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In recent years, Deep Learning has achieved superhuman abilities in many tasks such as visual object 
recognition. Nevertheless, the brain outperforms Deep Networks in its ability to generalize to distorted 
images. Yet, the exact mechanisms used to achieve this invariance are still not completely understood. The 
interplay between neuroscience and Deep Learning could both advance the knowledge on the processes that 
occur in the brain and help the development of  more efficient artificial networks. The aim of  the present 
paper is to study the link between the brain and artificial neural models by comparing the behavior of  a 
Convolutional Neural Network to our knowledge of  the processing of  visual information in the human 
cortex. The network’s recognition ability under invariance conditions was tested when presenting input 
images that were different from the images employed for the training of  the network. The test images 
were modified either with geometric deformations, by varying the rotation, position and size of  the objects 
within the image, or by compromising the extent of  visual information transmitted from the input when 
changing the quality, contrast and amount of  noise. The results are compared to neural data obtained from 
behavioral and neuroimaging studies in which the subject’s response time, accuracy and neural activations 
were recorded following the presentation of  images with the various types of  deformations. Furthermore, 
the fundamental characteristics of  the architecture of  the network and the backpropagation algorithm used 
for the training process are discussed in comparison to the structure of  the visual stream and to the synaptic 
update processes that are thought to be employed by the brain for learning. Our investigation highlights 
that a great issue with current Deep Neural Networks is the limited performance under image distortions as 
compared to humans’ invariant recognition ability. Furthermore, the present study underlines the differences 
in the implementation of  the learning algorithm in computational models and in the brain as a starting point 
to improve Deep Learning towards more efficient and more biologically plausible networks.
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Building a representation of  visual information 

is one of  the most crucial functions of  the visual 

system. Recognizing or classifying objects is a 
particularly complex task, since an object can appear 

in the visual field over various viewing conditions: 
this is referred to as the invariance problem. 

Transformations that preserve the identity of  an 

object include changes in position, size, illumination 

and rotation of  the object along with its background. 

By comparing the behaviour of  object recognition 

algorithms under these invariance conditions to our 

knowledge of  the processing of  visual information 

in the human cortex, we aim at studying the link 

between the brain and artificial neural networks.
Given its great success over the last years, in the 

present study, the task of  object recognition will 

be tackled using Deep Learning. Deep Learning, a 
research area in the field of  Machine Learning, is 
the latest development of  artificial neural network 
models that comprise several hidden layers. It has 

become the new gold standard among different 

applications in artificial intelligence. This is 
supported by its superhuman abilities in several 

tasks such as pattern recognition, game playing, 

medical diagnosis and social network filtering. This 
new technology is inspired by several features of  the 

mammalian brain, without being constrained by any 

biological limitations.

Initially influenced by neuroscience, Deep 
Learning algorithms have strongly developed over 
the past years, making it possible to train artificial 
neural networks with several layers to complete 

various tasks efficiently. Nevertheless, those 
algorithms have now little explicit resemblance to the 

processes occurring in the mammalian brain. Yet, we 

claim that the interplay between neuroscience and 

Deep Learning can advance the study of  learning 
processes in the brain. Neuroscience can help 

Machine Learning to develop the best strategies, 
optimizing functions and architectures. Moreover, 

it can formulate constraints on the implementation 

of  learning algorithms so to properly match the real 

neural processes. Likewise, Deep Learning provides 
a tool with which hypotheses from neuroscience can 

be tested empirically.

The pioneer studies on visual processing in the 

brain were carried out by Hubel and Wiesel and 
represent the starting point for the development of  

Deep Learning algorithms (Hubel &Wiesel, 1959; 
Hubel & Wiesel, 1962). By performing various 
experiments investigating the visual system in 

the cat’s brain, they showed that some regions in 

the visual cortex are sensitive to specific areas of  
the visual field, called receptive fields, or specific 

orientations or shapes. Specifically, the authors 
identified two types of  cells in the brain: simple 
cells and complex cells. The former are neurons in 

the cortex that respond exclusively to one position 

or orientation while being silent to stimuli outside 

their focal area. The latter are units which fire in the 
presence of  specific movements of  the object in the 
visual field. Object recognition might be performed 
in the brain by integrating information of  both types 

of  cells (Schiller, Finlay & Volman,1976). In line 
with this work, several neural network architectures 

were proposed. 

For instance, Convolutional Neural Networks, 
that perform nearly as robustly as our brains under 

several transformations of  the objects in the visual 

field. In these networks each region has its visual 
receptive field and responds to specific features 
(Lecun, Bottou, Bengio & Haffner, 1998; Lecun, 
Haffner, Bottou & Bengio, 1999; Krizhevs, Suskever 
& Hinton, 2012; Szegedy et al., 2015). Additionally, 
other networks were designed in which layers that 

resemble the functioning of  simple and complex 

cells are alternated (Serr, Oliva & Poggio, 2007; 
Riesenhuber & Poggio, 1999). Amongst the most 
popular Deep Neural Networks are LeNet-5 (Lecun 
et al., 1998), a five layers neural network usually 
applied to the task of  recognizing handwritten 

numbers, HMAX (Serre et al., 2007), a biologically 
inspired hierarchical neural network, AlexNet 

(Krizhevsky et al., 2012), an extension of  LeNet, 
GoogLeNet (Szegedy et al., 2015), a 22 layers deep 
network, and the VGG-16 and Very Deep networks 

comprising 16 and 19 layers respectively (Simonyan 

and Zisserman, 2014). For a complete overview of  
the fundamental innovations and techniques that led 

to the great performance of  neural networks please 

refer to Nielsen (2018), and Yamins and DiCarlo 

(2016).

Image classification occurs instantaneously in the 
brain, whereas it is a challenging task for an artificial 
neural network. Building an artificial neural network 
that performs object recognition as accurately and 

efficiently as our own visual system might be achieved 
by mapping the spatial organization of  the brain areas 

and portions of  the cortex involved in this process. 

The ability to recognize objects relies on largely 

feedforward computations that flow throughout 
the visual ventral stream of  the mammalian brain. 

The transmission of  visual information starts in the 

retina, continues in the lateral geniculate nucleus of  

the thalamus (LGN) and then through the primary 
visual cortex V1, secondary visual cortex V2, visual 

cortex V4 to the inferior temporal cortex (IT) 

(Trappenberg, 2002). Each cortical area responds to 
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specific features of  an image and unravels different 
types of  information (Blumberg & Kreiman, 

2010). It is likely that the IT is the portion of  the 

visual stream that is mainly responsible for object 

recognition (DiCarlo, Zoccolan & Rust, 2012).
The algorithm used in the brain to solve object 

recognition is still not completely understood. 

Empirical findings in neuroscience, concerning the 
organization and structure of  the visual ventral 

stream, can help to define the hypothesis space and 
orient the implementation of  a possible algorithm. 

For instance, clues can be taken by studying the activity 
of  neurons in the ventral visual stream, their firing 
rate, their sparseness and their tolerance, that is the 

ability to preserve preference for a limited range of  

object variables. Given its success in the last decades, 

several attempts have been made to integrate Deep 

Learning results and neuroscience data (Kheradpishe, 
Ghodrati, Ganjtabesh & Masquelier, 2016b; Baldi 

& Sadowski, 2014; Baldi & Sadowski, 2016; Dodge 

& Karam, 2016; Dodge & Karam, 2017; Geirhos 
et al., 2017). Several studies compared neural data 
obtained using functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG) or 
magnetoencephalography (MEG) to activation of  

units in artificial neural networks (Kheradpisheh, 
Ghodrati, Ganjtabesh & Masquelier, 2016a; Güçlü 

& van Gerven, 2015).

It was shown that, as a neural network is trained 

to recognize objects, a hierarchical structure, in 

which increasingly complex features are processed, 

naturally emerges along its layers (Cichy, Khosla, 

Pantazis, Torralba & Oliva, 2016; Güçlü & van 

Gerven, 2015). This increasing complexity is 

comparable to the processing of  visual information 

in the brain. Specifically, the last layer of  a neural 
network is particularly predictive of  IT neurons’ 

responses and the previous layer is predictive of  

the responses of  neurons in the V4 cortex (Yamins 

et al., 2014; Cadieu et al., 2014). In contrast, the 

biological plausibility of  the training procedures 

applied in Deep Learning is still questioned. As a 
matter of  fact, it is unlikely for neurons to perform 

backpropagation, the most common algorithm used 

to train neural networks (Rumelhart, Hinton & 
Williams, 1988). Nevertheless, it could be possible 

for the brain to approximate this training algorithm. 

