 7.17 (SD = 5.19)

Figure 1.  Flowchart of infants included in the 
different analyses. NB: For testing hypothesis 1: 
only EMG data needed and for testing hypothesis 
2: both EMG and motion capture data was 
required.
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corresponding location on the infant’s wrist. 
Movements were recorded at 100 Hz using a 
3D optical motion capture system (Qualisys AB, 
Götenborg, Sweden) with eight infrared cameras 
positioned around the whole table. The session was 
filmed using the Qualisys system camera at 13 Hz 
to record the start and the end of  each transport 
movement. Parents were instructed to encourage 
their infant to play with the balls only using their 
preferred hand containing the markers. 

We used two different tasks to measure the 
infant’s transport movement. The two tasks, one 
easier and one more difficult, were picked based on 
the pilot results. These pilot results indicated that 
the more difficult task was the most appropriate 
for the age group, therefore it was decided to carry 
out this task first. The first task (more difficult task) 
was to transfer a ball from a red block onto a track 
(see Fig.2A). When the ball was placed on the track, 
it would roll down the track. The experimenter 
encouraged the infant verbally and non-verbally to 
repeat this action at least 10 times. The distance 
between the red block and the track was 28 cm. 
Next, the experimenter switched the setup to the 
second task. The second task (easier task) was to 
transfer a ball from a red block into a bowl (see Fig. 
2B). Again, the infant was encouraged to repeat this 
action at least 10 times. The distance between the 
red block and the bowl was 28 cm. 

Task on emotional sensitivity. Infants watched 
stimulus videos portraying actions with happy or 
angry kinematics. Stimulus videos featured an adult 
transporting the object (a green donut, a coloured 
ball, a red bar, a coloured donut or a purple ball) 
into a tray either from left to right or right to left 
displaying an angry action or a happy action. 
The two emotional actions were  identical but 
performed expressing a different emotion (angry 
or happy). Analysis of  the stimuli videos showed 
that actions with happy kinematics were associated 
with slower velocity, slower acceleration and less 
jerk in movement compared to actions with angry 

kinematics. These stimuli videos were used in 
previous research (Addabbo et al., in preparation). 
Four different actors featured in the videos, resulting 
in a total of  64 different stimuli videos: 32 angry and 
32 happy. Only the torso of  the actor was visible 
during the actions, whereas their face was out of  
view. Videos were presented in a pseudo-randomized 
way. The pseudo-randomized sequences of  videos 
were created in the program “Mix” (van Casteren 
& Davis, 2006). The whole experiment consisted of  
3 blocks with in total 256 trials: 128 angry and 128 
happy trials. 

Each trial (see Fig. 3) started with a fixation 
cross paired with a beep sound to attract the infant’s 
attention to the centre of  the screen. The fixation 
cross was displayed with a varying time between 600 
to 1000 milliseconds. This fixation cross was used 
as baseline. Next, a video depicting either happy 
or angry emotion conveyed in the kinematics was 
played with a length of  2800 milliseconds. After 
each trial, there was a 500 milliseconds inter-trial 
interval (grey screen) before the beep sound was 
played again. The fixation cross was displayed 45 
to 50 milliseconds later. There was the following 
constraint: no emotion could occur more than two 
times successively. 

EMG procedure and recordings. 
Infants were seated on the lap of  the parent, 

and the parent was asked to hold the hands of  their 
child. First, the infant’s face was cleaned with baby 
skin cleanser and scrubbed lightly with Nuprep Skin 
Prep Gel to ensure good quality signal recordings 
from the EMG electrodes. Infants were entertained 
with nursery rhymes movies or bubbles during the 
preparation. Conductive OneStep clear gel was placed 
on the electrodes to improve their impedances. It was 
aimed to keep impedance below 10 kΩ (following 
Vacaru et al., under review and Geangu et al., 2016).  

Figure 3. Example frames from the experiment 
illustrating two successive trials. Trials began 
with a static fixation cross paired with a beeping 
sound, followed by an action video, displaying 
either happy or angry emotion. Next, there was an 
inter-trial interval of 500 milliseconds before the 
next beep was played. Markers were time-locked 
to the onset of each action video. 

Figure 2. A. The experimental set-up for the 
transporting task onto the track. B. The experimental 
set-up for the transporting task into the bowl.
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Electromyography (EMG) was recorded for the 
zygomaticus major and the corrugator supercilii on 
the left side of  the face with 4 Neuroline EMG Ag/
AgCl electrodes in a bipolar configuration with 10 
mm inter-electrode distance (see Fig. 4) (Cacioppo, 
Petty, Losch, & Kim, 1986; Cacioppo, Tassinary, & 
Berntson, 2007). In previous studies, the zygomaticus 
major was found to be a reliable indication for 
differential facial expression for happiness, while 
the corrugator supercilii was considered a reliable 
indication for differential facial expression for 
anger (Addabbo et al., in preparation; Cacioppo et 
al., 1986; Ekman & Friesen, 1976). Two additional 
Neuroline EMG Ag/AgCl electrodes were used 
for the reference and the ground. The reference 
electrode was positioned on the left mastoid and the 
ground was positioned just below the hairline in the 
middle of  the forehead (see Fig. 4). The EMG signal 
was amplified using a Brain Products Amplifier, 
recorded continuously at a sample rate of  2500 Hz 
and band-pass filtered (0.016 – 120 Hz) with Brain 
Vision Recorder (Brain Products GmbH, Munich, 
Germany). 

Infants were shown the stimulus videos on a 17 
inch monitor (1280 x 1024 pixels) at a distance of  
approximately 50 cm from the infant and parent. 
Infants were monitored by the experimenter in order 
to determine when they had lost interest. Parents 
were instructed not to interact with their infant 
during the videos, except pointing to the screen to 
reorient the infant’s attention to the screen. The 
experimental session was video-recorded for offline 
movement and attention coding. The session was 
ended when the infant became fussy or inattentive. 
Parents were debriefed after the sessions about the 
aim of  the experiment. 

Data-analysis

Motion capture data-analysis. The start and 
the end of  each transport movement for both tasks 
were determined offline. Trials in which the infant

Figure 4. Positions of the EMG electrodes. All 
electrodes were placed on the left side of the face.

transported the ball with two hands or the 
non-preferred hand, trials with a different starting 
point other than the red block, or with a different 
endpoint other than the track or bowl, or with a 
pause in the transporting movement were excluded. 
Furthermore, attempts in which the ball did not 
reach the end goal position (track or bowl) were 
excluded. In addition, trials with any missing marker 
locations for the hand marker were excluded. Lastly, 
trials in which the parent ‘helped’ the infant in their 
movement were excluded.

The mean standard error of  the mean absolute 
jerk, acceleration and velocity that were calculated 
from the movement data can be seen as a 
measurement of  variability in movement kinematics 
over trials (following Cook et al., 2013). We assumed 
here that infants with a low variability over trials, 
meaning better movement control, have a more 
detailed motor representation.

All pre-processing steps and filters were based on 
previous research (Cook et al., 2013). Velocity of  the 
movement for each trial was calculated as the square 
root of  the sum of  the squared differentials of  the 
x, y, and z vectors of  the hand marker1. The velocity 
vectors were low-pass filtered using a Butterworth 
1st order filter with a low-pass of  10 Hz, and 10 data 
points were trimmed from the end of  each velocity 
vector to remove possible artefacts associated 
with the filter. Acceleration and jerk for each trial 
were calculated as the first and the second order 
differentials of  these filtered velocity vectors. The 
distance for each trial was estimated by multiplying 
the mean velocity of  that trial by the number of  
frames (duration) of  that trial. Mean standard error 
of  the mean (SEM) absolute jerk (in mm/frames3), 
acceleration (in mm/frames2), and velocity (in mm/
frames) over the first 3 trials were calculated for each 
participant in analogy to a previous study (Cook et 
al., 2013). In addition, the mean distance (in mm) 
and the mean duration (in frames) over the first 3 
trials were calculated for each participant (Cook et 
al., 2013).  

However, due to the low number of  infants 
with enough trials (N = 11 with EMG data and 3 
or more trials) for the first task (train track task), 
and no significant correlations of  these mean SEM 
values with the mean SEM values of  the bowl task 
(see Table 2), it was decided not to analyse the data 
for the first task. The non-significant correlations 
could indicate that the first task (train track task) 

1  The hand marker represented the movement ki-
nematics of the infants better than the wrist marker. 
Therefore, it was decided to use the hand marker in the 
analysis. 
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was not measuring the same concept (in this case 
detailedness of  motor representation) as the second 
task (bowl task), or that there was too little variance 
in the first task. 

Infants had to have a minimum of  3 trials in the 
bowl task in order to be included in the final statistical 
analysis. This inclusion criterion was based on the 
mode of  the trials of  all the participants. Infants had 
a mean number of  10.25 trials (SD = 8.00, range: 
3-30). There was one left-handed infant included 
in the final sample. Mean SEM values were always 
calculated from the hand marker of  the preference 
hand of  the first 3 trials of  each infant.2 Given that 
the velocity, acceleration and jerk scores are related 
directly through a mathematical operation, a single 
composite score was calculated to summarize these 
three variables.  

A factor analysis on velocity, acceleration and jerk 
scores was performed using the regression method 
calculating the resulting kinematic score. This was 
done following previous research (Cook et al., 2013).

To investigate whether there is a relationship 
between the infant’s detailedness of  motor 
representation and the infant’s sensitivity to 
emotional information, we aimed to execute a 
correlation analysis between the kinematic score and 
the sensitivity scores of  the conditions (angry and 
happy) in the EMG data (see paragraph EMG data 

2   In addition, movement units of each trial were 
calculated in the MATLAB toolbox TimeStudio 
(Nyström, Falck-Ytter, Gredebäck, 2016). Movement 
units consist of an acceleration and deceleration phase, 
and are often used as measurements of movement con-
trol (e.g., Konczak & Dichgans, 1997; von Hofsten, 
1991). Filtering values were based on earlier research 
(Grönqvist, Brodd, & von Hofsten, 2011) and the 
TimeStudio motion-tracking analysis manual (Gott-
wald & Ekberg, in preparation). However, there was 
very little variance (M = 1.083, SD = 0.177, range: 
1.000 – 1.667) in movement units per trial in our 
sample based on these filtering values. We therefore 
decided not to look further in movement units.

reduction and analysis). However, tests3 demonstrated 
that the kinematic score variable violated the 
assumptions of  most commonly used Pearson 
correlation analyses. 

Therefore it was decided to conduct a non-
parametric test, the Spearman’s correlation, to 
determine the relationship since it does not require 
these assumptions. All statistical analyses were 
conducted in SPSS statistical software version 25.0 
(IBM Corporation, Armonk, New York). 

EMG data reduction and analysis. Videos 
of  the EMG session were coded offline whether 
the infant was paying attention to the video stimuli 
or not using ELAN annotation software (Max-
Planck Institute for Psycholinguistics, Nijmegen, 
the Netherlands). Trials in which the infant did not 
pay attention to the video stimuli were excluded. 
Two coders coded the first 10 infants, with a good 
agreement (Cohen’s kappa = .75).

The EMG data was pre-processed using Brain 
Vision Analyzer 2.1 (Brain Products GmbH, 
Munich, Germany). The pre-processing steps were 
based on previous research (Vacaru et al., under 
review). The EMG signal was filtered offline using 
a band rejection filter of  50 Hz with bandwidth of  
0.2 Hz and order 4. In addition, an infinite impulse 
response (IIR) zero phase shift Butterworth filter 
with a low cut-off  filter of  20 Hz and a high cut-
off  filter of  500 Hz and order 8 was applied on the 
data. The different scores of  the bipolar electrodes 
of  each muscle (zygomaticus and corrugator) were 
calculated. Next, the data was segmented into trials 
based on stimulus onset. After excluding the trials 
based on attention coding (when the infant was not 
paying attention to the video stimuli), trials with 

3   The kinematic score deviated significantly from a 
normal distribution in a Shapiro-Wilk test (W = .663, 
p <.001), and by visual analysis. In addition, the skew-
ness and kurtosis values were not within acceptable 
range based on Field (2009). 

Table 2.

The correlation of the two tasks in their mean standard error of the mean of the different measurements. 

N = 12 Correlation between values of task 1 and task 2
Mean SEM of absolute velocity r = .362 (p = .248)
Mean SEM of absolute acceleration r = .240 (p = .453)
Mean SEM of absolute jerk r = .102 (p = .752)
Mean distance r = .345 (p = .272)
Mean duration r = .534 (p = .074)

Note: Task 1 is the train track task; task 2 is the bowl task. The correlation is a Pearson correlation, two-tailed.



Nijmegen CNS | VOL 14 | ISSUE 234

Lisanne Schröer

signal noise or motion artefacts contaminated the 
signal were also discarded based on visual inspection 
of  the data. Lastly, the data was rectified: all values 
were made absolute values because of  our interest in 
the absolute amplitude of  the signal. 

Mean activation values were calculated for the 
baseline (500 ms pre-stimulus onset until stimulus 
onset) and for the trial interval (700-2800 ms post-
stimulus onset). The choice of  this trial interval 
was based on previous research (Addabbo et al., 
in preparation) and confirmed through visual 
inspection of  the data (see Fig. 5). Activation 
immediately after the stimulus onset is often seen 
as a startle response with no difference in activation 
between the zygomaticus and corrugator muscle 
activation, and is usually discarded (Addabbo et 
al., in preparation; Geangu et al., 2016; Isomura & 
Nakano, 2016). Baseline correction was calculated as 
the percentage change in activation during stimulus 
presentation compared to baseline activation during 
the fixation cross. 

