Topology of SmB$_6$ determined by DFT+DMFT

based on arXiv:1907.03899

Patrik Thunström

ERC workshop, Zoom, 8/5-2020
Outline

• Motivation
 - SmB$_6$ a strongly correlated topological insulator?
 - Experimental
 - Surface bands, but trivial or not?
 - Theoretical
 - Multiplet derived bands with fractional weights
 - Pole Expanded vs "Topological" Hamiltonian

• Theory and results
 - DFT + Dynamical Mean Field Theory
 - Nice agreement ⇒ Enough with a local self-energy
 - Topology
 - Pole Expanded Hamiltonian
 - Symmetry analysis
 - Pole Expanded Hamiltonian vs "Topological" Hamiltonian

• Summary and conclusion
Motivation

• Experimental motivation
 - Huge body of work, driven by the theoretical model prediction by [1]
 - Transport: insulating bulk but conducting surface states [2]
 - ARPES: Metallic surface bands, but trivial or not?
 - Even number of Fermi surface pockets? [3]
 - Rachba + Umklapp? [4]

Motivation

- Theoretical motivation

- Topological invariant Z_2 [1,2] is fundamentally connected to an effective H_k
 - Inversion and time-rev.: Count occupied bands and their parity at the TRIM points
- SmB$_6$ has multiplet derived bands with fractional weights
 - Bands can smear out or gradually disappear and reappear with shifted energy
 - How to even count the bands?

Theory and Results

- **DFT + Dynamical Mean Field Theory**
 - Sm 4f strongly correlated ($U = 8$, large F_2, F_4, and F_6 slater parameters)
 - Include spin-orbit, crystal fields, and a few bath states (hybridization)
 - Exact diagonalization impurity solver
 - Temperature: 100 K
 - Intermediate valence ground state: $N_f = 5.48$, Eigenstates Γ_1 and Γ_8 [1]

![Graph](image)

<table>
<thead>
<tr>
<th>Sym.</th>
<th>N_f</th>
<th>E (eV)</th>
<th>Weight</th>
<th>$S_l[\rho]$</th>
<th>J</th>
<th>L</th>
<th>S</th>
<th>J_z</th>
<th>L_z</th>
<th>S_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ^+_1</td>
<td>6.002</td>
<td>0.000</td>
<td>0.46</td>
<td>3.0</td>
<td>0.06</td>
<td>2.95</td>
<td>2.94</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Γ^-_8</td>
<td>5.016</td>
<td>0.012</td>
<td>0.12</td>
<td>1.9</td>
<td>2.52</td>
<td>4.95</td>
<td>2.46</td>
<td>0.48</td>
<td>0.76</td>
<td>-0.28</td>
</tr>
<tr>
<td>Γ^+_8</td>
<td>5.016</td>
<td>0.012</td>
<td>0.12</td>
<td>2.5</td>
<td>2.52</td>
<td>4.95</td>
<td>2.46</td>
<td>0.48</td>
<td>-0.76</td>
<td>0.28</td>
</tr>
<tr>
<td>Γ^-_8</td>
<td>5.016</td>
<td>0.012</td>
<td>0.12</td>
<td>1.9</td>
<td>2.52</td>
<td>4.95</td>
<td>2.46</td>
<td>-1.82</td>
<td>-3.17</td>
<td>1.35</td>
</tr>
<tr>
<td>Γ^-_7</td>
<td>5.018</td>
<td>0.024</td>
<td>0.03</td>
<td>2.5</td>
<td>2.53</td>
<td>4.94</td>
<td>2.46</td>
<td>0.78</td>
<td>1.11</td>
<td>-0.33</td>
</tr>
<tr>
<td>Γ^-_7</td>
<td>5.018</td>
<td>0.024</td>
<td>0.03</td>
<td>2.5</td>
<td>2.53</td>
<td>4.94</td>
<td>2.46</td>
<td>-0.78</td>
<td>-1.11</td>
<td>0.33</td>
</tr>
<tr>
<td>Γ</td>
<td>6.002</td>
<td>0.047</td>
<td>0.00</td>
<td>3.0</td>
<td>1.02</td>
<td>2.96</td>
<td>2.95</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Γ</td>
<td>6.002</td>
<td>0.047</td>
<td>0.00</td>
<td>3.0</td>
<td>1.02</td>
<td>2.96</td>
<td>2.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Γ</td>
<td>6.002</td>
<td>0.047</td>
<td>0.00</td>
<td>3.0</td>
<td>1.02</td>
<td>2.96</td>
<td>2.95</td>
<td>-1.00</td>
<td>-0.50</td>
<td>-0.50</td>
</tr>
</tbody>
</table>

Theory and Results

• Take home message: DFT+DMFT work well! (local self-energy)
• For more details: arXiv:1907.03899
Theory and Results

• Topology outline
 - The Pole Expansion Hamiltonian!\([1,2]\) \(H_{\text{PE}}\)
 - Rigorous starting point, an effective Hamiltonian that fully captures \(G_k(v)\)
 - Based on
 - The pole expansion of the self-energy \(\Sigma_k\) (Pedagogical intro: \texttt{arXiv:1907.03899})
 - A mathematical identity for projections of Green's functions

\[
\Sigma(z) = \Sigma(\infty) + \Sigma_V \left[z \mathbb{1} - \Sigma_E \right]^{-1} \Sigma_V^\dagger
\]