Additionally, the implementation of  its optimization 

and activation functions is largely consistent with 

the observations and hypotheses regarding the 

functioning of  our brain (Marblestone, Wayne & 

Kording, 2016).

The aim of  the present project is to carry out 

a detailed analysis of  the aspects involved in the 

functioning of  Deep Learning algorithms for object 
recognition. Specifically, we aim at analyzing whether 
these aspects have a neural correlate in the mammalian 

brain and can represent effective simplifications of  
the processes occurring in biological systems or 

whether they are completely artificial tools. Firstly, 
the paper will analyze the behavior of  an artificial 
neural network when modifying the characteristics 

of  the representation in the input images and 

compare it to neural data. This consists in studying 

the accuracy in recognizing objects and the activation 

of  neural units when varying the rotation, position 

or size of  the objects as well as changing the quality, 

the contrast, or adding noise to the input images. 

Secondly, the characteristics of  artificial networks will 
be discussed in terms of  their biological plausibility 

based on neuroscientific data. These characteristics 
include the architecture and connectivity, the neural 

activation functions, the training process, the use 

of  the backpropagation algorithm and the dropout 

scheme to prevent overfitting.

Methods

The task of  image classification consists in taking 
an input image and giving the class that it belongs 

to among a fixed set of  categories representing 
different objects or scenes. In order for the network 

to learn the correct classification, error signals 
are used to update the parameters of  the network 

proportionally to the derivative of  the classification 
error. In the present paper, image classification 
will be investigated using Deep Neural Networks 

(DNNs), that are characterized by several hidden 

layers (Goodfellow, Bengio & Courville, 2016). Our 

DNN was implemented in Keras (Chollet et al., 

2015), an efficient and flexible application program 
interface (API). As a Deep Learning framework, 
we used Google’s Tensorflow (Abadi et al., 2015), 
an open source library written in Python and used 

frequently in Machine Learning (Rampasek & 
Goldenberg, 2016).

Three fundamental factors shape DNNs and 

determine the correlation between representations 

in DNNs and cortical visual representations: the 
architecture, the task and the training procedure 

(Cichy et al., 2016).

Deep Neural Network Architecture

It was proven that a network with a single hidden 

layer, given it has enough units, can approximate 

any function and operation of  a Deep Network 

(Cybenko, 1989). It is true, however, that the 
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number of  units needed in order to learn decreases 

exponentially with the depth of  the network (Cohen, 

Sharir & Shashua, 2016; Liang & Srikant, 2016). 
Moreover, DNNs can represent a large number 

of  possible configurations in the input space with 
very rich descriptions and are crucial in order to 

solve the complex problems required for artificial 
intelligence (Hastad, 1986; Bengio & Delalleau, 
2011). With distributed representations, Deep 

Networks have the advantage of  learning the input 

with a number of  parameters that scales linearly 

and not exponentially with the dimensionality of  

the feature space, as opposed to non-parametric 

approaches (Hinton, 2014). Nevertheless, training 
neural networks with many layers is computationally 

expensive and frequently has the disadvantage of  

overfitting the data (Hastad & Goldmann, 1991; 
Bengio & Lecun, 2007). Overfitting occurs as the 
network has more parameters than training data 

and overlearns the input images, losing the ability 

to generalize. Therefore, in order to avoid these 

problems, we used a deep architecture with only five 
layers, resembling the networks proposed by Yamins 

et al. (2014) and Serre et al. (2007).
The type of  neural network we chose for image 

classification is Convolutional. Convolutional Neural 
Networks (CNNs) are a type of  feed-forward neural 

network, that is, a network in which the information 

flows in forward direction from one input layer to 
one output layer and which have no cycles. CNNs 

consist of  a series of  convolutional layers, followed 

by fully connected (dense) layers, in which the units 

are connected to all units in the previous layer with a 

linear operation and by an output layer in which each 

unit represents a different target class.

Convolutional layers

Convolutional layers take the input and convolve 

it with a weight matrix, called filter or kernel. 
Convolution consists in sliding the filter through the 
input units and, for each slide, multiplying it element-

wise to the corresponding portion of  the input, 

adding up the result to form one unit of  the output. 

The size of  the kernel is smaller than the size of  the 

input, therefore, each unit has a local receptive field 
(Lawrence, Giles & Tsoi, 1997). Each convolutional 
layer can have more than one filter, leading each to 
a different output, called a feature map. With the 

use of  convolution, for each feature map the same 

weight matrix is shared throughout all the input units. 

Therefore, the weights of  a convolutional layer are 

denominated shared weights. Thus, the same feature 

of  the input object, such as orientation or shape, is 

detected in a feature map regardless of  its position 

in the visual field: in this sense each filter learns to 
recognize a specific characteristic of  the input.

Max-pooling layers

Each convolutional layer is typically followed by 

a max-pooling or downsampling, operation, which 

reduces the size of  each feature map by extracting 

subregions of  the input layer with the maximum 

value (Zhou & Chellappa, 1988). Specifically, the 
max-pooling operation divides its input into disjoint 

regions of  a given size and takes the maximum over 

all the values in each region. Therefore, only the 

locations that show the maximum correlation with 

each feature are kept, creating a new, smaller layer, 

whereas the other values in the region are discarded. 

Max-pooling preserves features specificity and 
helps increase robustness to clutter by discarding 

objects that cause low responses. This reduces the 

number of  parameters of  the network and thus the 

computational cost and processing time (Boureau, 

Ponce & Lecun, 2010). By reducing the number of  
parameters of  the network, max-pooling additionally 

helps to prevent overfitting.

Regularization techniques

In order to reduce overfitting, regularization 
techniques were applied to the architecture of  

network, such as dropout and L2-regularization. 
Dropout is a technique that allows the network to 

avoid learning the training data too specifically and 
being unable to classify new images (Hahnloser, 
Bengio, Frasconi & Schmidhuber, 2000). With 
dropout, noise is injected into the network in order 

to increase robustness over variations of  the input 

images (Baldi & Sadowski, 2014). Dropout consists 

in randomly dropping units during the training of  

artificial neural networks, preventing each unit to rely 
excessively on the output of  a specific input neuron 
(Hinton, Krizhevsky, Suskever & Salakhutdinov, 
2012). When applying a dropout of  probability (or 

level) p to a layer in the network, in each training 

iteration every unit in the network layer is deleted 

with probability p. The remaining weights are then 

trained according to the chosen training algorithm 

(Srivastava, Hinton, Krizhevsky, Sutskever & 
Salakhutdinov, 2014). In order to choose the level 

of  dropout in each layer, a grid search was done 

by varying the dropout level in the convolutional 

layers and in the fully connected layer in the set 

of  ten uniformly distributed values between 0 and 

0.9. Dropout indeed increased the performance 
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of  the network, confirming the findings of  Paine, 
Khorrami, Han and Huang (2014). The best 
performing model which was selected for the 

experimental manipulations had a dropout of  0.1 

after the convolutional layers and of  0.5 following 

the dense layer and reached 88.38% validation 
accuracy.

In addition to dropout, L2-regularization was 
included in the learning algorithm, as illustrated in 

the training procedure section below. Contrary to 

the findings by Loshchilov and Hutter (2017), this 
technique was found to be more effective than 

weight decay as a method to penalize excessively 

high connections between neurons and therefore 

reduce overfitting (M Zur, Jiang, Pesce & Drukker, 
2009).

Activation functions

Activation functions are applied to the output of  

each layer, adding a non-linearity that is necessary 

in order for the network to perform complex tasks 

(Jarrett, Kavukcuoglu, Ranzato & LeCun, 2009). 
The sigmoidal activation function is commonly 

used in Deep Learning, since it introduces non-
linearities in the model. However, a known issue 
with this function is the vanishing gradient problem 

(Hochreiter, 1991; Hochreiter et al., 2001). The 
sigmoid approaches a constant value when moving 

away from the y-axis and consequently its derivative 

assumes infinitely small values. Therefore, the error 
signals needed for learning tend to vanish. In order 

to avoid this problem, we utilized the rectifier 
function following all the layers, with the exception 

of  the softmax function that was applied to the 

output layer, in accordance with the work of  Güçlü  

& van Gerven (2015).