Lastly, sensitivity scores were calculated in order 
to investigate the relationship between the infant’s 
sensitivity to emotional information conveyed in 
kinematics and the detailedness of  their motor 
representation. The difference between the 
zygomaticus and the corrugator mean activation 
in response to happy stimuli was calculated as the 
happy sensitivity score. The difference between the 
corrugator and the zygomaticus mean activation in 
response to angry stimuli was calculated as the angry 
sensitivity score. Positive values indicated more 
activation in the corresponding muscle compared 
to the non-corresponding muscle. This was done 
in analogy to previous research (Vacaru et al., under 

review).
Infants had to reach a minimum of  3 trials 

per condition in order to be included in the final 
statistical analyses. Forty-six infants were included 
in the final analyses. The mean number of  trials in 
the happy condition was 12.61 (SD = 9.507; range: 
3-42) and the mean number of  trials in the angry 
condition was 13.74 (SD = 9.733; range: 3-41). 

Results

Are infants sensitive to emotional 
information conveyed in kinematics?

Figure 5 shows the descriptive results of  the 
zygomaticus and the corrugator muscle activation 
in response to both emotional stimuli over time. 
First, we tested whether infants were sensitive to 
emotional information conveyed in kinematics. We 
hypothesized that infants would show activation in 
the zygomaticus and deactivation in the corrugator 
while observing happy actions, and that they would 
show activation in the corrugator and deactivation 
in the zygomaticus while observing angry actions, 
replicating the findings of  Addabbo and colleagues 
(in preparation). We conducted a 2 (Emotion: 
happy, angry) x 2 (Muscle: zygomaticus, corrugator) 
repeated measures ANOVA with percentage change 
score (in the time-window 700-2800 milliseconds; 
see Fig. 5) from baseline in EMG activation as 
dependent variable. 

The repeated measures ANOVA did not yield 
a significant interaction between emotion and 
muscle (F(1,45) = 0.011, p = .916). This meant that 

Figure 5. Percentage change EMG activation from baseline (shaded areas indicate the standard error of 
the mean) for corrugator (A) and zygomaticus (B) muscle when observing action with happy (purple 
line) and angry (red line) emotional information conveyed in kinematics. The stimulus presentation 
lasted 2800 milliseconds. Our time window of interest is indicated by the dark blue square.
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the difference in activation from baseline in the 
zygomaticus muscle and the corrugator muscle was 
not significantly different in the happy and the angry 
condition (see Table 3 and Fig. 6). The absence of  
the interaction effect between emotion and muscle 
does not correspond to our predictions, namely, that 
infants would show activation in the zygomaticus and 
deactivation in the corrugator during the observation 
of  happy kinematics and would show activation in 
the corrugator and deactivation in the zygomaticus 
during the observation of  angry kinematics. There 
were no additional significant effects in the repeated 
measures ANOVA.  

Does motor representation play a role 
in deciphering emotion in another 
person’s action in infancy?

Secondly, we tested whether infants who had 
a more detailed motor representation were more 

sensitive to emotional information conveyed in 
kinematics of  observed action as hypothesized. We 
conducted a non-parametric Spearman’s correlation 
with the kinematic score and the sensitivity score 
of  both emotions in the EMG data. The kinematic 
score did not correlate significantly with the angry 
sensitivity score (rs = -0.126, N = 24, p = .279, one-
tailed), but there was a significant correlation between 
the happy sensitivity score and the kinematic score 
(rs = .368, N = 24, p = .038, one-tailed; see Table 
4 and Fig. 7).4 In addition, there was a significant 
correlation between the angry sensitivity score and 
the happy sensitivity score (rs = -.619 N = 24, p = 
.001, one-tailed).      

There was a weak positive relationship between 
the happy sensitivity score and the kinematic score 
(rs  = .368). A higher score on the kinematic score, 
indicated a higher variability in the movements was 
associated with a higher score on the happy sensitivity 
score, indicated that these infants showed more 
activation for the zygomaticus muscle compared to 
the corrugator muscle in the happy condition. This 
was in contrast with our hypothesis stating that infants 
that were more variable in movement (a higher score 
on kinematic score) were less sensitive to emotional 
information conveyed in kinematics (had a lower 
score on the happy score). In addition, there was a 
moderate to strong negative relationship between 
the happy and angry sensitivity score (rs = -.619). A 
higher sensitivity happy score was associated with 
a lower angry sensitivity score. Infants with higher 
activation for the zygomaticus muscle compared 
to the corrugator muscle in the happy condition, 
showed lower activation for the corrugator muscle 
compared to the zygomaticus muscle in the angry 
condition. This indicates a tendency of  infants to 
activate a similar muscle to a certain extent to both 

4   The same analysis was executed excluding the four 
infants that had more than 10 days in between ses-
sions. However, excluding these infants did not change 
the results (angry score: rs = .065, N = 20, p = .393; 
happy score: rs = .314, N = 20, p = .089). 

Table 3. 

Means (and standard deviations) of percentage change in EMG activation from the zygomaticus and corrugator muscle 
to both emotional expressions in time-window 700-2800 ms. 

N = 46 Corrugator 
M (SD)

Zygomaticus 
M (SD)

Angry 0.9762 (3.8380) 1.9460 (4.9344)
Happy 1.1921 (2.6116) 2.2694 (6.3648)

Figure 6. Percentage change EMG activation (error 
bars represent standard errors) in the time interval 
700-2800 ms after stimulus onset compared to 
baseline in both emotional conditions (angry 
and happy) in the two muscles (corrugator and 
zygomaticus). 
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video stimuli compared to baseline. This is as well in 
contrast with our hypothesis, as we expected infants 
to be sensitive to emotional information conveyed 
in kinematics, which would result in high angry 
and happy sensitivity scores, and a strong positive 
correlation between these scores.

In addition, a Pearson correlation between the 
sensitivity score of  both emotional conditions and 
the kinematic score was conducted excluding the 
kinematic score, the happy sensitivity score and the 
angry sensitivity score outliers5 in order to control 
for the potential effects of  the outliers on the 
correlation. Without these outliers, the assumptions 
of  the Pearson correlation were not violated. 
Outliers can have adverse effects on correlations 
(Osborne & Overbay, 2004). 

5    Outliers with a score above or below 2 standard 
errors of the mean were excluded. When excluding 
outliers with a score above or below 3 SD of the mean, 
the kinematic score still deviated significantly from a 
normal distribution in a Shapiro-Wilk test (W = .660, 
p < .001) and the kurtosis and skewness values were 
not within acceptable range (based on Field, 2009). It 
was therefore decided to exclude outliers with a score 
above or below 2 standard errors of the mean.

The kinematic score correlated significantly with 
the happy sensitivity score (r = .434, N = 18, p = .036, 
one-tailed) and correlated marginally significantly 
with the angry sensitivity score (r = -.373, N = 18, 
p = .064, one-tailed). Both correlations were weak. 
In addition, there was a significant negative strong 
correlation between the angry sensitivity score and 
the happy sensitivity score (r = -.744, N = 18, p < 
.001, one-tailed) similar to the previous analysis (see 
Table 5 and Fig. 7).

A higher score on the kinematic score was 
associated with higher scores on the happy sensitivity 
score, and lower scores on the angry sensitivity score. 
Infants with high variability had higher activation in 
the zygomaticus muscle compared to the corrugator 
muscle to observed happy stimuli, and lower 
activation in the corrugator muscle compared to 
the zygomaticus muscle to observed angry stimuli. 
This indicated a tendency for infants with high 
variability to display more zygomaticus activation 
to the observed stimuli compared to baseline. This 
was in contrast with our hypothesis that infants 
with less variability in movement (low score on 
kinematic score) were expected to be more sensitive 
to emotional information conveyed in kinematics.

Table 4.

The correlations between the EMG measurements and the kinematic score 

N = 24 EMG measurements Motion capture
Angry sensitivity Score Happy sensitivity Score Kinematic Score

Angry sensitivity 
Score

-

Happy sensitivi-
ty Score

rs =-.619 (p = .001)* -

Kinematic Score rs =-.126 (p = .279) rs =.368 (p = .038)* -

Note: The correlation was a Spearman’s correlation, one-tailed. * means a significant correlation. 

Table 5.

The correlations between the EMG measurements and the kinematic score excluding the outliers

N = 18 EMG measurements Motion capture
Angry sensitivity Score Happy sensitivity Score Kinematic Score

Angry sensitivity 
Score

-

Happy sensitivi-
ty Score

r =-.744 (p < .001)* -

Kinematic Score r =-.373 (p = .064) r =.434 (p = .036)* -

Note: The correlation was a Pearson’s correlation, one-tailed. * means a significant correlation
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Discussion

The current study examined whether infants need 
a detailed motor representation in order to become 
sensitive to emotional information conveyed in 
kinematics. Our first hypothesis was that infants 
were sensitive to emotional information conveyed 
in kinematics, showing a differential facial response 
to both emotional stimuli (replicating results 
of  Addabbo et al., in preparation). Our second 
hypothesis was that infants with a more detailed 
motor representation, and therefore less variable 
movement, would be more sensitive to emotional 
information conveyed in kinematics. 

Are infants sensitive to emotional 
information conveyed in action 
kinematics?

    In contrast to our hypothesis, the findings of  
Addabbo and colleagues (in preparation) were not 
replicated in this current study. Our results yielded 
no indication that infants were sensitive to emotional 
information conveyed in kinematics as found by 
Addabbo and colleagues (in preparation). There was 
no evidence of  differential facial response to the two 
emotional stimuli, meaning that we found no evidence 
that infants in this age group (12- to 13-months-
old) are sensitive to emotional information 
conveyed in movement kinematics, and there was 
no evidence that infants were able to differentiate 
between angry and happy emotional information in 

Figure 7. A. Scatterplot depicting the relationship between the kinematic score and the angry sensitivity 
score. B. Scatterplot depicting the relationship between the kinematic score and the happy sensitivity 
score.

Figure 8. A. Scatterplot depicting the relationship between the kinematic score with the angry sensitivity 
score excluding the outliers. B. Scatterplot depicting the relationship between the kinematic score with 
the happy sensitivity score excluding the outliers.
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actions. However, we found a negative correlation 
between the two (angry and happy) sensitivity 
scores. Infants with more activation in zygomaticus 
muscle compared to corrugator muscle in the happy 
condition showed less activation in corrugator 
muscle compared to zygomaticus muscle in the angry 
condition. This might indicate a tendency of  infants 
to display a similar response (for example, activate 
the zygomaticus muscle more) in response to both 
emotional stimuli. One possible explanation is that 
some infants found the baseline (the fixation cross) 
boring and activated their zygomaticus muscle more 
when the stimuli movies started playing. In sum, our 
study yielded no evidence that infants are yet sensitive 
to emotional information conveyed in kinematics.   
    In the literature, there is some discussion on 
the muscle reaction to angry stimuli in infants 
and children. In adults, there is activation in the 
corrugator muscle in response to angry faces 
(Dimberg, 1982). In childhood, however, Geangu 
and colleagues (2016) reported a frontalis muscle 
(lifts the brows in fear) activation in response to 
angry faces in 3-year-old children, while Deschamps 
and colleagues (2012) found an activation in the 
corrugator muscle to angry dynamic faces in children 
aged 6 to 7 years. In infancy, 4-months-old infants 
were found not to show selective facial reactions to 
any facial expressions (Kaiser, Crespo-Llado, Turati, 
& Geangu, 2017). 7-months-old infants showed 
an increased zygomaticus activation to dynamic 
happy facial expressions, while they did not show 
a differential response to angry faces (Kaiser et 
al., 2017), nor was there evidence of  a differential 
corrugator muscle activity (Datyner, Henry, & 
Richmond, 2016). We based our decision to measure 
the corrugator muscle response as an indication for 
sensitivity to angry stimuli on the previous findings of  
Addabbo and colleagues (in preparation), however, it 
seems that in infancy and childhood the corrugator 
muscle activation might not necessarily be the best 
measurement of  differential facial response to angry 
stimuli. This might explain the lack of  differential 
facial response found for the angry stimuli videos. 
However, this cannot explain the lack of  differential 
facial response found for the happy stimuli videos. 
    Isomura and Nakano (2016) suggest a system 
that elicits facial muscle in response to emotional 
stimuli that matures over infancy, first only triggered 
by bimodal emotional information. Later in infancy, 
when the system is matured, it is as well triggered by 
unimodal emotional information. It might be that 
our stimuli did not trigger this not fully matured 
system to elicit facial muscle in response to emotional 
stimuli. Isomura and Nakano (2016) found that 

