Optical Spectroscopy

Spectroscopy was originally the study of the interaction between radiation and matter as a function of wavelength (λ). Historically, spectroscopy referred to the use of visible light dispersed according to its wavelength, e.g. by a prism. Later the concept was expanded greatly to comprise any measurement of a quantity as a function of either wavelength or frequency. Thus, it also can refer to a response to an alternating field or varying frequency (ν). A further extension of the scope of the definition added energy (E) as a variable, once the very close relationship E = hν for photons was realized (h is the Planck constant). A plot of the response as a function of wavelength-or more commonly frequency-is referred to as a spectrum; see also spectral linewidth.

Spectrometry is the spectroscopic technique used to assess the concentration or amount of a given chemical (atomic, molecular, or ionic) species. In this case, the instrument that performs such measurements is a spectrometer, spectrophotometer, or spectrograph.

Spectroscopy/spectrometry is often used in physical and analytical chemistry for the identification of substances through the spectrum emitted from or absorbed by them.

We have the following spectroscopic techniques available in the Organic Chemistry groups. Fluorescence Spectrosopy, UV-Vis Spectroscopy, Circular Dichroïsm and two Infra-Red spectrophotometers.