The rectifier applies the function R(zi) = 

max(0,zi) to the output zi of  neuron i in the layer, 

eliminating the neurons with negative outputs, thus 

giving rise to a sparse representation. Biologically 

inspired (Hahnloser, Seung & Slotine, 2003), it is 
the most frequently employed function in Deep 

Neural Networks (Ramachandran, Zoph and Le, 
2017) because of  its efficiency (Glorot, Bordes & 
Bengio, 2011; Nair & Hinton, 2010). A unit to which 
this activation function is applied is called Rectified 
Linear Unit (ReLU) (Nair & Hinton, 2010). The 
softmax activation function is defined as S(z)i=      , 

where zi represents the output of  the neuron i of  a 

given layer. This function is usually used in the final 
layer of  a network used for classification (Bishop, 
2006) due to its normalizing effect on its output, 

preventing it from becoming too large.

Batch normalization

The values of  the input pixels as well as the 

activations of  the units in each layer can have very 

distinct values throughout the layer, differing by 

several orders of  magnitude. Those values can be 

adjusted by normalizing the training data and the 

activations of  the layers, a technique called batch 

normalization. Constraining the units to have the 

same mean and variance reduces the covariance 

shift, that measures the amount of  variation between 

activations in one layer (Ioffe & Szegedy, 2015). Batch 

normalization limits the amount to which updating 

the parameters in the earlier layers can affect the 

distribution of  values of  the following layers. This 

stabilizes the network, that becomes robust to 

changes in the input distribution. Therefore, each 

layer learns more independently, and this speeds 

up learning and gives the network the ability to 

generalize (Ma & Klabjan, 2017). Additionally, 
since the mean and variance for the normalization 

Figure 1. Neural network architecture. The first three layers consist of a convolution, with 3x3 kernels 
and 32, 64 and 128 filters respectively, and a max-pooling operation of size 2x2. Each plane is a feature 
map. The last convolutional module is followed by a fully connected layer and the output layer. Source: 
own elaboration.
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are computed on batches of  data rather than on 

the whole dataset, this adds noise to learning and 

therefore has a slight regularization effect that helps 

preventing overfitting. Batch normalization was 
added after each activation function, as it was shown 

to perform better if  added after rather than before 

the layer of  non-linearity (Mishkin & Matas, 2015).

As illustrated in Figure 1, the first 3 layers 
of  the network are convolutional, followed by 

one fully connected layer and the output. Each 

convolutional layer consists of  the convolution, a 

ReLu activation function, batch normalization, a 
max-pooling operation of  size 2x2 and a dropout 

layer of  probability 0.1. The weight matrices used 

for convolution have a 3x3 kernel and the filters 
are 32, 64 and 128 respectively. The fully connected 
layer is followed by a ReLu activation function and 
a dropout of  probability 0.5. The softmax activation 

function is applied to the output layer.

Task

Training on real world objects is critical for 

the correspondence between layers of  the CNNs 

and cortical visual pathways, as shown by Cichy 

et al. (2016). The neural network described in the 

present paper was trained to recognize images in the 

CIFAR-10 dataset (Krizhevsky, 2009), which consists 
of  60000 RBG images of  size 32x32 representing 
items from 10 categories. As shown in Figure 2, the 
categories are: airplane, automobile, bird, cat, deer, 
dog, frog, horse, ship and truck.

Training procedure

The images in the dataset are divided into 

training set, validation set and test set, in a 10:1:1 
ratio. The first set is used to train the network and 
the remaining two for testing. The training set 

contains examples of  inputs with their associated 

outputs. Learning is supervised in the sense that 
the network learns by comparing its prediction to 

a given target output (supervision). Neural network 

learning aims at reducing the prediction error, that is, 

the difference of  activation between the actual and 

the desired output. This is achieved by propagating 

information from the output layer back to the input 

layer and updating the layer weights accordingly.

Training the neural network consists in finding the 
parameters θ of  a neural network that significantly 
reduce a cost function that measures to which degree 

the predicted output differs from the target output. 

This cost function includes the loss of  the network, 

that is a measure of  the classification error over all 
the training set, as well as additional regularization 

terms. The backpropagation algorithm (backwards 

propagation of  error) (Werbos & J. Paul John, 

1974; Rumelhart et al., 1988) finds a local optimum 
of  the function that the network is trying to learn 

by updating its parameters and going towards the 

direction of  lower error.

The per-example loss function is given by:

                (1)

where y(x,θ) is the predicted output vector when 

the input is x, representing the probabilities of  

x being in each of  the classes, and    is the target 

output vector. In order to penalize network weights 

with high magnitudes, the regularization term

                (2)

is added to the loss function, where λ is a given 
penalization factor. Thus, when a batch B of  N 

example images              with target outputs

is presented to the network, the total cost is:

                (3)

In our network, we choose N = 64 and λ = 
10−6. In order to minimize the cost function J, 
an adaptive learning rate optimization algorithm, 

Adam, whose name derives from adaptive moment 

estimation, was used (Kingma & Ba, 2015). Adam 

chooses a separate learning rate for each parameter 

of  the objective function, speeding learning when a 

different learning rate is needed for each parameter, 

and uses momentum: for each timestep, a fraction of  

Figure 2. Example of images from the CIFAR-10 
dataset. For each of the ten categories, 10 random 
images are shown. Source: https://www.
cs.toronto.edu/~kriz/cifar.html



Nijmegen CNS | VOL 14 | ISSUE 2 63

BRIDGING THE GAP BETWEEN DL AND NEUROSCIENCE

the previous update is added to the current update, 

moving faster to the direction of  the minimum and 

decreasing the oscillations around it. The use of  

adaptive learning rates combined with momentum 

makes the algorithm efficient and fairly robust to the 
choice of  hyperparameters (Reddi, Kale & Kumar, 
2018).

Data augmentation

When trained with “small” datasets such as 
CIFAR-10, which have less images than the total 
number of  parameters of  the network, often the 

models tend to overfit the data (Perez & Wang, 2017). 
In addition to adding dropout to the architecture of  

the network and weight regularization to the learning 

algorithm, another technique used to prevent 

overfitting is data augmentation (Simard et al., 
2003; C. Wong et al., 2016; Cagli et al., 2017). Data 
augmentation has been proven particularly effective 

for image classification (Perez & Wang, 2017). 
This strategy consists of  increasing the amount of  

training samples by applying a transformation, such 

as reflection, rotation, shear and shift, to the training 
images. For every epoch a new transformation is 
applied to every input image. Thus, distinct images 

are presented to the network each time. An example 

of  such a transformation is illustrated in Fig.3, 
where an original image from the CIFAR-10 dataset 
is rotated by 15◦.

In this study, the training dataset was augmented 

by rotating the initial samples of  a random angle 

between −15◦ and 15◦, translating them horizontally 
and vertically by 10% of  their total width and 

height, and reflecting them across the vertical axis. 
Data augmentation significantly improved the 
performance of  the neural network, confirming the 
results presented by Paine et al. (2014). 

Indeed, the final accuracy of  the network 
increased by around 7.3% when applying data 
augmentation compared to training with the original 

dataset, as illustrated in Figure 4.

Figure 3. Example of the data augmentation 
process applied to one original image from the 
CIFAR-10 dataset. Left: original sample image. 
Right: new image created from the original 
through a 15◦ rotation.

Figure 4. Performance of the Convolutional Neural 
Network model when training for 350 epochs. The 
black and gray lines show the validation accuracy 
over epochs when training with and without data 
augmentation respectively.

Experiments

Experiments regarding the performance of  

humans in tasks in which images are modified 
with various transformations trace back to Koffka 

(1935) and Walsh and Kulikowski (1988). The visual 
system is particularly robust to deformations of  the 

objects in the visual field (Rolls, 1992; Rolls & Deco, 
2002) and recent computational models have shown 

similar behaviors (Huiping, Bingfang & Jinlong, 
2003; Dodge & Karam, 2016; Kheradpisheh et 
al., 2016b), although in limited extent (Ghodrati, 

Farzmadhi, Rajaei, Ebrahimpour & Khaligh-Razavi, 
2014; Pinto, Barhomi, Cox & DiCarlo 2011; Pinto, 

Cox & DiCarlo, 2008). The results section discusses 

whether the same holds in the chosen network, 

illustrating the results of  a series of  experiments that 

test the behavior of  the model in order to compare 

it to behavioral and neurological data of  the human 

visual stream.