4- to 5-month-old infants only show an increased 
corrugator response to combined audio-visual cries 
and an increased zygomaticus response to combined 
audio-visual laughter. These responses were absent 
for both the visual and auditory unimodal emotion 
stimuli. They suggested that in infancy a system 
starts to mature in order to elicit facial muscles 
responses to emotional stimuli, but that system has 
not matured yet fully, and motor responses are only 
generated when multimodal information is present. 
Future research could look into whether infants 
are able to display a differential facial response 
to bimodal stimuli with emotional information 
conveyed in kinematics, for example combined 
with vocal or auditory emotional information.  
   In addition, it might be that infants in our age 
group are able to understand emotional information 
in facial expressions, however, the sensitivity to 
emotions in bodily expressions and movement 
develops later in toddlerhood or even childhood, 
explaining the lack of  differential facial response 
to the different emotions conveyed in kinematics. 
Geangu and colleagues (2016) found that 3-years-
old showed the expected increased response in the 
zygomaticus muscle to happy facial stimuli, however, 
they did not show the expected increased response in 
the zygomaticus muscle to bodily expressions. They 
explained this finding by suggesting that children 
fail to associate the emotional body posture of  an 
observed person with the causing emotional state. 
This ability might develop at a different rate than 
interpreting emotional facial information. 
    Furthermore, it might be that infants and young 
children are not sensitive to actions that are not 
directed at them personally. In daily life, infants 
experience many action directed at the infant, such 
as being picked up or being fed. This may explain 
the differences between this current study and the 
studies reporting sensitivity to emotional facial 
expressions in which stimuli are generally directed 
at the infant. However, it is generally accepted in 
the literature that young infants can learn models 
of  actions acquired through observational statistical 
learning, meaning that they observe someone 
performing actions not necessarily directed at 
them (e.g., Hunnius & Bekkering, 2014; Monroy, 
Gerson, & Hunnius, 2017; Monroy, Meyer, Schröer, 
Gerson, & Hunnius, 2019). Whether infants can 
learn emotions in actions from observing actions 
performed that are not directed at them personally 
remains unknown. More research with into different 
age groups (for example, toddlers and children) 
is necessary in order to be able to understand the 
development of  sensitivity to emotional information 
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in movement kinematics.  
   Lastly, there is a possible methodological limitation 
of  this study. It might be that our current time 
window is cut off  too soon for the EMG response, 
resulting in the effect bleeding over in the next 
trial’s baseline during the fixation cross. However, 
our choice of  the time window was based on 
Addabbo and colleagues (in preparation), who did 
find an effect in this time window. In addition, 
previous studies have that facial muscle generally 
begin to show a differential activation response to 
facial emotional expressions starting around 500 
ms after stimulus onset, and usually decreasing 
the response 2000 ms after stimulus onset (Beall, 
Moody, McIntosh, Hepburn, & Reed, 2008; Geangu 
et al., 2016; Oberman, Winkielman, Ramachandran, 
2009).

Does the infant’s motor representation 
play a role in deciphering emotion in 
another person’s action?

    Our second hypothesis was that infants with a 
more detailed motor representation, indicated by 
less variability in their movements, would be more 
sensitive to the emotional information conveyed in 
the kinematics of  happy and angry observed actions. 
However, we only found a significant correlation 
between the movement variability measure and the 
sensitivity score to happy stimuli in the EMG data. 
The relationship between the movement variability 
score and happy score indicated that infants with 
higher variability in their movement showed a 
higher zygomaticus muscle activation compared 
to corrugator muscle activation to happy stimuli, 
which is in contrast with our hypothesis. When 
controlling for outliers, there was also a marginally 
significant correlation between the movement 
variability measure and the sensitivity score to angry 
stimuli. This relationship indicated that infants 
with higher variability in their movement showed 
lower corrugator muscle activation compared to 
zygomaticus muscle activation to angry stimuli. 
These two relationships between the kinematic score 
and the emotional sensitivity scores indicated that 
infants with more variability tended to activate their 
zygomaticus muscle more during the EMG session. 
One explanation might be that infants with more 
expressive and extraverted temperament were overall 
more active and happy in both sessions, resulting in 
more variability in their movement as well as more 
smiling during the EMG session. 
   These results might indicate that the kinematic 

score was not capturing the detailedness of  motor 
representations well in our sample. We assumed that 
infants with more variable movement would have a 
less detailed motor representation. The mean standard 
deviation of  the mean absolute jerk, acceleration and 
velocity are described as measurement of  movement 
control (Cook et al., 2013). Movement control and 
planning itself  uses motor representations (Kawato, 
1999). Often, motor activation in the motor system 
during the observation of  actions is taken as an 
indication of  motor representation (Buccino et al., 
2004; Calvo-Merino et al., 2004; Calvo-Merino et 
al., 2006). Another possibility of  a measurement of  
motor representations might be motor activation 
in observation of  the neutral action, for example, 
measured by electroencephalogram (EEG) in 
infancy and childhood (e.g., Gerson et al., 2015). 
More motor activation would be an indication of  
more motor experience, and a respectively improved 
motor representation (Calvo-Merino et al., 2004; 
Calvo-Merino et al., 2006). However, with the 
current methods, it is still impossible to measure 
motor representations directly in infancy. 
   Unfortunately, our movement task was too 
difficult for many infants. This resulted in several 
infants who did not have any trials for the bowl task 
(N = 13) or too few trials (N = 7), who we were 
not able to include in our analysis. These infants 
generally showed less competent movement control, 
consisting of  pausing in movements, putting the ball 
first in the mouth before moving to the bowl, or 
using a different start- or endpoint. It might be that 
our task therefore measured in a lesser extent the 
detailedness of  the infants’ motor representation. 
Future research should design a more appropriate 
motor task for this age. Infants in this age group 
have very limited motor abilities and often still 
mouth stuff. A good movement task  aiming to get 
an idea of  the detailedness of  the infant’s motor 
representation should be able to tolerate for pauses 
in movement and be more flexible in order to include 
infants with ‘less competent’ movement.  
    Based on piloting, we used two tasks to measure 
infant’s variability in movement. However, the first 
task (train task) was very hard to execute by the 
infants. Infants required fine control in order to 
place the ball on the train track to make it roll. The 
bowl task was more flexible with an endpoint that 
was not a small precise location. There was more 
variance in the standard error of  the mean velocity, 
acceleration and jerk in the bowl task compared to 
the train task. In addition, very few infants in this 
age group were able to do the train task (N = 11). 
It might be that the few infants that were able to 
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do the train track task were very competent in their 
movement, resulting in low variability, and therefore 
low variance within the included group. However, 
most of  the infants in our sample were not able to 
do this task. An easier task would therefore be more 
appropriate for this age group. 

Conclusion

This study investigated how young infants 
become sensitive to emotional information conveyed 
in kinematics. We had two hypotheses in this study: 
first, we hypothesized that infants of  this age (12- to 
13-months) are sensitive to emotional information 
conveyed in kinematics (replicating Addabbo et al., 
in preparation) and second, we hypothesized that 
infants with a more detailed motor representation 
would be more sensitive to emotional information 
conveyed in kinematics, based on the idea of  Edey 
and colleagues (2017) that we use our own motor 
representation to make judgments about the 
emotional states of  others. 

In our results, we were unable to replicate the 
results of  Addabbo and colleagues (in preparation). 
This study did find a relationship between the angry 
and the happy sensitive score, indicating that infants 
showed a similar activation pattern in response to 
both stimuli (such as smiling in a certain extent 
to both angry and happy action kinematics). Our 
research did not provide evidence that infants of  
12- to 13-months-old are sensitive to emotional 
information conveyed in action kinematics. 

In our second analysis, we found a correlation 
between the infants’ variability in movement and their 
sensitivity to emotional information conveyed in 
kinematics when observing happy actions (and only 
when controlling for outliers, a marginal significant 
correlation when observing angry actions). Infants 
with a higher variability score tended to activate their 
zygomaticus muscle more in response to the happy 
and angry stimuli. It might be that more expressive, 
extraverted infants are overall more active and 
comfortable during the experiment, showing more 
variability in the motion task and smiled more 
during the emotional sensitivity task. It might be 
that our kinematic score does not provide us with 
a measurement of  the detailedness of  the infant’s 
motor representation to the full extent. In addition, 
our motor task also excluded infants with less 
competent movement kinematics. Future research 
should use a more appropriate movement task to 
investigate whether infants need a detailed motor 
representation to become sensitive to emotional 
information conveyed in kinematics. 

In sum, this study did not provide evidence that 
infants of  12- to 13-months-old are yet sensitive 
to emotional information conveyed in action 
kinematics, and nor did it provide evidence that 
this sensitivity is related to the infant’s own motor 
representation. 
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In recent years, Deep Learning has achieved superhuman abilities in many tasks such as visual object 
recognition. Nevertheless, the brain outperforms Deep Networks in its ability to generalize to distorted 
images. Yet, the exact mechanisms used to achieve this invariance are still not completely understood. The 
interplay between neuroscience and Deep Learning could both advance the knowledge on the processes that 
occur in the brain and help the development of  more efficient artificial networks. The aim of  the present 
paper is to study the link between the brain and artificial neural models by comparing the behavior of  a 
Convolutional Neural Network to our knowledge of  the processing of  visual information in the human 
cortex. The network’s recognition ability under invariance conditions was tested when presenting input 
images that were different from the images employed for the training of  the network. The test images 
were modified either with geometric deformations, by varying the rotation, position and size of  the objects 
within the image, or by compromising the extent of  visual information transmitted from the input when 
changing the quality, contrast and amount of  noise. The results are compared to neural data obtained from 
behavioral and neuroimaging studies in which the subject’s response time, accuracy and neural activations 
were recorded following the presentation of  images with the various types of  deformations. Furthermore, 
the fundamental characteristics of  the architecture of  the network and the backpropagation algorithm used 
for the training process are discussed in comparison to the structure of  the visual stream and to the synaptic 
update processes that are thought to be employed by the brain for learning. Our investigation highlights 
that a great issue with current Deep Neural Networks is the limited performance under image distortions as 
compared to humans’ invariant recognition ability. Furthermore, the present study underlines the differences 
in the implementation of  the learning algorithm in computational models and in the brain as a starting point 
to improve Deep Learning towards more efficient and more biologically plausible networks.
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Building a representation of  visual information 
is one of  the most crucial functions of  the visual 
system. Recognizing or classifying objects is a 
particularly complex task, since an object can appear 
in the visual field over various viewing conditions: 
this is referred to as the invariance problem. 
Transformations that preserve the identity of  an 
object include changes in position, size, illumination 
and rotation of  the object along with its background. 
By comparing the behaviour of  object recognition 
algorithms under these invariance conditions to our 
knowledge of  the processing of  visual information 
in the human cortex, we aim at studying the link 
between the brain and artificial neural networks.

Given its great success over the last years, in the 
present study, the task of  object recognition will 
be tackled using Deep Learning. Deep Learning, a 
research area in the field of  Machine Learning, is 
the latest development of  artificial neural network 
models that comprise several hidden layers. It has 
become the new gold standard among different 
applications in artificial intelligence. This is 
supported by its superhuman abilities in several 
tasks such as pattern recognition, game playing, 
medical diagnosis and social network filtering. This 
new technology is inspired by several features of  the 
mammalian brain, without being constrained by any 
biological limitations.

Initially influenced by neuroscience, Deep 
Learning algorithms have strongly developed over 
the past years, making it possible to train artificial 
neural networks with several layers to complete 
various tasks efficiently. Nevertheless, those 
algorithms have now little explicit resemblance to the 
processes occurring in the mammalian brain. Yet, we 
claim that the interplay between neuroscience and 
Deep Learning can advance the study of  learning 
processes in the brain. Neuroscience can help 
Machine Learning to develop the best strategies, 
optimizing functions and architectures. Moreover, 
it can formulate constraints on the implementation 
of  learning algorithms so to properly match the real 
neural processes. Likewise, Deep Learning provides 
a tool with which hypotheses from neuroscience can 
be tested empirically.

The pioneer studies on visual processing in the 
brain were carried out by Hubel and Wiesel and 
represent the starting point for the development of  
Deep Learning algorithms (Hubel &Wiesel, 1959; 
Hubel & Wiesel, 1962). By performing various 
experiments investigating the visual system in 
the cat’s brain, they showed that some regions in 
the visual cortex are sensitive to specific areas of  
the visual field, called receptive fields, or specific 

orientations or shapes. Specifically, the authors 
identified two types of  cells in the brain: simple 
cells and complex cells. The former are neurons in 
the cortex that respond exclusively to one position 
or orientation while being silent to stimuli outside 
their focal area. The latter are units which fire in the 
presence of  specific movements of  the object in the 
visual field. Object recognition might be performed 
in the brain by integrating information of  both types 
of  cells (Schiller, Finlay & Volman,1976). In line 
with this work, several neural network architectures 
were proposed. 

For instance, Convolutional Neural Networks, 
that perform nearly as robustly as our brains under 
several transformations of  the objects in the visual 
field. In these networks each region has its visual 
receptive field and responds to specific features 
(Lecun, Bottou, Bengio & Haffner, 1998; Lecun, 
Haffner, Bottou & Bengio, 1999; Krizhevs, Suskever 
& Hinton, 2012; Szegedy et al., 2015). Additionally, 
other networks were designed in which layers that 
resemble the functioning of  simple and complex 
cells are alternated (Serr, Oliva & Poggio, 2007; 
Riesenhuber & Poggio, 1999). Amongst the most 
popular Deep Neural Networks are LeNet-5 (Lecun 
et al., 1998), a five layers neural network usually 
applied to the task of  recognizing handwritten 
numbers, HMAX (Serre et al., 2007), a biologically 
inspired hierarchical neural network, AlexNet 
(Krizhevsky et al., 2012), an extension of  LeNet, 
GoogLeNet (Szegedy et al., 2015), a 22 layers deep 
network, and the VGG-16 and Very Deep networks 
comprising 16 and 19 layers respectively (Simonyan 
and Zisserman, 2014). For a complete overview of  
the fundamental innovations and techniques that led 
to the great performance of  neural networks please 
refer to Nielsen (2018), and Yamins and DiCarlo 
(2016).