Theory and Results

- Topology
 - The dynamical term of $\Sigma(z)$ has the form of a hybridization function [1]
 \[
 \Sigma_k(z) = \Sigma_k(\infty) + \Sigma_{V_k} \left[z \mathbf{1} - \Sigma_{E_k} \right]^{-1} \Sigma_{V_k}^{\dagger} \quad \Delta(z) = V \left[z \mathbf{1} - E \right]^{-1} V^{\dagger}
 \]
 - Poles of the self-energy equivalent to auxiliary orbitals
 - Matrix form of the Green's function

\[
G_k(z) = \left(\begin{array}{ccc}
z \mathbf{1} & -H_k & \Sigma_{V_k} \\
+\Sigma_k(\infty) & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array} \right)^{-1}
\]

Theory and Results

- Well-known matrix identity

\[G_k(z) = \begin{bmatrix} z1 & -H_k + \Sigma_k(\infty) & \Sigma_{Vk} \\ \Sigma_{Ek} & -1 \\ \Sigma_{Vk} \end{bmatrix} \]

\[= \begin{bmatrix} 1 & 0 \\ \Sigma_{Vk} & \Sigma_{Ek} \end{bmatrix} \]
Theory and Results

• Pole expanded Hamiltonian
 - Poles of the self-energy corresponds to auxiliary orbitals
 - Full Green's function reproduced by projecting upon the physical orbitals
 - All bands in $G_k(v)$ corresponds to eigenstates of H^{PE}
 - The *projection* reduces their weight in the spectral function
 - Topological surface states in $G_k \Leftrightarrow$ topological surface states from H^{PE}

$$H^{PE}_k = H_k + \Sigma_k(\infty) + \Sigma_{V_k} + \Sigma_{V_k}^\dagger + \Sigma_{E_k}$$
Theory and Results

• Z_2 well-defined on H^{PE} [1]
• **Problem**: Σ_{V_k} and Σ_{E_k} are difficult (but not impossible) to obtain in practice!
• Can we be clever?
 - Symmetries
 - The self-energy of DMFT is local

\[H^\text{PE}_k = H_k + \Sigma(\infty) + \Sigma_V \]

Theory and Results

- The self-energy has no poles in the bulk band gap
 - zero valued eigenstates of H_{PE} has to have a finite physical weight
 - Bulk spectral function shows a band gap $\Rightarrow H_{PE}$ is gapped!

$$H_{PE} = H_k + \Sigma(\infty)$$

$$\Sigma_V$$

$$\Sigma_V^\dagger$$

$$\Sigma_E \neq 0$$
Theory and Results

- Two local orbitals will only hybridize if they share the same irreducible repr.
 - The auxiliary orbitals will transform as the Sm 4f orbitals.
 - Odd parity at the TRIM points!

- Enough to count the *non-interacting* bands in the *even* parity channel
 - Close to the DFT starting point. Odd number = **NON-TRIVIAL**!

\[
\begin{array}{c|cc}
H_k & \Sigma(\infty) & 0 \\
\hline
0 & H_k & 0 \\
\hline
\Sigma V^\dagger & 0 & \Sigma E \\
\end{array}
\]

At TRIM points: \(H_k^{PE} = \)
Theory and Results

- Pole expanded Hamiltonian vs "Topological" Hamiltonian

\[H_{k} + \sum_{k(\infty)} \delta H_{k} + \sum_{k(0)} \delta H_{k} \]

\[\sum_{V_{k}} \]

\[\sum_{E_{k}} \]

\[H_{k} \]
Theory and Results

- Pole expanded Hamiltonian \(\text{vs} \) "Topological" Hamiltonian
 - Continuous interpolation between \(H^{PE} \) and \(H_k + \Sigma_k(0) \) plus auxiliary \(\Sigma_{Ek} \) without closing the band gap! (assuming \(\Sigma_k(0) < \infty \))
 \[\Rightarrow \text{Topologically equivalent!} \]

- Topological Hamiltonian works iff the detached auxiliary orbitals gives \(Z_2 = 1 \)
 - Always OK for a local self-energy, but not for a non-local self-energy!

\[
\begin{align*}
H(\lambda) &= \lambda \\
H^{PE} &= H_{FF} + \Sigma(\infty) \\
& \quad H_{FA} \\
& \quad H_{AF} \\
& \quad H_{AA} \\
H^{T}(\lambda) + H_{AA} &= H_{FF} + \Sigma(0, \lambda) \\
& \quad 0 \\
& \quad 0 \\
& \quad H_{AA}
\end{align*}
\]
Summary

- DFT+DFMT[ED] does a good job for SmB\textsubscript{6}
 - Intermediate valence ground state at 100K
 - Gap in bulk
 - *Topological* spin-polarized surface states

- Topology rigorously defined using H^PE
 - Topological Hamiltonian $H_k + \Sigma_k(0)$ breaks for topologically non-trivial pole structures in $\Sigma_k(z)$
 - More details + explicit examples in arXiv:1907.03899