The first set of  experiments tested the 
view invariance of  the network to geometric 

transformations of  the input images. Motivated by 

the considerable translation invariance found in the 

inferior temporal visual cortex (Rolls & Deco, 2002), 
in Experiment 1, we translated the input images 

vertically and horizontally. The use of  convolution 

strides in the first layers of  the network suggests 
that it would show robustness to translation of  the 

objects in the input images. In order to compare the 

experiment to previous studies that use different 

datasets, we first reduced the size of  the images so 
that the objects would be mostly contained in the 

DNN’s visual field when their position was varied 
and pasted them on backgrounds created with an 

inpainting technique (Telea, 2004). Additionally, 
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we aimed to investigate the rotation invariance of  

the model. Since the network was trained with data 

augmentation techniques, we expected it to show 

view independence when the rotation angle was 

within the range of  ±15◦ used in the training phase. 
Moreover, according to Roll’s hypothesis (Rolls, 
1992), invariant representations can be created by 

associating different learned views and, therefore, 

training on every rotation is not necessary in order to 

build view invariant representations (Booth & Rolls, 
1998). In Experiment 2, we tested this hypothesis 

by studying whether this rotation invariance would 

be present also when the rotation was greater than 

±15◦. Finally, in Experiment 3, we studied the 
performance of  the network when varying the scale 

of  the objects contained in each test image. This was 

achieved by reducing the size of  the image within the 

visual field, from a 32x32 to a 20x20 size and adding 
a background using an inpainting technique (Telea, 

2004). We expected the network to show invariance 

to object scaling when the quality of  the images was 

not excessively compromised.

In order to be able to compare the results of  

our study to previous literature, in the first set of  
experiments, we used an experimental setting similar 

to Kheradpisheh et al. (2016b). We considered three 

types of  variation (rotation in plane, translation over 

horizontal and vertical axis, and scaling) of  different 

levels of  difficulty, from no-variation to high 
variation. For each of  these conditions (variation 
type and difficulty level), we created a database by 
randomly selecting 300 training images and 150 test 
images for each of  the object categories. Then, we 

applied the corresponding variation to each database 

and fed our pre-trained model with the varied 

images. Finally, for each condition the network was 
evaluated on the corresponding test images.

Experiments 4 to 6 investigated the performance 

of  the network when tested under various 

deformations of  the input images. Following 
Huiping et al. (2003) and Dodge & Karam (2016), 
we hypothesized that the network would show 

robustness to moderate deformations, but that the 

accuracy would drop to 0 after a certain threshold. 

In Experiment 4, we decreased the quality, that 

is, the resolution, of  the images by progressively 

reducing the number of  pixels in the input images. 

In Experiment 5, the contrast of  the test images was 

changed from 0 (grey image) to 1 (original image) in 

steps of  0.05. Additionally, in Experiment 6, noise 

was injected to the network by randomly selecting 

an increasing number of  pixels in each image and 

changing their value with a random value between 

0 and 1 taken from a uniform distribution. The 

number of  corrupted pixels varies between 0 and 

800, being 32*32*3=3072 the size of  the input, in 
steps of  25. Since there are three color channels, 

this implies that the maximum percentage of  noise 

injected corrupted at most 75% of  the input pixels.
Lastly, Experiment 7 consisted in studying the 

activations of  the neurons to new stimuli when 

varying the amount of  dropout in the network. 

Before starting the training procedure, the dropout 

was varied between 0 and 0.9 in steps of  0.1 in the 

first dense layer. We hypothesized that the sparsity 
of  the neuronal activations to novel images would 

increase as a function of  the level of  dropout, as 

found by Baldi & Sadowski (2014).

Results

Geometric invariances

Biological background for invariant
object recognition

The ability to recognize objects under different 

viewing conditions is characteristic to the brain 

(DiCarlo et al., 2012). Although IT neurons show 

some tolerance to object deformation, individual 

neurons need not be invariant: in the visual stream, 
there are neurons which are view-independent and 

neurons whose response depends on the orientation 

of  the object in a given image (Dicarlo & Cox, 

2007). It is hypothesized that invariance is obtained 
by the hierarchical combination of  these neurons, 

in which invariant features are progressively 

extracted (Rolls & Deco, 2002; Tanaka, 1996). In 
this framework, cells at higher layers pool input 

from lower layer cells, becoming more tolerant to 

changes (Riesenhuber & Poggio, 1999). Selectivity 
and invariance of  object representations indeed 

increase along the visual stream (Franco, Rolls, 
Aggelopoulos & Jerez, 2007; Rust & DiCarlo, 2010). 
In a recent study (Cichy, Khosla, Pantazis, Torralba 

& Oliva, 2017), a marker of  neural processing of  
spatial information was found in MEG data and 

compared to the development of  spatial layout 

descriptions in computational models. Analogously 

to the visual stream, a gradual emergence of  invariant 

representation was found to appear hierarchically in 

the neural network layers (Cichy et al., 2017).
A possible explanation for human view 

invariance, proposed by Biederman (1987), is 
that the brain represents objects by dividing 

their parts into 3-dimensional view-independent 
geometric primitives called geons that have clearly 

distinguishable properties in respect to symmetry, 
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roundness and size. Recognition of  an object would 
occur by computing the geon descriptions of  its parts 

and comparing them to the stored descriptions. This 

theory of  recognition by shape makes recognition 

under disrupted viewing conditions easier. In 

support of  this theory are the facts that elements 

that are essential to the perception of  geons, such as 

borders, were proven to be highly relevant for object 

recognition in humans and that no visual priming 

effect was found when using distinct sets of  geons 

between trials (Biederman, 2000). Nevertheless, 

the set of  qualitative shape properties chosen by 

Biederman is arbitrary and there is no evidence 

for a structural description of  geons in the brain. 

Furthermore, the theory fails to differentiate between 
distinct objects of  the same type (Dickinson, 1999).

Another account for visual object recognition 

proposes that the brain stores representations as 

collections of  different views of  the object, and that 

recognition occurs through interpolation between 

those views and depends on the distance to the 

closest viewpoints (Spetch & Friedman, 2003). 
Alternatively, it was proposed that the brain may 

incorporate both approaches by relying on structural 

descriptions of  the parts of  the objects as well as on 

viewpoint-specific features (Tarr & Bülthoff, 1998).

Experiment 1: Translation invariance

Following Kheradpisheh et al. (2016b), for the 
translation experiment, we selected four levels of  

variation defined by the percentage of  translation 
of  the images in the horizontal and vertical axes. 

The images were translated of  a random number of  

pixels between ±1% of  the total image size in the 

no-variation condition, and between ±20%, ±40%, 

±60% in the conditions of  variation levels 1, 2 and 

3 respectively. We hypothesized that the convolution 
strides in the first layers of  the network would create 
robustness to translations, and that the performance 

of  the network would decrease when the object 

would start falling out of  the receptive visual field. 
Since the objects depicted in the CIFAR-10 dataset 
occupy a large portion of  the image, we had to 

decrease their size, thus reducing their quality, in 

order to vary their position without excessively 

losing visual information. This led to a lower general 

accuracy.

Taken together, as illustrated in Figure 5b, our 
network shows invariance when the position of  the 

object within the visual field is varied in the first three 
conditions. Indeed, when the images are translated 

of  up to 40% of  their size, the performance of  the 

network is stable and does not decrease significantly, 

similarly to what has been reported in Kheradpisheh 

et al. (2016b). Yet, in the highest variation condition 

the accuracy drops considerably, as opposed to the 

aforementioned study. This is likely due to the fact 

that, with high amounts of  variation, the objects in 

our database fall out of  the receptive field.
In order to compare our results to 

neurophysiological data, we computed the total drop 

in accuracy from the no-variation to the maximum 

variation condition. The performance drop is of  

approximately 6.3% in the present experiment, 
whereas it was reported to be around 3% for humans 
(Kheradpisheh et al., 2016b). However, it is to keep 
in mind that only four categories were used in said 

study.

In general, translation invariance is the most 

robust type of  image variation for DNNs and 

humans when using uniform or natural backgrounds 

(Kheradpisheh et al., 2016b). For human subjects, 
this could follow from the fact that the brain 

represents objects in a rectangular coordinate system, 

making translations easy for the brain to overcome 

(Hinton, 2014b). In opposition, when using natural 
scenes in which more than one object was present, 

this translation invariance was shown to decrease in 

humans (Rolls & Deco, 2002).