Image classification occurs instantaneously in the 
brain, whereas it is a challenging task for an artificial 
neural network. Building an artificial neural network 
that performs object recognition as accurately and 
efficiently as our own visual system might be achieved 
by mapping the spatial organization of  the brain areas 
and portions of  the cortex involved in this process. 
The ability to recognize objects relies on largely 
feedforward computations that flow throughout 
the visual ventral stream of  the mammalian brain. 
The transmission of  visual information starts in the 
retina, continues in the lateral geniculate nucleus of  
the thalamus (LGN) and then through the primary 
visual cortex V1, secondary visual cortex V2, visual 
cortex V4 to the inferior temporal cortex (IT) 
(Trappenberg, 2002). Each cortical area responds to 
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specific features of  an image and unravels different 
types of  information (Blumberg & Kreiman, 
2010). It is likely that the IT is the portion of  the 
visual stream that is mainly responsible for object 
recognition (DiCarlo, Zoccolan & Rust, 2012).

The algorithm used in the brain to solve object 
recognition is still not completely understood. 
Empirical findings in neuroscience, concerning the 
organization and structure of  the visual ventral 
stream, can help to define the hypothesis space and 
orient the implementation of  a possible algorithm. 
For instance, clues can be taken by studying the activity 
of  neurons in the ventral visual stream, their firing 
rate, their sparseness and their tolerance, that is the 
ability to preserve preference for a limited range of  
object variables. Given its success in the last decades, 
several attempts have been made to integrate Deep 
Learning results and neuroscience data (Kheradpishe, 
Ghodrati, Ganjtabesh & Masquelier, 2016b; Baldi 
& Sadowski, 2014; Baldi & Sadowski, 2016; Dodge 
& Karam, 2016; Dodge & Karam, 2017; Geirhos 
et al., 2017). Several studies compared neural data 
obtained using functional magnetic resonance 
imaging (fMRI), electroencephalography (EEG) or 
magnetoencephalography (MEG) to activation of  
units in artificial neural networks (Kheradpisheh, 
Ghodrati, Ganjtabesh & Masquelier, 2016a; Güçlü 
& van Gerven, 2015).

It was shown that, as a neural network is trained 
to recognize objects, a hierarchical structure, in 
which increasingly complex features are processed, 
naturally emerges along its layers (Cichy, Khosla, 
Pantazis, Torralba & Oliva, 2016; Güçlü & van 
Gerven, 2015). This increasing complexity is 
comparable to the processing of  visual information 
in the brain. Specifically, the last layer of  a neural 
network is particularly predictive of  IT neurons’ 
responses and the previous layer is predictive of  
the responses of  neurons in the V4 cortex (Yamins 
et al., 2014; Cadieu et al., 2014). In contrast, the 
biological plausibility of  the training procedures 
applied in Deep Learning is still questioned. As a 
matter of  fact, it is unlikely for neurons to perform 
backpropagation, the most common algorithm used 
to train neural networks (Rumelhart, Hinton & 
Williams, 1988). Nevertheless, it could be possible 
for the brain to approximate this training algorithm. 
Additionally, the implementation of  its optimization 
and activation functions is largely consistent with 
the observations and hypotheses regarding the 
functioning of  our brain (Marblestone, Wayne & 
Kording, 2016).

The aim of  the present project is to carry out 
a detailed analysis of  the aspects involved in the 

functioning of  Deep Learning algorithms for object 
recognition. Specifically, we aim at analyzing whether 
these aspects have a neural correlate in the mammalian 
brain and can represent effective simplifications of  
the processes occurring in biological systems or 
whether they are completely artificial tools. Firstly, 
the paper will analyze the behavior of  an artificial 
neural network when modifying the characteristics 
of  the representation in the input images and 
compare it to neural data. This consists in studying 
the accuracy in recognizing objects and the activation 
of  neural units when varying the rotation, position 
or size of  the objects as well as changing the quality, 
the contrast, or adding noise to the input images. 
Secondly, the characteristics of  artificial networks will 
be discussed in terms of  their biological plausibility 
based on neuroscientific data. These characteristics 
include the architecture and connectivity, the neural 
activation functions, the training process, the use 
of  the backpropagation algorithm and the dropout 
scheme to prevent overfitting.

Methods

The task of  image classification consists in taking 
an input image and giving the class that it belongs 
to among a fixed set of  categories representing 
different objects or scenes. In order for the network 
to learn the correct classification, error signals 
are used to update the parameters of  the network 
proportionally to the derivative of  the classification 
error. In the present paper, image classification 
will be investigated using Deep Neural Networks 
(DNNs), that are characterized by several hidden 
layers (Goodfellow, Bengio & Courville, 2016). Our 
DNN was implemented in Keras (Chollet et al., 
2015), an efficient and flexible application program 
interface (API). As a Deep Learning framework, 
we used Google’s Tensorflow (Abadi et al., 2015), 
an open source library written in Python and used 
frequently in Machine Learning (Rampasek & 
Goldenberg, 2016).

Three fundamental factors shape DNNs and 
determine the correlation between representations 
in DNNs and cortical visual representations: the 
architecture, the task and the training procedure 
(Cichy et al., 2016).

Deep Neural Network Architecture

It was proven that a network with a single hidden 
layer, given it has enough units, can approximate 
any function and operation of  a Deep Network 
(Cybenko, 1989). It is true, however, that the 
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number of  units needed in order to learn decreases 
exponentially with the depth of  the network (Cohen, 
Sharir & Shashua, 2016; Liang & Srikant, 2016). 
Moreover, DNNs can represent a large number 
of  possible configurations in the input space with 
very rich descriptions and are crucial in order to 
solve the complex problems required for artificial 
intelligence (Hastad, 1986; Bengio & Delalleau, 
2011). With distributed representations, Deep 
Networks have the advantage of  learning the input 
with a number of  parameters that scales linearly 
and not exponentially with the dimensionality of  
the feature space, as opposed to non-parametric 
approaches (Hinton, 2014). Nevertheless, training 
neural networks with many layers is computationally 
expensive and frequently has the disadvantage of  
overfitting the data (Hastad & Goldmann, 1991; 
Bengio & Lecun, 2007). Overfitting occurs as the 
network has more parameters than training data 
and overlearns the input images, losing the ability 
to generalize. Therefore, in order to avoid these 
problems, we used a deep architecture with only five 
layers, resembling the networks proposed by Yamins 
et al. (2014) and Serre et al. (2007).

The type of  neural network we chose for image 
classification is Convolutional. Convolutional Neural 
Networks (CNNs) are a type of  feed-forward neural 
network, that is, a network in which the information 
flows in forward direction from one input layer to 
one output layer and which have no cycles. CNNs 
consist of  a series of  convolutional layers, followed 
by fully connected (dense) layers, in which the units 
are connected to all units in the previous layer with a 
linear operation and by an output layer in which each 
unit represents a different target class.

Convolutional layers

Convolutional layers take the input and convolve 
it with a weight matrix, called filter or kernel. 
Convolution consists in sliding the filter through the 
input units and, for each slide, multiplying it element-
wise to the corresponding portion of  the input, 
adding up the result to form one unit of  the output. 
The size of  the kernel is smaller than the size of  the 
input, therefore, each unit has a local receptive field 
(Lawrence, Giles & Tsoi, 1997). Each convolutional 
layer can have more than one filter, leading each to 
a different output, called a feature map. With the 
use of  convolution, for each feature map the same 
weight matrix is shared throughout all the input units. 
Therefore, the weights of  a convolutional layer are 
denominated shared weights. Thus, the same feature 
of  the input object, such as orientation or shape, is 

detected in a feature map regardless of  its position 
in the visual field: in this sense each filter learns to 
recognize a specific characteristic of  the input.

Max-pooling layers

Each convolutional layer is typically followed by 
a max-pooling or downsampling, operation, which 
reduces the size of  each feature map by extracting 
subregions of  the input layer with the maximum 
value (Zhou & Chellappa, 1988). Specifically, the 
max-pooling operation divides its input into disjoint 
regions of  a given size and takes the maximum over 
all the values in each region. Therefore, only the 
locations that show the maximum correlation with 
each feature are kept, creating a new, smaller layer, 
whereas the other values in the region are discarded. 
Max-pooling preserves features specificity and 
helps increase robustness to clutter by discarding 
objects that cause low responses. This reduces the 
number of  parameters of  the network and thus the 
computational cost and processing time (Boureau, 
Ponce & Lecun, 2010). By reducing the number of  
parameters of  the network, max-pooling additionally 
helps to prevent overfitting.

Regularization techniques

In order to reduce overfitting, regularization 
techniques were applied to the architecture of  
network, such as dropout and L2-regularization. 
Dropout is a technique that allows the network to 
avoid learning the training data too specifically and 
being unable to classify new images (Hahnloser, 
Bengio, Frasconi & Schmidhuber, 2000). With 
dropout, noise is injected into the network in order 
to increase robustness over variations of  the input 
images (Baldi & Sadowski, 2014). Dropout consists 
in randomly dropping units during the training of  
artificial neural networks, preventing each unit to rely 
excessively on the output of  a specific input neuron 
(Hinton, Krizhevsky, Suskever & Salakhutdinov, 
2012). When applying a dropout of  probability (or 
level) p to a layer in the network, in each training 
iteration every unit in the network layer is deleted 
with probability p. The remaining weights are then 
trained according to the chosen training algorithm 
(Srivastava, Hinton, Krizhevsky, Sutskever & 
Salakhutdinov, 2014). In order to choose the level 
of  dropout in each layer, a grid search was done 
by varying the dropout level in the convolutional 
layers and in the fully connected layer in the set 
of  ten uniformly distributed values between 0 and 
0.9. Dropout indeed increased the performance 
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of  the network, confirming the findings of  Paine, 
Khorrami, Han and Huang (2014). The best 
performing model which was selected for the 
experimental manipulations had a dropout of  0.1 
after the convolutional layers and of  0.5 following 
the dense layer and reached 88.38% validation 
accuracy.

In addition to dropout, L2-regularization was 
included in the learning algorithm, as illustrated in 
the training procedure section below. Contrary to 
the findings by Loshchilov and Hutter (2017), this 
technique was found to be more effective than 
weight decay as a method to penalize excessively 
high connections between neurons and therefore 
reduce overfitting (M Zur, Jiang, Pesce & Drukker, 
2009).

Activation functions

Activation functions are applied to the output of  
each layer, adding a non-linearity that is necessary 
in order for the network to perform complex tasks 
(Jarrett, Kavukcuoglu, Ranzato & LeCun, 2009). 
The sigmoidal activation function is commonly 
used in Deep Learning, since it introduces non-
linearities in the model. However, a known issue 
with this function is the vanishing gradient problem 
(Hochreiter, 1991; Hochreiter et al., 2001). The 
sigmoid approaches a constant value when moving 
away from the y-axis and consequently its derivative 
assumes infinitely small values. Therefore, the error 
signals needed for learning tend to vanish. In order 
to avoid this problem, we utilized the rectifier 
function following all the layers, with the exception 
of  the softmax function that was applied to the 
output layer, in accordance with the work of  Güçlü  
& van Gerven (2015).

The rectifier applies the function R(zi) = 

max(0,zi) to the output zi of  neuron i in the layer, 
eliminating the neurons with negative outputs, thus 
giving rise to a sparse representation. Biologically 
inspired (Hahnloser, Seung & Slotine, 2003), it is 
the most frequently employed function in Deep 
Neural Networks (Ramachandran, Zoph and Le, 
2017) because of  its efficiency (Glorot, Bordes & 
Bengio, 2011; Nair & Hinton, 2010). A unit to which 
this activation function is applied is called Rectified 
Linear Unit (ReLU) (Nair & Hinton, 2010). The 
softmax activation function is defined as S(z)i=      , 
where zi represents the output of  the neuron i of  a 
given layer. This function is usually used in the final 
layer of  a network used for classification (Bishop, 
2006) due to its normalizing effect on its output, 
preventing it from becoming too large.

Batch normalization

The values of  the input pixels as well as the 
activations of  the units in each layer can have very 
distinct values throughout the layer, differing by 
several orders of  magnitude. Those values can be 
adjusted by normalizing the training data and the 
activations of  the layers, a technique called batch 
normalization. Constraining the units to have the 
same mean and variance reduces the covariance 
shift, that measures the amount of  variation between 
activations in one layer (Ioffe & Szegedy, 2015). Batch 
normalization limits the amount to which updating 
the parameters in the earlier layers can affect the 
distribution of  values of  the following layers. This 
stabilizes the network, that becomes robust to 
changes in the input distribution. Therefore, each 
layer learns more independently, and this speeds 
up learning and gives the network the ability to 
generalize (Ma & Klabjan, 2017). Additionally, 
since the mean and variance for the normalization 

Figure 1. Neural network architecture. The first three layers consist of a convolution, with 3x3 kernels 
and 32, 64 and 128 filters respectively, and a max-pooling operation of size 2x2. Each plane is a feature 
map. The last convolutional module is followed by a fully connected layer and the output layer. Source: 
own elaboration.
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are computed on batches of  data rather than on 
the whole dataset, this adds noise to learning and 
therefore has a slight regularization effect that helps 
preventing overfitting. Batch normalization was 
added after each activation function, as it was shown 
to perform better if  added after rather than before 
the layer of  non-linearity (Mishkin & Matas, 2015).