Experiment 2: Rotation transformation

For the rotation experiment, we defined the 
levels of  variation by the range of  the angle of  

rotation of  the images. The images were rotated 

by a random angle between ±1◦ in the no-variation 
condition, and between ±15◦, ±30◦, ±60◦, ±90◦ 
in the conditions of  variation levels 1, 2, 3 and 4 
respectively. We hypothesized that the accuracy of  

the network would not decrease when the rotation 

angle was within the range of  ±15◦, the angle of  
rotation for data augmentation used in the training 

phase.

Figure 5a illustrates the performance under the 
various rotation conditions. The network shows 

moderate robustness under the various levels of  

variation, especially in the first level. As a matter of  
fact, when rotating the images of  an angle within the 

data augmentation angle of  ±15◦, the performance 
decreases of  less than 0.1% with respect to the no-

variation condition. The recognition accuracy does 

not immediately drop when increasing the rotation 

angle outside the training range and the decrease 

follows a trend that is comparable to that depicted in 

the study by Kheradpisheh et al. (2016b). However, 
the performance decreases significantly in the last 
two levels of  variation and is considerably lower than 



Nijmegen CNS | VOL 14 | ISSUE 266

Fiammetta Strazzera Perniciani 

that reported for the AlexNet (Krizhevsky et al., 

2012) and the Very Deep (Simonyan & Zisserman, 

2014) networks. The total drop in accuracy from 

the no-variation to the high variation condition is 

around 7.5% in our experiment. Nevertheless, it is to 
consider that in the aforementioned study only four 

categories were used. Moreover, this gap could be 

explained by the difference in the datasets used, and 

in the networks considered that are much deeper 

than our model.

In contrast with the hypotheses by Rolls (1992), 
the difficulties in recognizing rotated objects hold 
true when considering human subjects, either in terms 

of  their response time (Murray, Jolicoeur, McMullen 

& Ingleton, 1993) or of  their performance (Spetch 
& Friedman, 2003), which decreases of  around 5% 
(Kheradpisheh et al., 2016b), for orientations to which 

the subjects were not trained on. This could suggest 

that recognition of  a rotated object in the human 

visual system occurs through linear interpolation 

of  two-dimensional learned views rather than by 

building a three-dimensional model (Bülthoff  

& Edelman, 1992). As a matter of  fact, the first 
approach would explain the increase in recognition 

time and performance error proportionally to the 

amount of  rotation of  the object. On the contrary, 

the response time for recognition of  rotated objects 

was found to diminish with practice. This suggests 

a shift from a mental rotation approach to a more 

orientation invariant approach, that could make use 

of  geons, in which the object features are learned 

independently of  their orientation, (Murray et al., 

1993), or, more directly, suggests that the increase 
in the number of  views with practice would lead 

to more uniform responses (Bülthoff  & Edelman, 

1993). The number of  required views depends on 
the object and could be compared to the number of  

samples needed by a neural network in order to be 

able to generalize (Murray et al., 1993).

Experiment 3: Scaling invariance

The size of  the objects contained in each test 

image was progressively reduced in order to test the 

scaling invariance of  the network. The four levels of  

variation were defined by the size of  the new image 
with respect to the original image. The size of  the 

images was reduced to a random quantity within 1% 

of  the original image size in the no- and within 20%, 

40%, 60% in the conditions of  variation levels 1, 2 

and 3 respectively. We expected the network to show 
scale invariance to a certain degree, but to drop 

significantly in the highest variation level, as reported 
in Kheradpisheh et al. (2016b). Indeed, as illustrated 

in Figure 5c, the shape of  the curve resembles that 
of  the accuracy of  the AlexNet (Krizhevsky et al., 

2012) and the Very Deep (Simonyan & Zisserman, 

2014) models tested in the paper. As hypothesized, 

the network shows robustness to image scaling 

when the quality of  the images is not excessively 

compromised.

Regarding a comparison to biological data, the 
total drop in accuracy from the first to the last 
condition is of  nearly 10% for human subjects 

(Kheradpisheh et al., 2016b) and similar (around 

10.5%) for our model. It was observed that human 

performance in size invariant tasks significantly 
improves with practice, but the improvement is 

specific to each object and does not transfer to novel 
objects (Furmanski & Engel, 2000).

Figure 5. Empirical distribution of recognition accuracy over the various types of image deformations. 
The accuracy is averaged over all the images in the test set. (a) Performance of the network over image 
translation. The x-axis indicates the percentage of translation in the horizontal and vertical axes. (b) 
Performance of the network over image rotation. The x-axis indicates the angle of rotation, in degrees. 
(c) Performance of the network over object scaling. The x-axis indicates the size of the rescaled object 
with respect to the original.
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This finding corroborates the hypothesis that 
recognition occurs in object specific mechanisms in 
late areas of  the visual stream and is consistent both 

with the geons theory and with image-based models 

(Furmanski & Engel, 2000; Tarr & Bülthoff, 1998).
In general, when testing our model, the accuracies 

were higher for the translation and the rotation 

variations compared to the scaling condition. The 

same was observed for other DCNNs and for 

human subjects, both for their accuracy and their 

recognition time (Kheradpisheh et al., 2016b). This 

suggests that translations and rotations are easier to 

tolerate and need less processing time than scaling 

variations.

Quality, contrast and noise

Experiment 4: Decreasing the quality  of
the input                                                                                                                    

We decreased the resolution of  the images 

by progressively reducing the number of  pixels 

in the input images used for testing, resulting in 

blurred images. The performance of  the network 

as a function of  image resolution is illustrated in 

Figure 6a. The pattern is similar to the accuracy 
of  the networks tested in Figure 2 of  Dodge and 
Karam (2016): for the first levels of  blurring the 
accuracy does not diminish significantly, however, 
the network is sensitive to high blurring levels and 

the performance gradually decreases to chance 

level when the resolution is reduced to one pixel. 

The significant reduction in accuracy could be 
due to the fact that the reduction of  quality also 

removes textures in the input images, which may be 

a crucial feature used by neural networks for model 

recognition (Dodge & Karam, 2016).

Experiment 5: Modifying the contrast of
the images

Similarly, the contrast of  the test images was 

gradually decreased, from a factor of  1 (original 

image) to a factor of  0 (grey image) in steps of  

0.05, obtaining the performance depicted in Figure 
6b. The recognition accuracy over contrast shows 

a greater robustness with respect to the other 

deformations, confirming the results obtained 
in Dodge & Karam (2016) and in Geirhos et al. 

(2017). As a matter of  fact, the accuracies in the 
contrast experiment of  the latter study range from 

approximately 91 − 94% for VGG-16 (Simonyan 
& Zisserman, 2014), GoogLeNet (Szegedy et al., 
2015) and human subjects and 84% for the AlexNet 

(Krizhevsky et al., 2012) model when the contrast 

factor is 1 to chance level for the contrast factor of  

0.1. Likewise, the performance of  our model starts 
from the original accuracy of  approximately 88.4%, 

it drops when the contrast factor decreases to less 

than 0.4 until reaching chance level for a contrast 

factor of  0.1. A similar performance is achieved by 

human observers in this task (Geirhos et al., 2017).
In humans, the contrast gain control system 

evolved as a sophisticated contrast normalization 

technique and is responsible for the robustness 

to contrast variations (Geisler & Albrecht, 1995). 

In order to achieve a greater contrast invariance, 

images could be normalized in the first layers of  the 

Figure 6. Empirical distribution of recognition accuracy over the various types of image distortions. 
The accuracy is averaged over all the images in the test set. (a) Performance of the network over image 
resolution. The x-axis indicates the length of the side of the input test images, in pixels. (b) Performance 
of the network as a function of contrast. The x-axis indicates the contrast of the modified image with 
respect to the original image. (c) Performance of the network as a function of noise. The x-axis indicates 
the percentage of noise that is randomly added to the input pixels.
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network, the training set could be augmented with 

low contrast images or a mechanism similar to the 

contrast gain control present in humans could be 

included in the architecture of  the network (Geirhos 

et al., 2017).

Experiment 6: Adding noise to the input
images

Noise was added to the test images in various 

percentages by replacing a random set of  the pixels 

with values drawn from a uniform distribution. The 

percentage of  noise varies between 0% and 75%. 
When adding noise to the input images, the accuracy 

rapidly decreases following the trend in Figure 6c, 
approaching chance level when more than 25% 

of  the input pixels are replaced. This rapid drop 

in the network performance is in accordance with 

the studies presented in Dodge and Karam (2016) 

and Geirhos et al. (2017): after the first 10% of  
noise is added, the accuracy drops of  12% in our 

model, whereas it drops of  approximately 47% 
in VGG-16 (Simonyan & Zisserman, 2014) and 

GoogLeNet (Szegedy et al., 2015) and of  50% in 
AlexNet (Krizhevsky et al., 2012). In contrast, the 

drop-in accuracy for human subjects was of  only 

5%. Handling noise is very challenging for artificial 
models and drastic differences were found between 

DNNs and humans in this task, with human subjects 

outperforming artificial models (Dodge & Karam, 
2017). A possible explanation could be that, since 
the noise was picked from a uniform distribution, it 

has a high frequency, thus even small changes in the 

input and in the first layers of  the network propagate 
considerably in higher layers, significantly modifying 
the output of  the model (Dodge & Karam, 2016).

In conclusion, the performance under blur and 

noise is reduced independently of  the artificial 
model taken into consideration, suggesting that 

this depends on the architecture and training of  

the networks (Dodge & Karam, 2016). Therefore, 

the obvious solution of  modifying the model 

accordingly or training the model on blurred or 

noisy images arises naturally, although this could 

consequently compromise the performance of  the 

network with high quality images.

Dropout and Sparsity

Experiment 7: Correlating dropout and
sparse representations

Evidence of  sparse representations in early 

visual areas (Simoncelli, 2005; Lennie, 2003; Berry, 

Warland & Meister, 1997; Reinagel, 2001) and the 
efficiency of  sparse networks (Olshausen & Field, 
1996; Olshausen & Field, 2004) motivate the study 
of  the emergence of  sparsity in trained networks. 

Therefore, a possible correlation between dropout 

and sparsity was tested by varying the amount of  

dropout in the network. We trained the ten networks 

resulting from increasing the dropout level in 

the first dense layer from 0 to 0.9 in steps of  0.1 
and hence analyzed the empirical distribution of  

neuronal responses of  the resulting networks to the 

images in the test set.

In accordance with Baldi and Sadowski (2014), 

we found that high levels of  dropout contribute to 

sparse representations: the activations of  neurons in 
the first dense layer of  the network are significantly 
closer to 0 in Figure 7b compared to Figure 7a. In 
particular, Figure 5, representing the mean activations 
of  each layer of  the network when presenting the 

5000 test images, can be compared to Figure 11.1 in 
Baldi and Sadowski (2014): there is a clear prevalence 
of  neurons with activations that are close to 0. This 

correlation derives from the tendency of  dropout of  

preventing each neuron to rely excessively on other 

units (Hinton et al., 2012), which is achieved by 
minimizing the variance across neuronal activations. 

Therefore, sparse representations are favored.

Discussion

In this paper, we compared the processing of  

information in the visual system to the behavior 

of  a Convolutional Neural Network by analyzing 

the aspects involved in the implementation of  the 

computational model and in the functioning of  the 

backpropagation algorithm for object recognition. 

The network’s response was tested when presenting 

input images that were different from the images 

employed for the training of  the network. The 

test images were modified either with geometric 
deformations, by varying the rotation, position 

and size of  the objects within the image, or by 

compromising the extent of  visual information 

transmitted from the input when changing the 

quality, contrast and amount of  noise. The results 

were compared to neural data obtained from 

behavioral and neuroimaging studies in which the 

subjects’ response times, accuracies and neural 

activations were recorded following the presentation 

of  images with the various types of  deformations. 

Furthermore, the fundamental characteristics of  the 
architecture of  the network as well as the training 

process were discussed in comparison to the 

structure of  the visual stream and to the synaptic 
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update processes that are thought to be employed by 

the brain for learning.

In summary, our results indicate that our 

computational model is invariant to different kinds 

of  deformations in limited amounts. In many of  

our experiments and in previous research (Dodge & 

Karam, 2016, Dodge & Karam, 2017; Geirhos et al., 
2017; Kheradpisheh et al., 2016a,b), when increasing 
the level of  image deformation, the accuracy of  the 

networks decreases more rapidly than with human 

subjects. It was demonstrated that the brain responds 

differently to distinct kinds of  image deformations: 
for instance, size invariance signals appear earlier 

than position invariance signals (Isik, Meyers, Leibo 
& Poggio, 2014) and rotation invariance signals 

(Dill & Edelman, 1997) in the brain, suggesting 
that some, but not all, mechanisms for invariant 

object recognition could be built-in (Nishimura, 

Scherf, Zachariou, Tarr & Behrmann, 2014). 

Characterizing the amount of  image transformation 

independently of  which type of  variation is applied 

and, therefore, correlating each task to the others 

is not straightforward. Nevertheless, our results are 

comparable to the conclusions of  other studies, 

that found both DNNs and the human brain to 

be more robust to rotation and translation than 

to scaling of  the test images, in which the most 

amount of  visual information is lost (Kheradpisheh 

et al., 2016b). Indeed, a considerable correlation 

between computational models and the human 

brains in terms of  categorization accuracy was 

found (Kheradpisheh et al., 2016b). This suggests 

that the tasks that have the greatest computational 

complexity likewise represent the most challenging 

image variations for humans.

On the one hand, the present results illustrate that 

the performance of  the network rapidly decreases 

when lowering the quality of  the input images, 

adding noise or modifying the contrast, yet many 

of  the images that are misclassified by the CNN are 
still recognizable by humans (Geirhos et al., 2017). 
Moreover, it was found that artificial networks 
can be easily mislead with low noise percentages 

(Goodfellow, Shlens & Szegedy, 2014) or fooled into 

Figure 7. Empirical distribution of the average activations of units in the first dense layer of the network 
when presenting the 5000 images in the test set, either when using no dropout (a) or a 0.7 dropout level 
(b). The x-axis indicates the amount of activation; the y-axis represents the number of units corresponding 
to each amount of activation.

Figure 8. Empirical distribution of the average activations of units in each layer of the network when 
presenting the 5000 images in the test set. The x-axis indicates the amount of activation; the y-axis 
represents the number of units corresponding to each amount of activation. (a),(b),(c) Average neuronal 
activations in the three convolutional layers. (b) Average neuronal activation in the first dense layer. The 
prevalence of small activations is due to the tendency of dropout of favoring sparse representations.



Nijmegen CNS | VOL 14 | ISSUE 270

Fiammetta Strazzera Perniciani 

falsely recognizing objects in images of  pure noise 

(Nguyen, Yosinski & Clune, 2014), even though 

these conditions are carefully chosen and unlikely 

to occur. On the other hand, there exist examples 

of  the opposite situation, in which images that have 

very poor resolution, or a significant amount of  noise 
were successfully classified by artificial networks and 
not by humans (Wright, Yang, Ganesh, Sastry & Ma, 

2009). The present study, along with previous results 

on different DNNs (Ghodrati et al., 2014; Pinto et 

al., 2011; Dodge & Karam, 2016, Dodge & Karam, 

2017; Geirhos et al., 2017), suggest that, even though 
neural networks have reached human classification 
abilities on known benchmarks, there is still a gap 

between Convolutional Neural Networks and the 

human visual system when the images are distorted 

(Dodge & Karam, 2017). This gap could in part 
be explained by the greater exposition of  humans 

to image transformations compared to DNNs 

through experience and evolution. Nevertheless, it 

is true that humans overcome DNNs in their ability 

to generalize to unseen distortions (Geirhos et al., 

2017). These dissimilarities give insights into the 
aspects that need to be improved in order to bridge 

the gap between neuroscience and Deep Learning 
and suggest a starting point for future research, 

in which for instance the training data could be 

augmented with distorted images.

It could be argued that the chosen model and 

training dataset are rather simple compared to the 

complexity of  the human visual system architecture 

and of  the real world tasks: deeper networks have 
proven to reach higher performance accuracies 

in different recognition tasks (Krizhevsky et al., 

2012; Szegedy et al., 2015; Simonyan & Zisserman, 

2014; Yamins & DiCarlo, 2016). Nevertheless, 

this straightforward design allows for tight 

experimental control without excessively affecting 

the performance. This permitted to focus on 

investigating and replicating the architecture and 

the behavior of  the brain’s visual system rather than 

optimizing its performance on a specific task. As a 
matter of  fact, the chosen network is inspired by 

neural processes and the single components are, 

where possible, subject to biological constraints as 

opposed to various more complex artificial models. 
Several preliminary experiments were performed in 

order to select the number of  layers, the connectivity 

between neurons, the dropout level and the activation 

functions, based on the network’s performance as 

well as the artificial units’ activations in comparison 
with biological data. 