As illustrated in Figure 1, the first 3 layers 
of  the network are convolutional, followed by 
one fully connected layer and the output. Each 
convolutional layer consists of  the convolution, a 
ReLu activation function, batch normalization, a 
max-pooling operation of  size 2x2 and a dropout 
layer of  probability 0.1. The weight matrices used 
for convolution have a 3x3 kernel and the filters 
are 32, 64 and 128 respectively. The fully connected 
layer is followed by a ReLu activation function and 
a dropout of  probability 0.5. The softmax activation 
function is applied to the output layer.

Task

Training on real world objects is critical for 
the correspondence between layers of  the CNNs 
and cortical visual pathways, as shown by Cichy 
et al. (2016). The neural network described in the 
present paper was trained to recognize images in the 
CIFAR-10 dataset (Krizhevsky, 2009), which consists 
of  60000 RBG images of  size 32x32 representing 
items from 10 categories. As shown in Figure 2, the 
categories are: airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship and truck.
Training procedure

The images in the dataset are divided into 
training set, validation set and test set, in a 10:1:1 
ratio. The first set is used to train the network and 
the remaining two for testing. The training set 
contains examples of  inputs with their associated 
outputs. Learning is supervised in the sense that 
the network learns by comparing its prediction to 
a given target output (supervision). Neural network 
learning aims at reducing the prediction error, that is, 
the difference of  activation between the actual and 
the desired output. This is achieved by propagating 
information from the output layer back to the input 
layer and updating the layer weights accordingly.

Training the neural network consists in finding the 
parameters θ of  a neural network that significantly 
reduce a cost function that measures to which degree 
the predicted output differs from the target output. 
This cost function includes the loss of  the network, 
that is a measure of  the classification error over all 
the training set, as well as additional regularization 
terms. The backpropagation algorithm (backwards 
propagation of  error) (Werbos & J. Paul John, 
1974; Rumelhart et al., 1988) finds a local optimum 
of  the function that the network is trying to learn 
by updating its parameters and going towards the 
direction of  lower error.

The per-example loss function is given by:

           (1)

where y(x,θ) is the predicted output vector when 
the input is x, representing the probabilities of  
x being in each of  the classes, and    is the target 
output vector. In order to penalize network weights 
with high magnitudes, the regularization term

           (2)

is added to the loss function, where λ is a given 
penalization factor. Thus, when a batch B of  N 
example images              with target outputs
is presented to the network, the total cost is:

           (3)

In our network, we choose N = 64 and λ = 
10−6. In order to minimize the cost function J, 
an adaptive learning rate optimization algorithm, 
Adam, whose name derives from adaptive moment 
estimation, was used (Kingma & Ba, 2015). Adam 
chooses a separate learning rate for each parameter 
of  the objective function, speeding learning when a 
different learning rate is needed for each parameter, 
and uses momentum: for each timestep, a fraction of  

Figure 2. Example of images from the CIFAR-10 
dataset. For each of the ten categories, 10 random 
images are shown. Source: https://www.
cs.toronto.edu/~kriz/cifar.html
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the previous update is added to the current update, 
moving faster to the direction of  the minimum and 
decreasing the oscillations around it. The use of  
adaptive learning rates combined with momentum 
makes the algorithm efficient and fairly robust to the 
choice of  hyperparameters (Reddi, Kale & Kumar, 
2018).

Data augmentation

When trained with “small” datasets such as 
CIFAR-10, which have less images than the total 
number of  parameters of  the network, often the 
models tend to overfit the data (Perez & Wang, 2017). 
In addition to adding dropout to the architecture of  
the network and weight regularization to the learning 
algorithm, another technique used to prevent 
overfitting is data augmentation (Simard et al., 
2003; C. Wong et al., 2016; Cagli et al., 2017). Data 
augmentation has been proven particularly effective 
for image classification (Perez & Wang, 2017). 
This strategy consists of  increasing the amount of  
training samples by applying a transformation, such 
as reflection, rotation, shear and shift, to the training 
images. For every epoch a new transformation is 
applied to every input image. Thus, distinct images 
are presented to the network each time. An example 
of  such a transformation is illustrated in Fig.3, 
where an original image from the CIFAR-10 dataset 
is rotated by 15◦.

In this study, the training dataset was augmented 
by rotating the initial samples of  a random angle 
between −15◦ and 15◦, translating them horizontally 
and vertically by 10% of  their total width and 
height, and reflecting them across the vertical axis. 
Data augmentation significantly improved the 
performance of  the neural network, confirming the 
results presented by Paine et al. (2014). 

Indeed, the final accuracy of  the network 
increased by around 7.3% when applying data 
augmentation compared to training with the original 
dataset, as illustrated in Figure 4.

Figure 3. Example of the data augmentation 
process applied to one original image from the 
CIFAR-10 dataset. Left: original sample image. 
Right: new image created from the original 
through a 15◦ rotation.

Figure 4. Performance of the Convolutional Neural 
Network model when training for 350 epochs. The 
black and gray lines show the validation accuracy 
over epochs when training with and without data 
augmentation respectively.

Experiments

Experiments regarding the performance of  
humans in tasks in which images are modified 
with various transformations trace back to Koffka 
(1935) and Walsh and Kulikowski (1988). The visual 
system is particularly robust to deformations of  the 
objects in the visual field (Rolls, 1992; Rolls & Deco, 
2002) and recent computational models have shown 
similar behaviors (Huiping, Bingfang & Jinlong, 
2003; Dodge & Karam, 2016; Kheradpisheh et 
al., 2016b), although in limited extent (Ghodrati, 
Farzmadhi, Rajaei, Ebrahimpour & Khaligh-Razavi, 
2014; Pinto, Barhomi, Cox & DiCarlo 2011; Pinto, 
Cox & DiCarlo, 2008). The results section discusses 
whether the same holds in the chosen network, 
illustrating the results of  a series of  experiments that 
test the behavior of  the model in order to compare 
it to behavioral and neurological data of  the human 
visual stream.

The first set of  experiments tested the 
view invariance of  the network to geometric 
transformations of  the input images. Motivated by 
the considerable translation invariance found in the 
inferior temporal visual cortex (Rolls & Deco, 2002), 
in Experiment 1, we translated the input images 
vertically and horizontally. The use of  convolution 
strides in the first layers of  the network suggests 
that it would show robustness to translation of  the 
objects in the input images. In order to compare the 
experiment to previous studies that use different 
datasets, we first reduced the size of  the images so 
that the objects would be mostly contained in the 
DNN’s visual field when their position was varied 
and pasted them on backgrounds created with an 
inpainting technique (Telea, 2004). Additionally, 
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we aimed to investigate the rotation invariance of  
the model. Since the network was trained with data 
augmentation techniques, we expected it to show 
view independence when the rotation angle was 
within the range of  ±15◦ used in the training phase. 
Moreover, according to Roll’s hypothesis (Rolls, 
1992), invariant representations can be created by 
associating different learned views and, therefore, 
training on every rotation is not necessary in order to 
build view invariant representations (Booth & Rolls, 
1998). In Experiment 2, we tested this hypothesis 
by studying whether this rotation invariance would 
be present also when the rotation was greater than 
±15◦. Finally, in Experiment 3, we studied the 
performance of  the network when varying the scale 
of  the objects contained in each test image. This was 
achieved by reducing the size of  the image within the 
visual field, from a 32x32 to a 20x20 size and adding 
a background using an inpainting technique (Telea, 
2004). We expected the network to show invariance 
to object scaling when the quality of  the images was 
not excessively compromised.

In order to be able to compare the results of  
our study to previous literature, in the first set of  
experiments, we used an experimental setting similar 
to Kheradpisheh et al. (2016b). We considered three 
types of  variation (rotation in plane, translation over 
horizontal and vertical axis, and scaling) of  different 
levels of  difficulty, from no-variation to high 
variation. For each of  these conditions (variation 
type and difficulty level), we created a database by 
randomly selecting 300 training images and 150 test 
images for each of  the object categories. Then, we 
applied the corresponding variation to each database 
and fed our pre-trained model with the varied 
images. Finally, for each condition the network was 
evaluated on the corresponding test images.

Experiments 4 to 6 investigated the performance 
of  the network when tested under various 
deformations of  the input images. Following 
Huiping et al. (2003) and Dodge & Karam (2016), 
we hypothesized that the network would show 
robustness to moderate deformations, but that the 
accuracy would drop to 0 after a certain threshold. 
In Experiment 4, we decreased the quality, that 
is, the resolution, of  the images by progressively 
reducing the number of  pixels in the input images. 
In Experiment 5, the contrast of  the test images was 
changed from 0 (grey image) to 1 (original image) in 
steps of  0.05. Additionally, in Experiment 6, noise 
was injected to the network by randomly selecting 
an increasing number of  pixels in each image and 
changing their value with a random value between 
0 and 1 taken from a uniform distribution. The 

number of  corrupted pixels varies between 0 and 
800, being 32*32*3=3072 the size of  the input, in 
steps of  25. Since there are three color channels, 
this implies that the maximum percentage of  noise 
injected corrupted at most 75% of  the input pixels.

Lastly, Experiment 7 consisted in studying the 
activations of  the neurons to new stimuli when 
varying the amount of  dropout in the network. 
Before starting the training procedure, the dropout 
was varied between 0 and 0.9 in steps of  0.1 in the 
first dense layer. We hypothesized that the sparsity 
of  the neuronal activations to novel images would 
increase as a function of  the level of  dropout, as 
found by Baldi & Sadowski (2014).

Results

Geometric invariances

Biological background for invariant
object recognition

The ability to recognize objects under different 
viewing conditions is characteristic to the brain 
(DiCarlo et al., 2012). Although IT neurons show 
some tolerance to object deformation, individual 
neurons need not be invariant: in the visual stream, 
there are neurons which are view-independent and 
neurons whose response depends on the orientation 
of  the object in a given image (Dicarlo & Cox, 
2007). It is hypothesized that invariance is obtained 
by the hierarchical combination of  these neurons, 
in which invariant features are progressively 
extracted (Rolls & Deco, 2002; Tanaka, 1996). In 
this framework, cells at higher layers pool input 
from lower layer cells, becoming more tolerant to 
changes (Riesenhuber & Poggio, 1999). Selectivity 
and invariance of  object representations indeed 
increase along the visual stream (Franco, Rolls, 
Aggelopoulos & Jerez, 2007; Rust & DiCarlo, 2010). 
In a recent study (Cichy, Khosla, Pantazis, Torralba 
& Oliva, 2017), a marker of  neural processing of  
spatial information was found in MEG data and 
compared to the development of  spatial layout 
descriptions in computational models. Analogously 
to the visual stream, a gradual emergence of  invariant 
representation was found to appear hierarchically in 
the neural network layers (Cichy et al., 2017).

A possible explanation for human view 
invariance, proposed by Biederman (1987), is 
that the brain represents objects by dividing 
their parts into 3-dimensional view-independent 
geometric primitives called geons that have clearly 
distinguishable properties in respect to symmetry, 
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roundness and size. Recognition of  an object would 
occur by computing the geon descriptions of  its parts 
and comparing them to the stored descriptions. This 
theory of  recognition by shape makes recognition 
under disrupted viewing conditions easier. In 
support of  this theory are the facts that elements 
that are essential to the perception of  geons, such as 
borders, were proven to be highly relevant for object 
recognition in humans and that no visual priming 
effect was found when using distinct sets of  geons 
between trials (Biederman, 2000). Nevertheless, 
the set of  qualitative shape properties chosen by 
Biederman is arbitrary and there is no evidence 
for a structural description of  geons in the brain. 
Furthermore, the theory fails to differentiate between 
distinct objects of  the same type (Dickinson, 1999).

Another account for visual object recognition 
proposes that the brain stores representations as 
collections of  different views of  the object, and that 
recognition occurs through interpolation between 
those views and depends on the distance to the 
closest viewpoints (Spetch & Friedman, 2003). 
Alternatively, it was proposed that the brain may 
incorporate both approaches by relying on structural 
descriptions of  the parts of  the objects as well as on 
viewpoint-specific features (Tarr & Bülthoff, 1998).

Experiment 1: Translation invariance

Following Kheradpisheh et al. (2016b), for the 
translation experiment, we selected four levels of  
variation defined by the percentage of  translation 
of  the images in the horizontal and vertical axes. 
The images were translated of  a random number of  
pixels between ±1% of  the total image size in the 
no-variation condition, and between ±20%, ±40%, 
±60% in the conditions of  variation levels 1, 2 and 
3 respectively. We hypothesized that the convolution 
strides in the first layers of  the network would create 
robustness to translations, and that the performance 
of  the network would decrease when the object 
would start falling out of  the receptive visual field. 
Since the objects depicted in the CIFAR-10 dataset 
occupy a large portion of  the image, we had to 
decrease their size, thus reducing their quality, in 
order to vary their position without excessively 
losing visual information. This led to a lower general 
accuracy.

Taken together, as illustrated in Figure 5b, our 
network shows invariance when the position of  the 
object within the visual field is varied in the first three 
conditions. Indeed, when the images are translated 
of  up to 40% of  their size, the performance of  the 
network is stable and does not decrease significantly, 

similarly to what has been reported in Kheradpisheh 
et al. (2016b). Yet, in the highest variation condition 
the accuracy drops considerably, as opposed to the 
aforementioned study. This is likely due to the fact 
that, with high amounts of  variation, the objects in 
our database fall out of  the receptive field.