This procedure would have been excessively 

expensive in terms of  computational cost if  

considering deeper architectures. Using different 
combinations of  neural network architectures and 

datasets while considering the tradeoff  between 

experimental control and model complexity is 

a crucial next step for future research in order to 

achieve more accurate and biologically plausible 

results.

Moreover, it would have been interesting to 

analyze further aspects of  the network’s response 

other than the performance accuracy, as, for instance, 

the neural unit activation in comparison to brain 

data obtained in fMRI studies (Kheradpisheh et al., 
2016a; Güçlü & van Gerven, 2015). Additionally, it 

is crucial to test the robustness of  artificial networks 
by constructing alternative experimental designs, 

with different recognition tests or types of  images, 

i.e. synthetic images (Pinto et al., 2008).

In the following, additional similarities between 

DNNs and the human visual system along with 

aspects that question the biological plausibility of  the 

current implementation of  neural networks, from 

the learning procedure to the architecture, will be 

discussed. For instance, neurophysiological aspects 
such as spike timing dependent plasticity, dendritic 

computation, local excitatory-inhibitory networks 

may explain how gradient descent methods could be 

implemented in the brain (Marblestone et al., 2016).

An important assumption that makes the 

comparison between artificial and real networks 
possible is that the brain has developed cost 

functions, shaped by evolution, and is able to 

optimize them in order to adjust the connections 

across neurons and achieve its goals (Marblestone et 

al., 2016). Similarly, learning in computational models 

is based on the optimization of  cost functions using 

backpropagation. The backpropagation algorithm 

is extremely powerful and is therefore commonly 

used in neural networks, although it has been widely 

believed to be biologically implausible (Crick, 1989; 

Stork, 1989), for various reasons.

To begin with, it requires labelled data for 

learning, even though almost all real data are 

unlabeled. Human brains have considerably more 
degrees of  freedom, that is, connections, than 

seconds of  life and consequently than the amount 

of  labelled data they could possibly receive (Hinton, 
2014). It is therefore impossible to learn weights 

for all the synapses in the brain, even though it is 

unlikely that all the connections need to be used 

(Hinton, 2016). Moreover, DNNs could employ 
unsupervised learning, in which learning can 

occur through unlabeled data and combine it with 

backpropagation only for fine-tuning the weights 
or for transfer learning. This technique consists in 
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exploiting previously learned representations to 

transfer a prior on the distribution of  the input in 

order to learn new data more easily (Hinton, 2016). 
Transfer learning could simulate human’s ability to 

learn a new task with few examples, as opposed to 

the thousands of  examples required by current state 

of  the art DNNs. However, for the purposes of  the 
present study, unsupervised learning was not used 

since it is not necessary for the CIFAR-10 dataset 
(Paine et al., 2014).

Furthermore, while the standard artificial 
neurons do not encode precise timing, it is thought 

that synaptic weights in the brain change with Spike-

Timing-Dependent-Plasticity (STDP): potentiate 
when a presynaptic spike is rapidly followed by a 

postsynaptic spike and depress when the opposite 

situation occurs (Gerstner, Kempter, van Hemmen 
& Wagner, 1996; Markram & Sakmann, 1995). 

The magnitude of  the weight change decreases as 

the presynaptic and postsynaptic spikes separate. 

STDP can be seen as a spike-based formulation 

of  the Hebbian postulate, stating that synapses are 
strengthened if  a presynaptic neuron fires slightly 
before the postsynaptic one (Hebb, 1949). This 
theory is extended with the concept of  synaptic 

weakening, in which synapses are weakened if  the 

presynaptic cell is consistently not co-active with 

the postsynaptic neuron (Stent, 1973). However, 
it was proven that in the visual and motor systems 

information is mostly carried by the average firing 
rate of  neurons, that is more compatible to learning 

update rules in artificial models, rather than by the 
spike timing (Baldi & Sadowski, 2014).

Moreover, artificial units need to send two 
different kinds of  signals: the forward signal, 
representing its activity and used to generate a 

prediction, and the backward signal, that is, the 

derivative of  the cost function used for the learning 

update. On the contrary, there is evidence that 

feedforward and feedback connections in the brain 

are implemented in distinct paths and real neurons 

only use one kind of  signal, encoded with spikes 

(Douglas et al., 1989).

Additionally, DNNs are mainly feedforward 

networks and the feedback mechanisms occur 

only during learning, whereas there is evidence for 

continuous feedback processes in the brain (Bullier, 

McCourt & Henry, 1988; Felleman & Van, 1991; 
De Pasquale & Sherman, 2011; Mignard & Malpeli, 

1991). The feedback and feedforward computations 

are implemented in two distinct phases and, since 

the feedback step needs to follow the feedforward 

step, a synchronization mechanism is needed 

(Bengio, Lee, Bornschein, Mesnard & Lin, 2015). 

This synchronization is not necessary in the case 

of  recurrent neural networks, which are more 

compatible with neurophysiological processes under 

this point of  view (Simard, Ottaway & Ballard, 1988). 

The need for two distinct phases and a separate 

network for the feedback of  error is eliminated by 

associating each neuron with a mirror neuron that 

imitates the feedforward path in order to cancel 

the top-down component (Guerguiev, Lillicrap 
& Richards, 2017). This allows for a network that 
continuously generates predictions and feedback at 

the same time. Yet, there is no known biochemical 

mechanism that could duplicate the weight of  a 

synapse between two cells (Baldi & Sadowski, 2016).

Furthermore, backpropagation assigns blame on 
a neuronal basis, depending on how each neuron 

contributed to the error, therefore feedback paths 

need exact knowledge of  the downstream synapses 

(Bengio et al., 2015). Otherwise stated, in order 

to compute the global cost function, each neuron 

would need to know the output of  every other 

neuron, whereas evidence of  local learning rules 

has been found in some regions of  the brain (Rolls 
& Deco, 2002). A global cost function requires 

the unlikely condition of  the weights matrix to be 

symmetric (Grossberg, 1987), although the use of  
random weights has proven to work well in practice 

and gives a good approximation of  backpropagation 

(Lillicrap, Cowden, Tweed & Akerman, 2014; 
Lillicrap, Cowden, Tweed & Akerman, 2016) when 
the synaptic signs do not change between feedback 

and feedforward connections (Liao, Leibo & 
Poggiom, 2015).

These discrepancies are solved if  the error 

derivatives needed for backpropagation are encoded 

in the temporal change of  the neuronal firing rates 
(Hinton & McClelland, 1988). This allows the output 
of  a neuron to represent an error derivative at the 

same time, as it is also indicating the presence or 

absence of  a feature (Whittington & Bogacz, 2015). 

Consequently, in the learning rule the weight update 

is proportional both to the presynaptic activity and 

to the rate of  change of  the postsynaptic activity, 

analogously to the STDP learning update (Bi & Poo, 

1998). In this framework, STDP could be identified 
as a form of  stochastic gradient descent (Hinton, 
2016; Bengio et al., 2015). This learning rule can 

approximate the differential anti-Hebbian plasticity 
in which synapses updates depend on the product 

of  the presynaptic firing rate and the time derivative 
of  postsynaptic firing rate (Xie & Seung, 2000).

Another issue with backpropagation is that 

it requires for each connection to communicate 

with both positive and negative derivatives. In 
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contrast, according to Dale’s Law (Strata & Harvey, 
1999), real synapses do not change sign. However, 
employing neurons that are either entirely inhibitory 

or excitatory is unlikely to limit the functions that 

can be learned (Tripp & Eliasmith, 2016; Parisien, 

Anderson & Eliasmith, 2008).

Moreover, artificial neurons in the 
backpropagation algorithm can assume values in 

a continuous range. On the contrary, real neurons 

transmit information through binary spikes (Bengio 

et al., 2015). Nonetheless, backpropagation is very 

robust to noise, thus the network units could be 

rounded to 0 or 1, a technique similar to dropout, 

without compromising the model performance 

(Hinton, 2016). Finally, backpropagation involves 
purely linear computations, whereas dendrites 

can alternate linear and non-linear calculations. 

A learning rule similar to the one proposed by 

Hinton and McClelland (1988) solves this problem 
by including a non-linear term derived from the 

probability of  firing in the weight update (Bengio 
et al., 2015).