In order to compare our results to 
neurophysiological data, we computed the total drop 
in accuracy from the no-variation to the maximum 
variation condition. The performance drop is of  
approximately 6.3% in the present experiment, 
whereas it was reported to be around 3% for humans 
(Kheradpisheh et al., 2016b). However, it is to keep 
in mind that only four categories were used in said 
study.

In general, translation invariance is the most 
robust type of  image variation for DNNs and 
humans when using uniform or natural backgrounds 
(Kheradpisheh et al., 2016b). For human subjects, 
this could follow from the fact that the brain 
represents objects in a rectangular coordinate system, 
making translations easy for the brain to overcome 
(Hinton, 2014b). In opposition, when using natural 
scenes in which more than one object was present, 
this translation invariance was shown to decrease in 
humans (Rolls & Deco, 2002).

Experiment 2: Rotation transformation

For the rotation experiment, we defined the 
levels of  variation by the range of  the angle of  
rotation of  the images. The images were rotated 
by a random angle between ±1◦ in the no-variation 
condition, and between ±15◦, ±30◦, ±60◦, ±90◦ 
in the conditions of  variation levels 1, 2, 3 and 4 
respectively. We hypothesized that the accuracy of  
the network would not decrease when the rotation 
angle was within the range of  ±15◦, the angle of  
rotation for data augmentation used in the training 
phase.

Figure 5a illustrates the performance under the 
various rotation conditions. The network shows 
moderate robustness under the various levels of  
variation, especially in the first level. As a matter of  
fact, when rotating the images of  an angle within the 
data augmentation angle of  ±15◦, the performance 
decreases of  less than 0.1% with respect to the no-
variation condition. The recognition accuracy does 
not immediately drop when increasing the rotation 
angle outside the training range and the decrease 
follows a trend that is comparable to that depicted in 
the study by Kheradpisheh et al. (2016b). However, 
the performance decreases significantly in the last 
two levels of  variation and is considerably lower than 
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that reported for the AlexNet (Krizhevsky et al., 
2012) and the Very Deep (Simonyan & Zisserman, 
2014) networks. The total drop in accuracy from 
the no-variation to the high variation condition is 
around 7.5% in our experiment. Nevertheless, it is to 
consider that in the aforementioned study only four 
categories were used. Moreover, this gap could be 
explained by the difference in the datasets used, and 
in the networks considered that are much deeper 
than our model.

In contrast with the hypotheses by Rolls (1992), 
the difficulties in recognizing rotated objects hold 
true when considering human subjects, either in terms 
of  their response time (Murray, Jolicoeur, McMullen 
& Ingleton, 1993) or of  their performance (Spetch 
& Friedman, 2003), which decreases of  around 5% 
(Kheradpisheh et al., 2016b), for orientations to which 
the subjects were not trained on. This could suggest 
that recognition of  a rotated object in the human 
visual system occurs through linear interpolation 
of  two-dimensional learned views rather than by 
building a three-dimensional model (Bülthoff  
& Edelman, 1992). As a matter of  fact, the first 
approach would explain the increase in recognition 
time and performance error proportionally to the 
amount of  rotation of  the object. On the contrary, 
the response time for recognition of  rotated objects 
was found to diminish with practice. This suggests 
a shift from a mental rotation approach to a more 
orientation invariant approach, that could make use 
of  geons, in which the object features are learned 
independently of  their orientation, (Murray et al., 
1993), or, more directly, suggests that the increase 
in the number of  views with practice would lead 
to more uniform responses (Bülthoff  & Edelman, 

1993). The number of  required views depends on 
the object and could be compared to the number of  
samples needed by a neural network in order to be 
able to generalize (Murray et al., 1993).

Experiment 3: Scaling invariance

The size of  the objects contained in each test 
image was progressively reduced in order to test the 
scaling invariance of  the network. The four levels of  
variation were defined by the size of  the new image 
with respect to the original image. The size of  the 
images was reduced to a random quantity within 1% 
of  the original image size in the no- and within 20%, 
40%, 60% in the conditions of  variation levels 1, 2 
and 3 respectively. We expected the network to show 
scale invariance to a certain degree, but to drop 
significantly in the highest variation level, as reported 
in Kheradpisheh et al. (2016b). Indeed, as illustrated 
in Figure 5c, the shape of  the curve resembles that 
of  the accuracy of  the AlexNet (Krizhevsky et al., 
2012) and the Very Deep (Simonyan & Zisserman, 
2014) models tested in the paper. As hypothesized, 
the network shows robustness to image scaling 
when the quality of  the images is not excessively 
compromised.

Regarding a comparison to biological data, the 
total drop in accuracy from the first to the last 
condition is of  nearly 10% for human subjects 
(Kheradpisheh et al., 2016b) and similar (around 
10.5%) for our model. It was observed that human 
performance in size invariant tasks significantly 
improves with practice, but the improvement is 
specific to each object and does not transfer to novel 
objects (Furmanski & Engel, 2000).

Figure 5. Empirical distribution of recognition accuracy over the various types of image deformations. 
The accuracy is averaged over all the images in the test set. (a) Performance of the network over image 
translation. The x-axis indicates the percentage of translation in the horizontal and vertical axes. (b) 
Performance of the network over image rotation. The x-axis indicates the angle of rotation, in degrees. 
(c) Performance of the network over object scaling. The x-axis indicates the size of the rescaled object 
with respect to the original.
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This finding corroborates the hypothesis that 
recognition occurs in object specific mechanisms in 
late areas of  the visual stream and is consistent both 
with the geons theory and with image-based models 
(Furmanski & Engel, 2000; Tarr & Bülthoff, 1998).

In general, when testing our model, the accuracies 
were higher for the translation and the rotation 
variations compared to the scaling condition. The 
same was observed for other DCNNs and for 
human subjects, both for their accuracy and their 
recognition time (Kheradpisheh et al., 2016b). This 
suggests that translations and rotations are easier to 
tolerate and need less processing time than scaling 
variations.

Quality, contrast and noise

Experiment 4: Decreasing the quality  of
the input 

We decreased the resolution of  the images 
by progressively reducing the number of  pixels 
in the input images used for testing, resulting in 
blurred images. The performance of  the network 
as a function of  image resolution is illustrated in 
Figure 6a. The pattern is similar to the accuracy 
of  the networks tested in Figure 2 of  Dodge and 
Karam (2016): for the first levels of  blurring the 
accuracy does not diminish significantly, however, 
the network is sensitive to high blurring levels and 
the performance gradually decreases to chance 
level when the resolution is reduced to one pixel. 
The significant reduction in accuracy could be 
due to the fact that the reduction of  quality also 

removes textures in the input images, which may be 
a crucial feature used by neural networks for model 
recognition (Dodge & Karam, 2016).

Experiment 5: Modifying the contrast of
the images

Similarly, the contrast of  the test images was 
gradually decreased, from a factor of  1 (original 
image) to a factor of  0 (grey image) in steps of  
0.05, obtaining the performance depicted in Figure 
6b. The recognition accuracy over contrast shows 
a greater robustness with respect to the other 
deformations, confirming the results obtained 
in Dodge & Karam (2016) and in Geirhos et al. 
(2017). As a matter of  fact, the accuracies in the 
contrast experiment of  the latter study range from 
approximately 91 − 94% for VGG-16 (Simonyan 
& Zisserman, 2014), GoogLeNet (Szegedy et al., 
2015) and human subjects and 84% for the AlexNet 
(Krizhevsky et al., 2012) model when the contrast 
factor is 1 to chance level for the contrast factor of  
0.1. Likewise, the performance of  our model starts 
from the original accuracy of  approximately 88.4%, 
it drops when the contrast factor decreases to less 
than 0.4 until reaching chance level for a contrast 
factor of  0.1. A similar performance is achieved by 
human observers in this task (Geirhos et al., 2017).

In humans, the contrast gain control system 
evolved as a sophisticated contrast normalization 
technique and is responsible for the robustness 
to contrast variations (Geisler & Albrecht, 1995). 
In order to achieve a greater contrast invariance, 
images could be normalized in the first layers of  the 

Figure 6. Empirical distribution of recognition accuracy over the various types of image distortions. 
The accuracy is averaged over all the images in the test set. (a) Performance of the network over image 
resolution. The x-axis indicates the length of the side of the input test images, in pixels. (b) Performance 
of the network as a function of contrast. The x-axis indicates the contrast of the modified image with 
respect to the original image. (c) Performance of the network as a function of noise. The x-axis indicates 
the percentage of noise that is randomly added to the input pixels.
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network, the training set could be augmented with 
low contrast images or a mechanism similar to the 
contrast gain control present in humans could be 
included in the architecture of  the network (Geirhos 
et al., 2017).

Experiment 6: Adding noise to the input
images

Noise was added to the test images in various 
percentages by replacing a random set of  the pixels 
with values drawn from a uniform distribution. The 
percentage of  noise varies between 0% and 75%. 
When adding noise to the input images, the accuracy 
rapidly decreases following the trend in Figure 6c, 
approaching chance level when more than 25% 
of  the input pixels are replaced. This rapid drop 
in the network performance is in accordance with 
the studies presented in Dodge and Karam (2016) 
and Geirhos et al. (2017): after the first 10% of  
noise is added, the accuracy drops of  12% in our 
model, whereas it drops of  approximately 47% 
in VGG-16 (Simonyan & Zisserman, 2014) and 
GoogLeNet (Szegedy et al., 2015) and of  50% in 
AlexNet (Krizhevsky et al., 2012). In contrast, the 
drop-in accuracy for human subjects was of  only 
5%. Handling noise is very challenging for artificial 
models and drastic differences were found between 
DNNs and humans in this task, with human subjects 
outperforming artificial models (Dodge & Karam, 
2017). A possible explanation could be that, since 
the noise was picked from a uniform distribution, it 
has a high frequency, thus even small changes in the 
input and in the first layers of  the network propagate 
considerably in higher layers, significantly modifying 
the output of  the model (Dodge & Karam, 2016).

In conclusion, the performance under blur and 
noise is reduced independently of  the artificial 
model taken into consideration, suggesting that 
this depends on the architecture and training of  
the networks (Dodge & Karam, 2016). Therefore, 
the obvious solution of  modifying the model 
accordingly or training the model on blurred or 
noisy images arises naturally, although this could 
consequently compromise the performance of  the 
network with high quality images.

Dropout and Sparsity

Experiment 7: Correlating dropout and
sparse representations

Evidence of  sparse representations in early 
visual areas (Simoncelli, 2005; Lennie, 2003; Berry, 

Warland & Meister, 1997; Reinagel, 2001) and the 
efficiency of  sparse networks (Olshausen & Field, 
1996; Olshausen & Field, 2004) motivate the study 
of  the emergence of  sparsity in trained networks. 
Therefore, a possible correlation between dropout 
and sparsity was tested by varying the amount of  
dropout in the network. We trained the ten networks 
resulting from increasing the dropout level in 
the first dense layer from 0 to 0.9 in steps of  0.1 
and hence analyzed the empirical distribution of  
neuronal responses of  the resulting networks to the 
images in the test set.

In accordance with Baldi and Sadowski (2014), 
we found that high levels of  dropout contribute to 
sparse representations: the activations of  neurons in 
the first dense layer of  the network are significantly 
closer to 0 in Figure 7b compared to Figure 7a. In 
particular, Figure 5, representing the mean activations 
of  each layer of  the network when presenting the 
5000 test images, can be compared to Figure 11.1 in 
Baldi and Sadowski (2014): there is a clear prevalence 
of  neurons with activations that are close to 0. This 
correlation derives from the tendency of  dropout of  
preventing each neuron to rely excessively on other 
units (Hinton et al., 2012), which is achieved by 
minimizing the variance across neuronal activations. 
Therefore, sparse representations are favored.

Discussion

In this paper, we compared the processing of  
information in the visual system to the behavior 
of  a Convolutional Neural Network by analyzing 
the aspects involved in the implementation of  the 
computational model and in the functioning of  the 
backpropagation algorithm for object recognition. 
The network’s response was tested when presenting 
input images that were different from the images 
employed for the training of  the network. The 
test images were modified either with geometric 
deformations, by varying the rotation, position 
and size of  the objects within the image, or by 
compromising the extent of  visual information 
transmitted from the input when changing the 
quality, contrast and amount of  noise. The results 
were compared to neural data obtained from 
behavioral and neuroimaging studies in which the 
subjects’ response times, accuracies and neural 
activations were recorded following the presentation 
of  images with the various types of  deformations. 
Furthermore, the fundamental characteristics of  the 
architecture of  the network as well as the training 
process were discussed in comparison to the 
structure of  the visual stream and to the synaptic 
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update processes that are thought to be employed by 
the brain for learning.

In summary, our results indicate that our 
computational model is invariant to different kinds 
of  deformations in limited amounts. In many of  
our experiments and in previous research (Dodge & 
Karam, 2016, Dodge & Karam, 2017; Geirhos et al., 
2017; Kheradpisheh et al., 2016a,b), when increasing 
the level of  image deformation, the accuracy of  the 
networks decreases more rapidly than with human 
subjects. It was demonstrated that the brain responds 
differently to distinct kinds of  image deformations: 
for instance, size invariance signals appear earlier 
than position invariance signals (Isik, Meyers, Leibo 
& Poggio, 2014) and rotation invariance signals 
(Dill & Edelman, 1997) in the brain, suggesting 
that some, but not all, mechanisms for invariant 
object recognition could be built-in (Nishimura, 
Scherf, Zachariou, Tarr & Behrmann, 2014). 
Characterizing the amount of  image transformation 
independently of  which type of  variation is applied 
and, therefore, correlating each task to the others 

is not straightforward. Nevertheless, our results are 
comparable to the conclusions of  other studies, 
that found both DNNs and the human brain to 
be more robust to rotation and translation than 
to scaling of  the test images, in which the most 
amount of  visual information is lost (Kheradpisheh 
et al., 2016b). Indeed, a considerable correlation 
between computational models and the human 
brains in terms of  categorization accuracy was 
found (Kheradpisheh et al., 2016b). This suggests 
that the tasks that have the greatest computational 
complexity likewise represent the most challenging 
image variations for humans.

On the one hand, the present results illustrate that 
the performance of  the network rapidly decreases 
when lowering the quality of  the input images, 
adding noise or modifying the contrast, yet many 
of  the images that are misclassified by the CNN are 
still recognizable by humans (Geirhos et al., 2017). 
Moreover, it was found that artificial networks 
can be easily mislead with low noise percentages 
(Goodfellow, Shlens & Szegedy, 2014) or fooled into 

Figure 7. Empirical distribution of the average activations of units in the first dense layer of the network 
when presenting the 5000 images in the test set, either when using no dropout (a) or a 0.7 dropout level 
(b). The x-axis indicates the amount of activation; the y-axis represents the number of units corresponding 
to each amount of activation.

Figure 8. Empirical distribution of the average activations of units in each layer of the network when 
presenting the 5000 images in the test set. The x-axis indicates the amount of activation; the y-axis 
represents the number of units corresponding to each amount of activation. (a),(b),(c) Average neuronal 
activations in the three convolutional layers. (b) Average neuronal activation in the first dense layer. The 
prevalence of small activations is due to the tendency of dropout of favoring sparse representations.
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falsely recognizing objects in images of  pure noise 
(Nguyen, Yosinski & Clune, 2014), even though 
these conditions are carefully chosen and unlikely 
to occur. On the other hand, there exist examples 
of  the opposite situation, in which images that have 
very poor resolution, or a significant amount of  noise 
were successfully classified by artificial networks and 
not by humans (Wright, Yang, Ganesh, Sastry & Ma, 
2009). The present study, along with previous results 
on different DNNs (Ghodrati et al., 2014; Pinto et 
al., 2011; Dodge & Karam, 2016, Dodge & Karam, 
2017; Geirhos et al., 2017), suggest that, even though 
neural networks have reached human classification 
abilities on known benchmarks, there is still a gap 
between Convolutional Neural Networks and the 
human visual system when the images are distorted 
(Dodge & Karam, 2017). This gap could in part 
be explained by the greater exposition of  humans 
to image transformations compared to DNNs 
through experience and evolution. Nevertheless, it 
is true that humans overcome DNNs in their ability 
to generalize to unseen distortions (Geirhos et al., 
2017). These dissimilarities give insights into the 
aspects that need to be improved in order to bridge 
the gap between neuroscience and Deep Learning 
and suggest a starting point for future research, 
in which for instance the training data could be 
augmented with distorted images.

It could be argued that the chosen model and 
training dataset are rather simple compared to the 
complexity of  the human visual system architecture 
and of  the real world tasks: deeper networks have 
proven to reach higher performance accuracies 
in different recognition tasks (Krizhevsky et al., 
2012; Szegedy et al., 2015; Simonyan & Zisserman, 
2014; Yamins & DiCarlo, 2016). Nevertheless, 
this straightforward design allows for tight 
experimental control without excessively affecting 
the performance. This permitted to focus on 
investigating and replicating the architecture and 
the behavior of  the brain’s visual system rather than 
optimizing its performance on a specific task. As a 
matter of  fact, the chosen network is inspired by 
neural processes and the single components are, 
where possible, subject to biological constraints as 
opposed to various more complex artificial models. 
Several preliminary experiments were performed in 
order to select the number of  layers, the connectivity 
between neurons, the dropout level and the activation 
functions, based on the network’s performance as 
well as the artificial units’ activations in comparison 
with biological data. 

This procedure would have been excessively 
expensive in terms of  computational cost if  

considering deeper architectures. Using different 
combinations of  neural network architectures and 
datasets while considering the tradeoff  between 
experimental control and model complexity is 
a crucial next step for future research in order to 
achieve more accurate and biologically plausible 
results.

Moreover, it would have been interesting to 
analyze further aspects of  the network’s response 
other than the performance accuracy, as, for instance, 
the neural unit activation in comparison to brain 
data obtained in fMRI studies (Kheradpisheh et al., 
2016a; Güçlü & van Gerven, 2015). Additionally, it 
is crucial to test the robustness of  artificial networks 
by constructing alternative experimental designs, 
with different recognition tests or types of  images, 
i.e. synthetic images (Pinto et al., 2008).

In the following, additional similarities between 
DNNs and the human visual system along with 
aspects that question the biological plausibility of  the 
current implementation of  neural networks, from 
the learning procedure to the architecture, will be 
discussed. For instance, neurophysiological aspects 
such as spike timing dependent plasticity, dendritic 
computation, local excitatory-inhibitory networks 
may explain how gradient descent methods could be 
implemented in the brain (Marblestone et al., 2016).

An important assumption that makes the 
comparison between artificial and real networks 
possible is that the brain has developed cost 
functions, shaped by evolution, and is able to 
optimize them in order to adjust the connections 
across neurons and achieve its goals (Marblestone et 
al., 2016). Similarly, learning in computational models 
is based on the optimization of  cost functions using 
backpropagation. The backpropagation algorithm 
is extremely powerful and is therefore commonly 
used in neural networks, although it has been widely 
believed to be biologically implausible (Crick, 1989; 
Stork, 1989), for various reasons.

To begin with, it requires labelled data for 
learning, even though almost all real data are 
unlabeled. Human brains have considerably more 
degrees of  freedom, that is, connections, than 
seconds of  life and consequently than the amount 
of  labelled data they could possibly receive (Hinton, 
2014). It is therefore impossible to learn weights 
for all the synapses in the brain, even though it is 
unlikely that all the connections need to be used 
(Hinton, 2016). Moreover, DNNs could employ 
unsupervised learning, in which learning can 
occur through unlabeled data and combine it with 
backpropagation only for fine-tuning the weights 
or for transfer learning. This technique consists in 
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exploiting previously learned representations to 
transfer a prior on the distribution of  the input in 
order to learn new data more easily (Hinton, 2016). 
Transfer learning could simulate human’s ability to 
learn a new task with few examples, as opposed to 
the thousands of  examples required by current state 
of  the art DNNs. However, for the purposes of  the 
present study, unsupervised learning was not used 
since it is not necessary for the CIFAR-10 dataset 
(Paine et al., 2014).

Furthermore, while the standard artificial 
neurons do not encode precise timing, it is thought 
that synaptic weights in the brain change with Spike-
Timing-Dependent-Plasticity (STDP): potentiate 
when a presynaptic spike is rapidly followed by a 
postsynaptic spike and depress when the opposite 
situation occurs (Gerstner, Kempter, van Hemmen 
& Wagner, 1996; Markram & Sakmann, 1995). 
The magnitude of  the weight change decreases as 
the presynaptic and postsynaptic spikes separate. 
STDP can be seen as a spike-based formulation 
of  the Hebbian postulate, stating that synapses are 
strengthened if  a presynaptic neuron fires slightly 
before the postsynaptic one (Hebb, 1949). This 
theory is extended with the concept of  synaptic 
weakening, in which synapses are weakened if  the 
presynaptic cell is consistently not co-active with 
the postsynaptic neuron (Stent, 1973). However, 
it was proven that in the visual and motor systems 
information is mostly carried by the average firing 
rate of  neurons, that is more compatible to learning 
update rules in artificial models, rather than by the 
spike timing (Baldi & Sadowski, 2014).

Moreover, artificial units need to send two 
different kinds of  signals: the forward signal, 
representing its activity and used to generate a 
prediction, and the backward signal, that is, the 
derivative of  the cost function used for the learning 
update. On the contrary, there is evidence that 
feedforward and feedback connections in the brain 
are implemented in distinct paths and real neurons 
only use one kind of  signal, encoded with spikes 
(Douglas et al., 1989).

Additionally, DNNs are mainly feedforward 
networks and the feedback mechanisms occur 
only during learning, whereas there is evidence for 
continuous feedback processes in the brain (Bullier, 
McCourt & Henry, 1988; Felleman & Van, 1991; 
De Pasquale & Sherman, 2011; Mignard & Malpeli, 
1991). The feedback and feedforward computations 
are implemented in two distinct phases and, since 
the feedback step needs to follow the feedforward 
step, a synchronization mechanism is needed 
(Bengio, Lee, Bornschein, Mesnard & Lin, 2015). 

This synchronization is not necessary in the case 
of  recurrent neural networks, which are more 
compatible with neurophysiological processes under 
this point of  view (Simard, Ottaway & Ballard, 1988). 
The need for two distinct phases and a separate 
network for the feedback of  error is eliminated by 
associating each neuron with a mirror neuron that 
imitates the feedforward path in order to cancel 
the top-down component (Guerguiev, Lillicrap 
& Richards, 2017). This allows for a network that 
continuously generates predictions and feedback at 
the same time. Yet, there is no known biochemical 
mechanism that could duplicate the weight of  a 
synapse between two cells (Baldi & Sadowski, 2016).

Furthermore, backpropagation assigns blame on 
a neuronal basis, depending on how each neuron 
contributed to the error, therefore feedback paths 
need exact knowledge of  the downstream synapses 
(Bengio et al., 2015). Otherwise stated, in order 
to compute the global cost function, each neuron 
would need to know the output of  every other 
neuron, whereas evidence of  local learning rules 
has been found in some regions of  the brain (Rolls 
& Deco, 2002). A global cost function requires 
the unlikely condition of  the weights matrix to be 
symmetric (Grossberg, 1987), although the use of  
random weights has proven to work well in practice 
and gives a good approximation of  backpropagation 
(Lillicrap, Cowden, Tweed & Akerman, 2014; 
Lillicrap, Cowden, Tweed & Akerman, 2016) when 
the synaptic signs do not change between feedback 
and feedforward connections (Liao, Leibo & 
Poggiom, 2015).

These discrepancies are solved if  the error 
derivatives needed for backpropagation are encoded 
in the temporal change of  the neuronal firing rates 
(Hinton & McClelland, 1988). This allows the output 
of  a neuron to represent an error derivative at the 
same time, as it is also indicating the presence or 
absence of  a feature (Whittington & Bogacz, 2015). 
Consequently, in the learning rule the weight update 
is proportional both to the presynaptic activity and 
to the rate of  change of  the postsynaptic activity, 
analogously to the STDP learning update (Bi & Poo, 
1998). In this framework, STDP could be identified 
as a form of  stochastic gradient descent (Hinton, 
2016; Bengio et al., 2015). This learning rule can 
approximate the differential anti-Hebbian plasticity 
in which synapses updates depend on the product 
of  the presynaptic firing rate and the time derivative 
of  postsynaptic firing rate (Xie & Seung, 2000).

Another issue with backpropagation is that 
it requires for each connection to communicate 
with both positive and negative derivatives. In 
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contrast, according to Dale’s Law (Strata & Harvey, 
1999), real synapses do not change sign. However, 
employing neurons that are either entirely inhibitory 
or excitatory is unlikely to limit the functions that 
can be learned (Tripp & Eliasmith, 2016; Parisien, 
Anderson & Eliasmith, 2008).

Moreover, artificial neurons in the 
backpropagation algorithm can assume values in 
a continuous range. On the contrary, real neurons 
transmit information through binary spikes (Bengio 
et al., 2015). Nonetheless, backpropagation is very 
robust to noise, thus the network units could be 
rounded to 0 or 1, a technique similar to dropout, 
without compromising the model performance 
(Hinton, 2016). Finally, backpropagation involves 
purely linear computations, whereas dendrites 
can alternate linear and non-linear calculations. 
A learning rule similar to the one proposed by 
Hinton and McClelland (1988) solves this problem 
by including a non-linear term derived from the 
probability of  firing in the weight update (Bengio 
et al., 2015).

Markedly, the architecture of  DNNs is particularly 
effective in object recognition and resembles the 
architecture of  cortical visual pathways (LeCun et 
al., 1999). When an object appears in the visual field, 
the information flows from the retina, through the 
LGN, to the primary and secondary visual cortex, 
then to V4 and finally to the inferotemporal cortex 
(Trappenberg, 2002). The information flows from 
the retina to the IT in 100 ms and then starts to 
flow backwards in order to update the synaptic 
connections. However, if  the gaze is interrupted, 
the feedforward activations detected within the first 
100 ms after presentation of  the input are similar 
to the activations of  units in Convolutional Neural 
Networks (Goodfellow et al., 2016).