Markedly, the architecture of  DNNs is particularly 

effective in object recognition and resembles the 

architecture of  cortical visual pathways (LeCun et 
al., 1999). When an object appears in the visual field, 
the information flows from the retina, through the 
LGN, to the primary and secondary visual cortex, 
then to V4 and finally to the inferotemporal cortex 
(Trappenberg, 2002). The information flows from 
the retina to the IT in 100 ms and then starts to 

flow backwards in order to update the synaptic 
connections. However, if  the gaze is interrupted, 
the feedforward activations detected within the first 
100 ms after presentation of  the input are similar 

to the activations of  units in Convolutional Neural 

Networks (Goodfellow et al., 2016).

Similar to the processing of  visual information in 

the brain, a hierarchical structure naturally emerges 

along the layers of  a Deep Neural Network, that 

process increasingly complex features (Cichy et al., 

2016; Güçlü & van Gerven, 2015; Ba & Caruana, 

2014), as occurs in successive regions of  the visual 

stream. For instance, the primary visual cortex 
has a two-dimensional structure that reflects the 
images encoding the visual information that hit the 

retina. It is formed of  simple and complex cells, 

which respond to specific shapes or movements 
respectively (Goodfellow et al., 2016). From these 
simple aspects, increasingly complex features 

are represented in successive brain areas, until 

the encoding of  high-level characteristics in the 

inferotemporal cortex. Analogously, networks with 

multiple layers will automatically learn to recognize 

simple features, as edges and color, in the first layers 
and increasingly complex features, from shapes to 

higher-order characteristics like faces, in successive 

layers (Cichy et al., 2016; Güçlü & van Gerven, 2015; 

Ba & Caruana, 2014). Therefore, all intermediate 

features with different levels of  complexity between 

the raw data and the final representation of  an object 
can be represented in distinct layers, supporting the 

network’s ability to generalize.

Specifically, the first layers of  a DNN exhibit 
properties similar to early visual areas (Cichy et 

al., 2016). As a matter of  fact, the receptive fields 
in the visual cortex can be accurately modelled by 

Gabor filters, in which the weights follow a Gabor 
function (Marĉelja, 1980; Jones & Palmer, 1987). A 
new architecture that incorporates Gabor filters into 
convolutional DNNs has recently been proposed, 

performing similarly to many known CNNs on the 

popular benchmarks such as MNIST, CIFAR-10, 
CIFAR-100 and ImageNet (Luan et al., 2017). By 
any means, the first layers of  a neural network were 
proven to naturally converge to Gabor filters even 
when not explicitly programmed to do so (Bengio 

et al., 2015). Additionally, recent studies found that 

the penultimate and ultimate layers of  a neural 

network are particularly predictive of  V4 and IT 

neurons’ responses respectively (Yamins et al., 2014; 

Cadieu et al., 2014), specifically when the network is 
trained with supervised methods (Khaligh-Razavi & 
Kriegeskorte, 2014). Accordingly, based on similar 

computational models (Cichy et al., 2016; Güçlü & 

van Gerven, 2015; Yamins & DiCarlo, 2016), we 

identify the three convolutional layers in our network 

with the primary visual cortex (V1), secondary visual 

cortex (V2), and the visual area V4, respectively, and 

the first dense layer with the inferior temporal cortex 
(IT).

In addition, the convolution operation in CNNs 

is inspired by biological processes in the visual 

cortex. Some regions in the visual cortex are sensitive 

to particular areas of  the visual field and to specific 
features of  the object such as orientation, shape, and 

movement in space. (Hubel & Wiesel, 1959; Hibel 
& Wiesel 1962). Similarly, in convolutional layers 

each neuronal unit is connected only to a subset of  

units in the previous layer and each filter is sensitive 
to a specific shape or feature. Moreover, biological 
circuits were proven to be able to perform the 

convolution operation (Cichy et al., 2016), that is 

thought to occur in simple cells (Serre et al., 2007).
In contrast, the biological plausibility of  shared 

weights, that is, using the same weight matrix for all 

the input layer, has been questioned, since the brain 

uses local fields. However, a similar technique to 
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weight sharing can be approximated (Hinton, 2016): 
if  two regions encoding low-level features in an early 

layer are close enough, then they share some high-

level features in a higher layer, that gives top down 

supervision for both lower layer features. Thus, 

learning features in a low-level region helps creating 

higher level representation from which other low-

level regions can extract information. By knowing 

the region’s input as well as the desired high-level 

features, learning can be considerably accelerated. 

Therefore, it is possible to transfer information 

across regions in a layer without transporting 

weights.

Likewise, the use of  the max-pooling operation 
is open to criticism: Hinton (2014) observed 
that, although pooling gives a small amount of  

translation invariance at each layer, it ignores the 

relations between the parts of  each image and loses 

information that is currently not relevant but could 

be useful for future tasks. This suggests that more 

levels of  structure are needed in order to properly 

disentangle the data. Nevertheless, it was proven 

that biological circuits are able to perform the max-

pooling operation (Cichy et al., 2016). This idea has 

been supported by studies with both intracellular 

(Lampl, Ferster, Poggio & Riesenhuber, 2004) and 
extracellular (Gawne & Martin, 2002) recordings. In 

the simple and complex cells paradigm, the latter are 

thought to be responsible for the pooling operation 

(Serre et al., 2007): the size of  the receptive fields 
indeed decreases from the simple to the complex 

stage.

Regarding the use of  dropout in neural 
networks, its biological counterpart may be the 

neuronal refractory period, occurring after an action 

potential, in which the neuron is incapable of  firing. 
Furthermore, by linking a dropout of  probability p 
to a neuron that spikes with probability 1 − p, Hinton 
(2016) demonstrated that randomly dropping units 

in neural networks is similar to the random noise 

inherent to the spiking rate of  biological neurons 

that follows a Poisson process.

Moreover, the data augmentation technique 

used to increase the number of  training samples 

in DNNs is biologically plausible. As a matter of  

fact, it might mimic the learning of  invariant object 

representations in the brain, that occurs through 

a varied dataset consisting of  distinct views of  

the objects under different viewing conditions. 

Furthermore, the variability in the input data could 
also derive from eye movements, such as drifts 

or saccades. It was shown that in models trained 

with high levels of  data augmentation, the last 

layers exhibit greater similarities to the responses 

of  IT in humans compared to networks trained 

without this technique (Hernández-García, Mehrer, 
Kriegeskorte, König & Kietzmann, 2018).

An additional technique used to train CNNs 

that biological circuits are able to approximate is 

batch normalization (Cichy et al., 2016). Indeed, 

homeostatic plasticity mechanisms in the brain 

operate a sort of  synaptic scaling that minimizes 

the current into a neuron and is comparable to 

the application of  batch normalization (Turrigiano 

& Nelson, 2004; Stellwagen & Malenka, 2006; 

Turrigiano, 2008). However, the normalization 
statistics change for every timestep and are computed 

having complete knowledge of  the output of  all 

neurons in each layer, which would be impossible 

for real neurons. Nevertheless, a more biologically 

plausible technique for normalization was proposed 

by Liao et al. (2016), that learns running estimates 
of  the mean and variance only in local regions and is 

computationally efficient.
A last feature regarding the implementation of  

CNNs that can be compared to mechanisms in the 

human brain concerns activation functions. The 

biological counterpart of  activation functions is the 

action potential firing, that determines the firing of  
a neuron as a function of  its input (L. Hodgkin & F. 
Huxley, 1990). The rectifier function that was used in 
our network is biologically inspired and compatible 

with our current knowledge of  the functioning of  

real neurons (Hahnloser et al., 2003).

Conclusion

In conclusion, we aimed to achieve a more 

complete overview of  the differences and similarities 

between artificial networks and the brain. The 
question was tackled by comparing the behavior of  

Deep Neural Networks, inspired by neuroscience, 

and the human visual system. Deep architectures have 

the ability of  representing properties of  increasing 

complexity and abstraction in distinct layers and are 

therefore very expressive. As a matter of  fact, DNNs 

have achieved superhuman abilities in many object 

classification tasks. Yet, there is still a significant 
gap between Deep Networks and the brain in terms 

of  invariant recognition ability, that may be due in 

part to some limitations of  current computational 

models. In artificial networks, the lack of  the 
extensive feedback information that is provided to 

the visual system and used to continuously update 

and refine visual representations could explain their 
lower recognition accuracies under image variations. 

Moreover, CNNs are purely visual, whereas, in the 

brain, visual information is integrated with input 
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from many other senses, which is likely to improve 

its internal object representations, giving it an 

advantage over artificial networks. Looking at the 
insights from neuroscience and focusing on the 

issues discussed in the present paper, Deep Learning 
can be improved even further towards more efficient 
and more biologically plausible networks.
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