Similar to the processing of  visual information in 
the brain, a hierarchical structure naturally emerges 
along the layers of  a Deep Neural Network, that 
process increasingly complex features (Cichy et al., 
2016; Güçlü & van Gerven, 2015; Ba & Caruana, 
2014), as occurs in successive regions of  the visual 
stream. For instance, the primary visual cortex 
has a two-dimensional structure that reflects the 
images encoding the visual information that hit the 
retina. It is formed of  simple and complex cells, 
which respond to specific shapes or movements 
respectively (Goodfellow et al., 2016). From these 
simple aspects, increasingly complex features 
are represented in successive brain areas, until 
the encoding of  high-level characteristics in the 
inferotemporal cortex. Analogously, networks with 
multiple layers will automatically learn to recognize 

simple features, as edges and color, in the first layers 
and increasingly complex features, from shapes to 
higher-order characteristics like faces, in successive 
layers (Cichy et al., 2016; Güçlü & van Gerven, 2015; 
Ba & Caruana, 2014). Therefore, all intermediate 
features with different levels of  complexity between 
the raw data and the final representation of  an object 
can be represented in distinct layers, supporting the 
network’s ability to generalize.

Specifically, the first layers of  a DNN exhibit 
properties similar to early visual areas (Cichy et 
al., 2016). As a matter of  fact, the receptive fields 
in the visual cortex can be accurately modelled by 
Gabor filters, in which the weights follow a Gabor 
function (Marĉelja, 1980; Jones & Palmer, 1987). A 
new architecture that incorporates Gabor filters into 
convolutional DNNs has recently been proposed, 
performing similarly to many known CNNs on the 
popular benchmarks such as MNIST, CIFAR-10, 
CIFAR-100 and ImageNet (Luan et al., 2017). By 
any means, the first layers of  a neural network were 
proven to naturally converge to Gabor filters even 
when not explicitly programmed to do so (Bengio 
et al., 2015). Additionally, recent studies found that 
the penultimate and ultimate layers of  a neural 
network are particularly predictive of  V4 and IT 
neurons’ responses respectively (Yamins et al., 2014; 
Cadieu et al., 2014), specifically when the network is 
trained with supervised methods (Khaligh-Razavi & 
Kriegeskorte, 2014). Accordingly, based on similar 
computational models (Cichy et al., 2016; Güçlü & 
van Gerven, 2015; Yamins & DiCarlo, 2016), we 
identify the three convolutional layers in our network 
with the primary visual cortex (V1), secondary visual 
cortex (V2), and the visual area V4, respectively, and 
the first dense layer with the inferior temporal cortex 
(IT).

In addition, the convolution operation in CNNs 
is inspired by biological processes in the visual 
cortex. Some regions in the visual cortex are sensitive 
to particular areas of  the visual field and to specific 
features of  the object such as orientation, shape, and 
movement in space. (Hubel & Wiesel, 1959; Hibel 
& Wiesel 1962). Similarly, in convolutional layers 
each neuronal unit is connected only to a subset of  
units in the previous layer and each filter is sensitive 
to a specific shape or feature. Moreover, biological 
circuits were proven to be able to perform the 
convolution operation (Cichy et al., 2016), that is 
thought to occur in simple cells (Serre et al., 2007).

In contrast, the biological plausibility of  shared 
weights, that is, using the same weight matrix for all 
the input layer, has been questioned, since the brain 
uses local fields. However, a similar technique to 
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weight sharing can be approximated (Hinton, 2016): 
if  two regions encoding low-level features in an early 
layer are close enough, then they share some high-
level features in a higher layer, that gives top down 
supervision for both lower layer features. Thus, 
learning features in a low-level region helps creating 
higher level representation from which other low-
level regions can extract information. By knowing 
the region’s input as well as the desired high-level 
features, learning can be considerably accelerated. 
Therefore, it is possible to transfer information 
across regions in a layer without transporting 
weights.

Likewise, the use of  the max-pooling operation 
is open to criticism: Hinton (2014) observed 
that, although pooling gives a small amount of  
translation invariance at each layer, it ignores the 
relations between the parts of  each image and loses 
information that is currently not relevant but could 
be useful for future tasks. This suggests that more 
levels of  structure are needed in order to properly 
disentangle the data. Nevertheless, it was proven 
that biological circuits are able to perform the max-
pooling operation (Cichy et al., 2016). This idea has 
been supported by studies with both intracellular 
(Lampl, Ferster, Poggio & Riesenhuber, 2004) and 
extracellular (Gawne & Martin, 2002) recordings. In 
the simple and complex cells paradigm, the latter are 
thought to be responsible for the pooling operation 
(Serre et al., 2007): the size of  the receptive fields 
indeed decreases from the simple to the complex 
stage.

Regarding the use of  dropout in neural 
networks, its biological counterpart may be the 
neuronal refractory period, occurring after an action 
potential, in which the neuron is incapable of  firing. 
Furthermore, by linking a dropout of  probability p 
to a neuron that spikes with probability 1 − p, Hinton 
(2016) demonstrated that randomly dropping units 
in neural networks is similar to the random noise 
inherent to the spiking rate of  biological neurons 
that follows a Poisson process.

Moreover, the data augmentation technique 
used to increase the number of  training samples 
in DNNs is biologically plausible. As a matter of  
fact, it might mimic the learning of  invariant object 
representations in the brain, that occurs through 
a varied dataset consisting of  distinct views of  
the objects under different viewing conditions. 
Furthermore, the variability in the input data could 
also derive from eye movements, such as drifts 
or saccades. It was shown that in models trained 
with high levels of  data augmentation, the last 
layers exhibit greater similarities to the responses 

of  IT in humans compared to networks trained 
without this technique (Hernández-García, Mehrer, 
Kriegeskorte, König & Kietzmann, 2018).

An additional technique used to train CNNs 
that biological circuits are able to approximate is 
batch normalization (Cichy et al., 2016). Indeed, 
homeostatic plasticity mechanisms in the brain 
operate a sort of  synaptic scaling that minimizes 
the current into a neuron and is comparable to 
the application of  batch normalization (Turrigiano 
& Nelson, 2004; Stellwagen & Malenka, 2006; 
Turrigiano, 2008). However, the normalization 
statistics change for every timestep and are computed 
having complete knowledge of  the output of  all 
neurons in each layer, which would be impossible 
for real neurons. Nevertheless, a more biologically 
plausible technique for normalization was proposed 
by Liao et al. (2016), that learns running estimates 
of  the mean and variance only in local regions and is 
computationally efficient.

A last feature regarding the implementation of  
CNNs that can be compared to mechanisms in the 
human brain concerns activation functions. The 
biological counterpart of  activation functions is the 
action potential firing, that determines the firing of  
a neuron as a function of  its input (L. Hodgkin & F. 
Huxley, 1990). The rectifier function that was used in 
our network is biologically inspired and compatible 
with our current knowledge of  the functioning of  
real neurons (Hahnloser et al., 2003).

Conclusion

In conclusion, we aimed to achieve a more 
complete overview of  the differences and similarities 
between artificial networks and the brain. The 
question was tackled by comparing the behavior of  
Deep Neural Networks, inspired by neuroscience, 
and the human visual system. Deep architectures have 
the ability of  representing properties of  increasing 
complexity and abstraction in distinct layers and are 
therefore very expressive. As a matter of  fact, DNNs 
have achieved superhuman abilities in many object 
classification tasks. Yet, there is still a significant 
gap between Deep Networks and the brain in terms 
of  invariant recognition ability, that may be due in 
part to some limitations of  current computational 
models. In artificial networks, the lack of  the 
extensive feedback information that is provided to 
the visual system and used to continuously update 
and refine visual representations could explain their 
lower recognition accuracies under image variations. 
Moreover, CNNs are purely visual, whereas, in the 
brain, visual information is integrated with input 
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from many other senses, which is likely to improve 
its internal object representations, giving it an 
advantage over artificial networks. Looking at the 
insights from neuroscience and focusing on the 
issues discussed in the present paper, Deep Learning 
can be improved even further towards more efficient 
and more biologically plausible networks.
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Effects of Variations in Neurotrophic 5-HT on Development

Sylvia Docq, Sabrina Hanswijk and Judith Homberg

The aim of  this study was to disentangle the neurotrophic influence of  5-HT in development. To this end, 
heterozygous male offspring of  5-HTT KO and WT rats were subjected to a fostering paradigm. Development 
was subsequently assessed in terms of  maternal care, eye opening, weight, reflex development, olfactory 
discrimination and open field behaviour. There were distinct differences in maternal care depending on 
genotype; WT care was characterised by increased grooming while KO care was characterised by increased 
nursing. During infancy, pups of  5-HTT KO origin under WT care were the swiftest to open their eyes and 
pups of  5-HTT KO origin under KO care were the heaviest, though no other developmental differences were 
detected. During adolescence and adulthood, all animals under genotype congruent care were the heaviest 
and in case of  5-HTT KO origin under KO care also the least anxious. These findings indicate that variations 
in maternal care styles have differing developmental outcomes depending on the placental 5-HT levels of  
the offspring.

Fitness-Induced Structural Plasticity in the Brain: 
Longitudinal Study with 7 Tesla MRI

Giulia Lorenzon

One of  the main deleterious features of  dementia is neuronal and structural degeneration in the brain. To 
face that, several attempts through cognitive and physical exercise intervention have been performed, but 
results are still heterogeneous and controversial. Physical exercise seems to be particularly promising since 
hippocampal structural plasticity has been shown to be mediated by regional increase in vascular perfusion 
following training. However, almost nothing is known about the effect of  training intervention next to the 
hippocampus and in motor areas, nor what parameters really mediate training-induced plasticity. Furthermore, 
the difference between maintenance and actual growth effects are yet to be clearly disentangled. We addressed 
these questions with a longitudinal approach where 40 young healthy but physically inactive participants (24 
females and 16 males, age range: 19-34 years) were enrolled in an intervention study, randomly assigned to 
either Training (intense aerobic exercise training on a treadmill) or Control condition. 7-Tesla MRI data as 
well as fitness, cognitive and vascular measures were collected at three time points (baseline, one month and 
four months) and VBM estimation of  local amount of  grey matter was performed using CAT12 toolbox. 
Thanks to the recently developed Sandwich Estimator (SwE) as an innovative, fast and accurate longitudinal 
statistical model, we investigated linear and quadratic volumetric effects in relation with fitness and cognitive 
improvement. Our ROI-analyses revealed significant growth on the right hippocampus, together with some 
interesting trends on the ventromedial side of  the frontal cortex. As for cognition, we found significant 
volume increase in the right middle temporal gyrus associated with improvement in memory recall, along 
with other plasticity trends related to spatial navigation and working memory. Furthermore, whole-brain 
post-hoc analyses revealed additional trends towards tissue expansion spread on fronto-temporal networks. 
Given our longitudinal approach with 3 time points and our young sample, these results cast some light on 
the causality of  this mechanism, suggesting that brain plasticity might be driven by or at least associated 
with fitness improvement, and it might consequently benefit cognition. Such findings could have relevant 
implications for prevention and low-cost intervention available to a broader range of  people.
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Memorization, Lexicalization, Semanticization, and 
Consolidation of Novel Words in L2.

Giacomo Tartaro, James McQueen, Atsuko Takashima 

The memorization, lexicalization, semanticization, and consolidation of  novel words have been mainly 
investigated in the first language (L1). This research explored these processes in a second language (L2) and 
the influence on these processes of  individual differences: length of  stay in an L2 environment, proficiency 
and vocabulary size of  L2 on these four processes. Italian-English (late) bilinguals learned a set of  40 English 
pseudo-word/picture associations on the first day of  training (remote condition), and after two days they 
repeated the procedure with a different set (recent condition) and then performed the testing phase. Only 
the vocabulary size correlated with the memorization process in the training phase. The outcome of  a lexical 
competition task (pause detection) showed a strong competition effect for the remote condition but not 
for the recent condition. A primed lexical decision task showed a significant priming effect with the two 
conditions merged. A recognition memory task in the fMRI showed activation for the remote condition of  
the inferior frontal gyrus, an area which is thought to unify semantic information of  different modalities. 
Hippocampus, involved in episodic memory and at the first stage of  encoding of  novel words, was active 
in both conditions. Overall, the consolidation process seems to not have a one-to-one correspondence with 
lexicalization and semanticization and a higher dependency on the hippocampus for both the Remote and 
Recent condition. The lexicalization of  the word-form is totally in line with previous literature in L1 but not 
the semanticization of  the meaning which nevertheless shows a trend in line with the previous literature in 
L1. Finally, word-learning seems to not differ between L1 and L2, at the behavioral level, with some beneficial 
effects of  the vocabulary size in L2 on the memorization process. Also, sleep seems to be beneficial for 
semanticization and lexicalization effects to arise at the behavioral level.



Nijmegen CNS | VOL 14 | ISSUE 267

Institutes associated with the 
Master’s Programme Cognitive Neuroscience

Donders Institute for Brain, Cognition
and Behaviour:
Centre for Cognitive Neuroimaging
Kapittelweg 29
6525 EN Nijmegen

P.O. Box 9101
6500 HB Nijmegen
http://www.ru.nl/donders/

Max Planck Institute for Psycholinguistics
Wundtlaan 1
6525 XD Nijmegen

P.O. Box 310
6500 AH Nijmegen
http://www.mpi.nl

Radboudumc
Geert Grooteplein-Zuid 10
6525 GA Nijmegen

P.O. Box 9101
6500 HB Nijmegen
http://www.umcn.nl/

Baby Research Center
Montessorilaan 3
6525 HR Nijmegen

P.O. Box 9101
6500 HB Nijmegen
http://www.babyresearchcenter.nl




